
	

	
	
	

Cost	and	Energy	Efficient	Job	
Scheduling	Algorithm	for	Cloud	Data	

Centre	
	
	
	
	
	

Masters	Thesis	

	

	

	

	

Harshit	Kapoor	
Student	No.	666810	

Supervisor:	Dr.	Adel	Nadjaran	Toosi	
	

Master	of	Science	(Computer	Science)	
Research	Project	(75	Points)	

COMP60002,	COMP60003	&	COMP60004	
June	2017	

	
	

Department	of	Computing	and	Information	Systems	
THE	UNIVERSITY	OF	MELBOURNE	

	 2	

Abstract:	
	
As	 a	 result	 of	 an	 increased	 interest	 in	 the	 storage	 and	 processing	 of	 large	
amounts	of	data	or	“Big	Data”,	the	IT	industry	has	entered	a	data-intensive	age.	A	
single	computer	cannot	process	this	much	data.	Therefore,	we	need	data	centers	
with	 multiple	 physical	 or	 virtual	 machines	 to	 satisfy	 this	 need	 of	 the	 market.	
While	 these	 data	 centers	 provide	 us	 the	 cloud	 computing	 functionalities,	 they	
also	 require	 a	 significant	 amount	 of	 brown	 (fossil-based)	 energy	 to	 function.	
Consequently,	this	results	in	an	increase	in	electricity	costs	as	well	as	damages	to	
the	 environment.	 Extensive	 research	 is	 being	 performed	 to	 replace	 brown	
energy	with	green	(renewable)	energy	sources	such	as	wind,	hydropower,	solar	
etc.	to	power	up	these	data	centers.	
Today,	 many	 companies	 are	 moving	 to	 adopt	 green	 energy	 as	 their	 primary	
source	to	power	up	their	cloud	data	centers.	Therefore,	 it	has	become	essential	
to	 develop	 a	mechanism	 to	 use	 cloud	data	 centers	 in	 environmentally	 friendly	
manner	and	increase	the	usage	of	green	energy.	
In	this	thesis,	we	propose	a	job-	scheduling	algorithm	for	a	cloud	data	center	that	
is	cost	and	energy	efficient.	The	main	problem	that	we	are	trying	to	solve	with	
this	 algorithm	 is	matching	energy	 required	by	 the	workload	with	 the	available	
green	energy	 in	 a	 cloud	data	 center.	We	also	use	 this	 algorithm	with	 real-time	
workload	 and	 present	 the	 obtained	 results.	We	 try	many	 different	 scheduling	
techniques	 to	 find	 the	 most	 optimal	 technique	 to	 maximize	 usage	 of	 green	
energy	 and	 minimize	 overall	 cost.	 The	 results	 of	 our	 experiments	 show	 that	
using	least	running	time	first	(LRTF)	and	least	nodes	first	scheduling	policy	we	
can	maximize	 the	 usage	 of	 green	 energy.	Whereas,	 using	 first	 come	 first	 serve	
(FCFS)	 scheduling	 policy,	 we	 can	 minimize	 the	 time	 required	 to	 execute	 the	
workload	in	a	data	center.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 3	

I	certify	that	
- This	thesis	does	not	incorporate	without	acknowledgment	any	material	

previously	submitted	for	a	degree	or	diploma	in	any	university	and	that	to	
the	best	of	my	knowledge	and	belief	it	does	not	contain	any	material	
previously	published	or	written	by	another	person	where	due	reference	is	
not	made	in	the	text.	
	

- 	Where	necessary	I	have	received	clearance	for	this	research	from	the	
University's	Ethics	Committee	and	have	submitted	all	required	data	to	the	
Department.	
	

- 	The	thesis	is	about	17093	words	in	length.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 4	

Acknowledgement	
	
I	would	like	to	thank	my	thesis	supervisor,	Dr.	Adel	Nadjaran	Toosi,	for	his	
endless	guidance	and	patience	throughout	the	span	of	my	research	project.	
	
I	would	also	like	to	express	my	profound	gratitude	to	my	guru	Pt.	Gopal	Dutt;	my	
father,	Kapil	Kapoor;	my	mother,	Rashmi	Kapoor;	my	brother,	Yogesh	Kapoor	
and	all	of	my	friends	who	supported	me	at	every	step	in	these	last	two	years.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 5	

Table	of	Contents	
1.	Introduction	...	7	
2.	Literature	Survey	...	9	
3.	Motivation	&	Background	...	14	
3.1	 Motivation	..	14	
3.2	 Background	..	15	
4.	Problem	Definition	..	19	
4.1	 Thesis	Statement	...	20	
5.	Scheduling	Algorithm	...	21	
5.1					Introduction	...	21	
5.2					Overview	...	23	
5.3					Algorithm	..	25	
6.	Performance	Evaluation	..	30	
6.1	 Experimental	Setup	..	30	
6.2	 Experimental	Results	...	36	
7.	Conclusion	...	47	
References	………...	48	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 6	

List	of	figures	
Figure	1:	Country	wise	incentives	based	on	solar	energy	and	wind	energy.	17	
Figure	2:	A	conventional	scheduler	..	22	
Figure	3:	Scheduling	using	the	proposed	job	scheduling	algorithm	22	
Figure	4:	Figure	showing	how	the	proposed	algorithm	spreads	out	the	energy	

consumption	over	time	to	maximize	the	usage	of	Green	Energy	25	
Figure	5:	Cost	and	energy	efficient	job	scheduling	algorithm	for	a	cloud	data	

center.	..	25	
Figure	6:	Slot	Calculation	..	26	
Figure	7:	Overall	energy	requirement	if	the	jobs	were	ordered	in	the	order	of	

their	arrival	time.	...	33	
Figure	8:	Standardised	available	green	energy	trace	...	34	
Figure	9:	Schedule	generated	through	LSTF	for	workload	1	..	38	
Figure	10:	Schedule	generated	through	FCFS	for	workload	1	38	
Figure	11:	Schedule	generated	through	LRTF	for	workload	1	38	
Figure	12:	Schedule	generated	through	least	nodes	first	policy	for	workload	1	.	39	
Figure	13:	LSTF	energy	spread	as	per	its	schedule	for	workload	2	43	
Figure	14:	FCFS	energy	spread	as	per	its	schedule	for	workload	2	44	
Figure	15:	LRTF	energy	spread	as	per	its	schedule	for	workload	2	44	
Figure	16:	Least	Nodes	First	energy	spread	as	per	its	schedule	for	workload	2	.	45	
	
	

List	of	tables	
Table	1:	Cost	of	electricity	produced	by	different	plant	types	as	taken	from	US	

EIA	statistics	and	analysis	from	Annual	Energy	Outlook.	16	
Table	2:	Energy	consumption	values,	in	watts	per	second	..	32	
Table	3:	Resultant	available	renewable	energy	values	which	were	fed	to	the	

algorithm	..	35	
Table	4:	LSTF	Workflow	schedule	for	workload	1	..	36	
Table	5:	FCFS	Workflow	schedule	for	workload	1	..	37	
Table	6:	LRTF	Workflow	schedule	for	workload	1	..	37	
Table	7:	Least	Nodes	First	for	workload	1	..	37	
Table	8:	Total	green	energy	used	by	each	policy	for	workload	1	39	
Table	9:	Total	green	energy	used	by	each	policy	for	workload	1	39	
Table	10:	Total	cost	of	the	overall	schedule	as	per	each	policy	40	
Table	11:	Energy	requirement	of	each	JOB	in	workload	2	...	41	
Table	12:	Jobs	in	their	scheduling	order	as	per	each	of	the	policy	42	
Table	13:	This	table	shows	the	time	slots	in	which	each	job	was	scheduled	by	the	

respective	policies	for	the	workload	2	..	43	
Table	14:	Total	green	energy	used	by	each	policy	for	workload	2	45	
Table	15:	Total	green	energy	used	by	each	policy	for	workload	2	45	
Table	16:	Total	cost	of	the	overall	schedule	as	per	each	policy	for	workload	2	...	45	
	
	
	
	

	 7	

1. Introduction	
	

In	 2007,	 as	 per	 the	 reports	 released	 by	 Google	 [1],	 their	 cloud	 data	 centers	
consumed	 about	 0.01	 percent	 of	 the	 global	 electricity	 [2].	 The	 same	 year,	
according	 to	 the	 U.S.	 Energy	 Information	 Administration,	 the	 global	 electricity	
consumption	was	 estimated	 to	 be	 around	 19,710	 billion	 kilowatt-hours.	 Using	
the	estimates	provided	by	Google,	their	data	centers	actually	consumed	the	same	
amount	of	 electrical	 energy	as	 that	of	 entire	Turkey’s.	The	alarming	 fact	 about	
this	 data	 was	 that	 all	 of	 this	 energy	 was	 actually	 from	 coal,	 which	 is	 brown	
energy.		
	
This	 data	 was	 presented	 in	 campaigns	 by	 the	 [3]	 GreenPeace	 organization,	 in	
order	to	prevent	environmental	degradation	around	the	world.	This	degradation	
was	due	 to	significant	amounts	of	brown	energy	being	used	to	power	up	these	
server	factories	i.e.	data	centers.	The	campaigns	led	Facebook	to	entirely	switch	
to	use	of	renewable	forms	of	energy	as	their	electricity	source.	Google	followed	
the	 same	 fashion	after	 extensive	 research	on	use	and	 implementation	of	 green	
algorithms.	 However,	 the	 hidden	 problem	 does	 not	 lie	 with	 these	 monster	
Internet	 companies,	 but	 small	 and	 medium-sized	 enterprises,	 which	 employ	
small	 data	 centers	 spanning	 from	 a	 few	 tens	 of	 servers	 to	 a	 few	 hundreds	 of	
servers.		
Unfortunately,	 the	 inefficiencies	 of	 these	 small	 and	medium-sized	 data	 centers	
impact	 the	 environment	 in	 a	 very	 harmful	 way.	 Mostly,	 these	 data	 centers	
consume	 brown	 energy	 sourced	 electricity	 i.e.	 the	 electricity	 produced	 using	
carbon	 intensive	 methods,	 for	 example,	 burning	 of	 coal	 and	 hence	 supplied	
through	electricity	grid.	As	per	the	executive	summary	presented	by	one	of	the	
environment	protection	groups	 in	 the	UK,	 a	 single	 server	has	 the	 same	carbon	
footprint	as	that	of	a	SUV	vehicle	[4].	The	increase	in	carbon	footprint	results	in	
global	 warming	 all	 around	 the	 globe	 consequently	 increases	 Earth’s	
temperature.	We	 cannot	 avoid	 the	 fact	 that,	 today	 every	market	 on	 our	 planet	
has	become	data	 intensive.	Therefore,	 these	data	 centers	 and	 cloud	 computing	
have	become	essential.	Therefore,	predicting	that	there	will	be	a	huge	increase	in	
demand	 and	 establishment	 of	 small/medium	 data	 centers	 should	 not	 be	
incorrect.		
However,	this	concern	has	come	to	light	in	the	past	few	years.	Many	private	and	
government	 led	 initiatives	 have	 been	 setup	 to	 promote	 the	 use	 of	 renewable	
energy	or	green	energy	over	the	use	of	brown	energy.	Many	countries	have	come	
up	 with	 solutions	 and	 initiatives	 [5]	 [6],	 which	 involve	 incentives	 from	
government	 to	 provide	 or	 use	 green	 energy.	 Data	 centers	 also	 have	 started	
participating	in	this	emerging	change	of	promoting	the	use	of	green	energy.	[7,	8]	
Some	of	 the	data	centers	are	generating	their	own	electricity	using	either	solar	
or	wind	energy	or	a	combination	of	both,	to	power	up	the	data	centers.	
	
Many	 scholars	 and	 researchers	 have	 researched	 and	 are	 researching	 on	 this	
topic	of	efficiently	using	green	energy	in	data	centers	to	reduce	the	use	of	brown	
energy	and	hence,	carbon	footprint.	Some	of	these	works	have	been	discussed	in	
the	 literature	 survey	 section.	 Most	 of	 these	 studies	 deal	 with	 using	 only	 the	
renewable	 form	of	energy	 to	power	up	 the	data	centers	and	are	not	 flexible	 to	
accommodate	 brown	 energy	 as	well.	 Some	 of	 these	 researches	 deal	 with	 load	

	 8	

balancing	and	leverage	the	geographical	locations	of	data	centers	to	schedule	the	
execution	of	workload	in	such	a	way	that	the	cheapest	electricity	cost	is	incurred.	
To	achieve	this,	some	have	used	migration	of	data	as	well.	These	algorithms	are	
called	 green	 algorithms,	 which	 are	 nothing	 but	 recipes	 to	 decrease	 the	
consumption	of	coal	energy	and	replacing	it	with	renewable	sources	of	energy.	
However,	 in	 our	 thesis,	 the	 argument	 that	 we	 have	 presented	 is	 that	 we	 can	
formulate	 an	 algorithm	 flexible	 enough,	 which	 uses	 both	 green	 energy	 and	
brown	 energy.	 The	 main	 aim	 of	 the	 algorithm	 proposed	 in	 this	 paper	 is	 to	
increase	 the	 use	 of	 green	 energy	 to	 its	 maximum	 potential.	 In	 green	 energy	
deficient	 cases	 and	 to	prevent	 job	 execution	 from	violating	 its	deadline,	we	do	
not	restrict	our	strategy	from	using	brown	energy.	All	of	this	has	to	be	done	with	
the	 minimum	 cost	 possible.	 We	 try	 to	 minimize	 brown	 energy	 as	 much	 as	
possible	 by	matching	 the	 energy	 required	 by	 the	 workload	with	 the	 available	
green	energy.	
To	make	our	algorithm	efficient,	we	have	focused	on	different	scheduling	policies	
in	this	thesis.	These	scheduling	policies	are	the	core	machinery	of	our	algorithm	
and	are	responsible	mainly	for	scheduling	of	the	jobs	before	the	jobs	are	sent	for	
allotment	of	 time	slots	 in	which	they	will	execute,	as	 they	arrive	 in	 the	system.	
We	have	analyzed	the	overall	algorithm	with	 four	different	scheduling	policies,	
on	 the	basis	of	various	 factors	such	as	maximum	green	energy	used,	minimum	
brown	energy	used	and	minimum	cost	incurred.		
		
The	remainder	of	the	thesis	is	as	follows:	the	next	section	provides	the	literature	
survey,	discussing	all	the	works	which	inspired	this	thesis.	Next	section	includes	
our	 motivation	 to	 engage	 and	 perform	 this	 research	 and	 background	 to	 this	
thesis	including	the	description	of	various	terms	and	concepts	used.	After	which,	
we	 discuss	 the	 problem	 definition	 along	 with	 the	 thesis	 statement.	 The	 next	
section	 has	 the	 proposed	 scheduling	 algorithm	 with	 its	 detailed	 explanation,	
which	is	followed	by	results	and	analysis	of	the	results.	Finally,	we	conclude	the	
thesis	with	a	summary	and	a	conclusion,	which	includes	the	steps,	which	could	
be	followed	in	future	to	improve	the	proposed	algorithm.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 9	

2.	Literature	Survey	
	
Leveraging	 electricity	 prices	 to	 control	 overall	 cost.	 In	 [9],	 the	 author	 has	
proposed	the	use	of	geographical	 load	balancing	with	multiple	data	centers	 for	
cost	savings.	They	 talk	about	how	the	current	workload	can	be	segregated	and	
migrated	between	multiple	data	centers	and	what	part	of	it	can	be	executed	and	
delayed,	without	violating	the	deadline.	In	order	to	save	cost,	they	mainly	focus	
on	 dynamic	 electricity	 price	 changes	 in	 different	 regions.	 They	 use	 prediction	
model	for	future	electricity	prices	to	reduce	the	overall	cost.	Their	main	focus	is	
on	 delaying	 the	 workload	 in	 a	 manner	 such	 that	 the	 cost	 of	 executing	 the	
workload	after	delaying	it	for	a	given	time	interval	without	violating	its	deadline	
is	 lesser	 than	 the	 cost	 associated	 with	 executing	 the	 workload	 at	 the	 current	
time.	In	order	to	calculate	the	cost	associated	with	a	workload,	they	mainly	focus	
on	 electricity	 prices	 and	 use	 a	 future	 electricity	 price	 prediction	 model	 to	
calculate	the	cost	incurred	by	the	delayed	execution	of	the	workload.	
However,	 our	 main	 aim	 is	 to	 increase	 the	 usage	 of	 renewable	 energy	 and	
decrease	the	use	of	brown	energy.	We	are	talking	about	a	single	datacenter.	We	
use	prediction	model,	which	is	mostly	based	on	future	weather	predictions.	 	As	
per	the	availability	of	green	energy	we	formulate	a	workflow,	which	consists	of	
multiple	jobs	scheduled	in	such	a	way	that	they	maximize	the	use	green	energy.	
While	 doing	 this,	 our	 algorithm	 uses	 electricity	 prices	 to	 calculate	 the	 overall	
cost	 of	 the	 workflow	 and	 minimizes	 the	 cost	 as	 well	 (We	 assume	 that	 green	
energy	 is	 much	 cheaper	 than	 the	 brown	 energy).	 The	 factors,	 which	 affect	 a	
workflow	in	our	algorithm,	are:	

o Green	energy	prediction	
o Day/Night	electricity	prices	
o Number	of	processors	(cores)	available	 in	the	data	center,	which	

can	be	engaged	to	execute	the	jobs.	
o Deadline	of	the	jobs.	

We	 use	 a	 penalty	model	 as	well,	 as	 in	 if	 a	 job	 exceeds	 its	 deadline	 in	 a	 given	
workflow,	 then	 we	 apply	 a	 penalty	 on	 that	 workflow	 in	 terms	 of	 cost	 and	
consequently,	our	algorithm	returns	us	the	workflow	with	the	minimum	cost	of	
executing	the	current	jobs.	
	
Utilization	of	green	energy	&	saving	energy	in	datacenters.	In	[10],	The	main	
focus	in	this	paper	is	to	increase	the	utilization	of	energy	by	reducing	its	wastage,	
which	occurs	due	to	varying	workload.	The	algorithm	tries	to	reduce	the	overall	
cost	of	the	energy	required	to	execute	the	workload.	In	order	to	achieve	the	aim,	
the	author	takes	the	same	approach	of	delaying	the	workload	but	here	in	order	
to	 save	 energy,	 capacity	 provisioning	 is	 done.	 The	 suggested	 approach	
determines	 how	 many	 servers	 are	 to	 be	 kept	 active	 to	 execute	 the	 workload	
along	with	the	determination	of	how	much	workload	can	be	delayed,	within	the	
bounds	of	deadline	 suggested	by	Service	Level	Agreement	 (SLA),	 such	 that	 the	
energy	utilization	is	most	optimized.	The	workload	consists	of	mainly	interactive	
and	 batch	 jobs.	 The	 costs	 considered	 in	 this	 approach	 are	 operational	 and	
switching	costs.	Operational	 is	mainly	related	to	executing	the	workload	where	
as	switching	cost	is	related	to	switching	the	server	state	between	on	and	off.	The	
main	aim	is	to	determine	the	number	of	active	servers	in	a	particular	data	center	

	 10	

and	hence	forth,	dispatching	partial	workload	to	that	data	center.	This	is	capacity	
provisioning.		
However,	we	consider	only	batch	 jobs.	Our	cost	model	considers	the	electricity	
prices	and	the	penalty	applied	to	the	workflow.	The	main	assumption	we	take	is	
that	 price	 for	 green	 energy	 is	 0,	 and	 therefore	 the	 workflow	 with	 maximum	
green	 energy	 will	 presumably	 have	 the	 lowest	 cost.	 Hence,	 the	 cheapest	
workflow	 schedule	 will	 be	 given	 as	 the	 output.	 In	 our	 algorithm,	 to	 save	 up	
brown	energy	and	maximize	the	utilization	of	green	energy,	the	algorithm	tries	
to	 allocate	 the	 maximum	 number	 of	 jobs	 in	 those	 time	 slots	 where	 we	 have	
maximum	green	energy	availability	along	with	the	minimum	cost	incurred.	
	
	In	 [7],	 the	 solution	 to	 the	 problem	 of	 energy	 consumption	 in	 a	 virtualized	
datacenter	has	been	presented.	To	achieve	this	aim,	the	suggested	approach	is	to	
turn	off	all	the	idle	machines	whenever	they	are	not	in	use	or	is	not	required	to	
run	the	required	VM’s	at	hand.	It	mainly	describes	a	scheduling	policy	based	on	a	
score	for	each	host,	which	has	the	capability	of	running	a	virtual	machine	(VM).	
The	 score	 represents	 the	 VM	 hosting	 capability	 of	 a	 host,	 which	 is	 based	 on	
factors	 such	 as	 costs	 involved	 due	 to	 virtualization,	 reliability,	 dynamic	 SLA	
enforcement	 and	 power	 consumption.	 This	 paper	 mainly	 talks	 about	 the	
virtualized	 data	 center	 and	 redistribution	 of	 VM’s	 spawned	 in	 order	 to	
accommodate	the	workload.	However,	 in	our	approach,	we	mainly	discuss	how	
the	workload	 (jobs)	 can	 be	 executed	maximizing	 the	 use	 of	 green	 energy	 and	
minimizing	 the	 cost	 involved.	 As	 per	 this	 approach,	whenever	 the	 state	 of	 the	
whole	virtualized	data	center	changes	(for	example	when	a	VM	is	spawned),	the	
redistribution	 of	 VMs	 takes	 place	 and	 the	workload	 is	 consolidated	 to	 a	 lesser	
number	 of	 machines	 and	 spare	 servers/host/machines	 are	 henceforth	 turned	
off.	
In	 our	 algorithm	we	have	used	 various	 scheduling	 policies	 such	 as	 Least	 slack	
time	first	(LSTF),	First	come	first	serve	(FCFS),	Least	running	time	first	and	least	
cores	 first.	 We	 compare	 the	 working	 of	 our	 overall	 algorithm	 with	 all	 these	
policies	 to	 analyze	 the	 consumption	 of	 green	 energy	 and	 cost	 involved.	 Our	
concern	 is	 with	 workload	 consisting	 of	 jobs	 rather	 than	 spawning	 of	 VM	 in	 a	
virtualized	environment.	We	don’t	use	score	based	mechanism.	Rather,	we	use	
cost-based	 model	 to	 give	 the	 cheapest	 workflow	 to	 execute	 the	 jobs.	 This	
required	 an	 assumption	 that	 green	 energy	 is	 considered	 to	 be	 free	 and	brown	
energy	has	different	on	peak	and	off	peak	prices.	
	
Prior	research	shows	that	a	lot	of	work	has	been	done	in	this	direction	of	energy	
efficiency.	Work	 done	 in	 [11]	 promotes	 the	 utilization	 of	 renewable	 energy	 to	
make	green	data	centers.	The	work	performed	 in	 this	paper	mainly	 focuses	on	
dispatching	of	 request	amongst	multiple	data	centers	 in	order	 to	maximize	 the	
use	 of	 renewable	 energy,	 without	 violating	 the	 budget	 constraints.	 Our	 work	
mainly	focuses	on	a	single	data	center	and	how	to	create	a	workflow	that	is	the	
order	 in	 which	 jobs	 should	 be	 executed,	 at	 a	 single	 data	 center	 in	 order	 to	
maximize	 the	 renewable	 energy	 used	 with	 minimalistic	 cost.	 This	 paper	 talks	
about	 a	 middleware,	 which	 dispatches	 requests	 to	 different	 data	 centers	 at	
different	 geographical	 locations.	However,	 since	we	 are	 talking	 about	 only	 one	
data	center,	 therefore	our	main	 focus	 is	 to	delay/	re-arrange	the	 jobs	 in	such	a	
way	that	we	maximize	green	energy.	The	research	that	we	have	conducted	also	

	 11	

includes	 comparison	 and	 analysis	 of	 different	 scheduling	 policies	 with	 our	
algorithm	 to	determine	which	of	 the	policies	maximize	 the	utilization	of	 green	
energy,	 minimize	 the	 cost,	 execute	 the	 maximum	 number	 of	 jobs	 and	 which	
waste	the	most	amount	of	green	energy.	[12]	Strengthens	the	idea	of	maximizing	
the	 use	 of	 renewable	 energy	 using	 the	 green	 energy	 predictions.	 They	 even	
consider	the	use	of	varying	electricity	prices.	But	the	difference	in	our	research	
and	the	research	presented	in	this	paper	is	that	we	deal	with	batch	jobs.	We	have	
chosen	batch	 jobs	 rather	 than	 interactive	 small	 tasks/requests	because	usually	
batch	jobs	run	for	longer	periods	of	time.	Since	these	jobs	are	bags	of	tasks	and	
run	 for	 longer	 periods	 of	 time,	 their	 deadlines	 tend	 to	 be	 not	 that	 strict	 and	
hence	we	 can	 schedule	 these	 jobs	more	 efficiently	 in	 terms	 of	maximizing	 the	
utilization	of	 green	energy	 and	minimizing	 the	 cost	 involved.	Their	 focus	 is	 on	
multiple	 data	 centers	 whereas	 we	 deal	 with	 a	 single	 datacenter	 and	 try	 to	
produce	the	most	optimized	workflow	for	that	data	center.	
In	[13],	an	infrastructure	for	the	simulation	to	evaluate	the	cost	of	energy	for	a	
data	center	powered	by	green	energy	sources,	called	ReRack	has	been	proposed.	
The	 proposed	 infrastructure	 mainly	 focuses	 on	 analyzing	 and	 modeling	 of	 a	
consumed	power	by	a	data	center	and	the	available	green	energy	dependent	on	
the	location	of	the	data	center.	It	also	finally	optimizes	the	available	green	energy	
power	as	per	the	workload	available.	The	main	task	of	this	proposed	simulation	
model	 is	 to	determine	the	cost	associated	 if	a	given	workload	and	with	a	given	
energy	availability,	will	execute	at	a	given	data	center.	It	also	optimizes	the	use	of	
different	 forms	 of	 renewable	 energy	 sources	 in	 order	 to	minimize	 the	 overall	
cost.	However,	our	research	is	more	about	scheduling	the	jobs	in	such	a	way	that	
we	 can	 maximize	 the	 use	 of	 renewable	 energy	 with	 minimum	 cost	 (which	
includes	 penalties	 if	 any)	without	 violating	 the	 SLA	of	 a	 job.	We	 find	 the	most	
efficient	job	schedule	for	a	particular	data	center	with	the	available	green	energy	
traces	and	workload	description.	One	of	the	other	contrasting	points	is	that	this	
methodology	 mainly	 proposes	 of	 adjusting	 the	 mixing	 of	 different	 forms	 of	
renewable	 energy	 sources	 in	 order	 to	 decrease	 the	 overall	 cost.	Whereas,	 our	
main	focus	is	on	scheduling	the	jobs	with	different	available	scheduling	policies	
and	analyzing	their	respective	results.	
The	research	presented	in	[14],	tackles	the	same	problem	of	minimizing	brown	
energy	consumption	along	with	minimizing	the	cost	of	execution	of	a	workload.	
However,	 the	research	conducted	in	this	paper	mainly	deals	with	multiple	data	
centers	located	in	different	time	zones.	The	workload	consists	of	Internet	service	
requests.	They	propose	a	 request	distribution	model	which	 takes	advantage	of	
data	centers	located	in	different	regions	and	hence,	in	different	time	zones.	These	
data	 centers	 being	 in	 different	 time	 zones,	 the	 request	 is	 distributed	 in	 such	 a	
way	 that,	 once	 the	 workload	 has	 been	 divided	 into	 fractions,	 the	 maximum	
number	of	 fractions	 is	 directed	 to	data	 centers	having	maximum	green	 energy	
and	 then	 to	 data	 centers	 with	 cheaper	 electricity	 costs.	 We,	 in	 our	 research,	
mainly	 focus	on	single	data	center	and	workload,	which	consists	of	 jobs,	which	
are	bags	of	tasks	and	requests.	We	leverage	the	fact	that	jobs,	having	many	tasks,	
usually	have	flexible	deadlines,	whereas	interactive	requests	have	comparatively	
stricter	 deadlines,	 and	 therefore	 they	 can	 be	 scheduled	 to	 attain	 the	 desired	
outcome	 of	 utilizing	 green	 energy	 to	 its	 maximum	 potential	 with	 cheapest	
possible	cost.	

	 12	

Research	in	[15]	shows	the	approaches,	which	are	required	to	design	sustainable	
high-performance	data	 centers,	 to	 tackle	 the	problem	of	utilizing	 green	energy	
and	decreasing	the	carbon	footprints	for	a	data	center.	They	highlight	that	due	to	
using	 of	 green	 energy	 and	 electricity	 from	 a	 power	 grid,	 unwanted	 overheads	
and	 tuning	 activities	 get	 introduced	 at	 a	 data	 center.	 This	 weakens	 up	 the	
performance	 of	 the	 data	 center	 to	 a	 certain	 extent.	 They	 propose	 a	 switching	
technique	 between	 grid	 energy	 and	 available	 green	 energy,	 called	 ISwitch.	 It	
handles	 hybrid	 energy	 sourced	 data	 centers.	 ISwitch	 divides	 the	 overall	
computational	load	into	two	fractions.	One	fraction	that	can	be	powered	by	grid	
energy	(conventional	source	of	energy)	and	the	other	one,	which	can	be	powered	
by	 green	 energy	 sources.	 These	 fractions	 are	dynamically	 computed.	However,	
the	 underlying	 idea	 still	 deals	 with	 switching	 the	 servers	 to	 different	 power	
states	and	migration	of	data.	
	
Intermittent	 power	 supplies	 in	 datacenters.	 In	 [16],	 the	 author	 tackles	 the	
problem	of	intermittent	supply	of	power	to	a	date	center.	Since	it	is	very	difficult	
to	predict	renewable	 forms	of	energy,	which	 include	solar	energy,	wind	energy	
etc.	and	hence	to	have	a	consistent	and	steady	flow	of	power,	it	is	very	important	
to	tackle	the	problem	of	inconsistent	flow	of	power.	The	solution	that	the	paper	
has	provided	 in	order	 to	 tackle	 this	problem	 is	Blink,	which	 is	 a	power	driven	
application	 independent	hardware	software	platform.	 It	works	by	transitioning	
the	servers	to	different	states.	These	states	are	high	power	state	when	the	server	
is	active	and	low	power	state	when	they	are	inactive.	The	proposal	also	says	that	
the	data	center	uses	only	the	renewable	energy	and	is	not	connected	to	any	kind	
of	brown	energy	source	such	as	a	power	grid.	However,	 the	algorithm	that	we	
have	 analyzed	 and	 proposed	 does	 not	 deal	 with	 changing	 the	 states	 of	 the	
servers.	Rather	we	mainly	are	dependent	on	 the	scheduling	policies,	which	are	
the	driving	 force	of	 this	algorithm.	These	scheduling	policies	help	 to	delay/	re-
arrange	 certain	 jobs	 so	 that	 desired	 effect	 of	maximizing	 green	 energy	 can	 be	
achieved.	Also,	our	algorithm	is	not	dependent	on	green	energy	only	because	of	
its	intermittency.	It	is	very	important	to	not	violate	the	Quality	of	Service	(QOS)	
and	therefore,	in	the	time	slots,	when	sufficient	green	energy	is	not	available	the	
algorithm	either	 doesn’t	 accept	 the	 jobs	 or	 uses	 brown	 energy	with	 additional	
costing.	
	
Other	 scheduling	 approaches.	 The	 scheduler	 that	 we	 have	 proposed	 and	
analyzed	 with	 different	 scheduling	 policies	 has	 some	 unique	 characteristics,	
differentiating	it	from	all	the	other	schedulers	listed	in	[17].	
Our	 main	 objective	 is	 to	 increase	 the	 utilization	 of	 green	 energy	 while	
minimizing	 the	 overall	 cost	 of	 execution	 of	workload.	We	 exploit	 the	 fact	 that	
generally	batch	jobs	have	loose	deadlines	and	therefore	they	can	be	made	to	wait	
in	 order	 to	 find	 the	 best	 spot	 for	 their	 execution	 in	 the	 workflow.	 While	
generating	the	workflow,	various	factors	which	affect	our	algorithm	are:	

§ Running	time	of	a	job	
§ Number	of	cores/processors	required	
§ Deadline	of	the	job	

When	 we	 focus	 on	 cost,	 we	 focus	 mainly	 on	 electricity	 prices	 and	 the	 power	
consumption	of	the	job.	The	approach	that	we	have	adopted	to	prevent	deadline	
violation	while	generating	the	workflows	is	that	we	apply	penalties	on	all	those	

	 13	

workflows	 (cost	wise),	which	 have	 deadline	 violations	 for	 any	 of	 the	 jobs.	We	
also	analyze	the	working	of	our	algorithm	with	different	scheduling	policies	such	
as:	

§ Least	slack	time	first	
§ First	come	first	serve	
§ Least	running	time	first	
§ Least	number	of	cores	first	

Some	 of	 the	 metrics	 that	 we	 have	 used	 to	 analyze	 the	 above	 said	 scheduling	
policies	are:	

§ Maximum	number	of	jobs	scheduled	
§ Maximum	green	energy	used	
§ Maximum	brown	energy	used	
§ Maximum	green	energy	wasted	
§ Minimum	cost	workflow	
§ Most	number	of	times	deadline	violated	

	
The	work	done	 in	 [18]	 is	 quite	 similar	 to	what	we	have	done	 in	 our	 research.	
However,	 in	 this	 paper,	 the	 author	 talks	 about	 a	 load	 balancing	 technique	 for	
multiple	data	centers	located	in	different	locations,	and	henceforth	exploiting	the	
temporal	 variations	 to	 utilize	 on-site	 power	 and	 available	 green	 energy.	 The	
technique	proposed	in	this	paper	does	not	use	any	kind	of	future	predictions	of	
availability	 of	 green	 energy	 and	 its	 sources,	 electricity	 prices	 and	 demands	
(requirement)	 as	 per	 the	 workload.	 As	 discussed	 earlier,	 the	 analysis	 that	 we	
have	done	and	the	algorithm	that	we	have	proposed	is	designed	for	a	single	data	
center	 and	 instead	of	 taking	 advantage	of	 temporal	 variations	of	multiple	data	
centers,	 we	 exploit	 the	 fact	 that	 batch	 jobs	 tend	 to	 have	 loose	 deadlines	 and	
therefore	can	be	rearranged	or	made	to	wait	without	violation	of	their	deadlines.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 14	

	

3.	Motivation	&	Background	
	

3.1 	Motivation	
As	per	Kyle	York,	board	member	of	Cloud	App,	the	Internet	is	the	single	biggest	
thing	 our	 species	 will	 ever	 create	 [19].	 The	 amount	 of	 data	 that	 the	 Internet	
holds	 today	 is	 unimaginable.	 This	 indicates	 that	 today	 the	 world	 is	 actually	
shifting	to	a	data	intensive	age.	Hence,	to	accommodate	this	sudden	increase	of	
data,	we	are	in	a	state	where	the	cloud	has	become	a	necessity.	For	instance,	at	
CERN,	Europe’s	particle	physics	laboratory	[20],	computer	scientists	made	an	in-
house	cloud	to	manage	and	process	 the	data	generated	 from	the	Large	Hadron	
Collider.	Another	example	being	the	cloud	used	at	NASA,	which	handles	the	data	
generated	from	the	cosmological	studies.	
	
Additional	reasons	as	for	why	the	cloud	is	regarded	as	the	fifth	utility	after	gas,	
electricity,	telephony	and	water,	is	that	nowadays	scientists	do	not	have	the	time	
to	wait	 for	results,	unlike	 in	the	past	when	waiting	for	results	of	the	same	data	
size	 could	 take	days	 to	 receive.	 Computer	 scientist	Mark	Howison	 [21]	 carried	
out	 a	 research	 on	 marine	 animals	 where	 he	 had	 to	 analyze	 Ribonucleic	 acid	
(RNA)	 from	 animals	 related	 to	 jellyfish	 and	 coral.	 After	 the	 experiment	 was	
carried	 out,	 the	 team	 discovered	 that	 the	 local	 super	 computer	 at	 Brown	
University,	Rhode	Island	was	not	reliable	enough	to	carry	out	the	processing	of	
data.	Therefore,	Mark	could	not	wait	for	the	university	team	to	fix	this	issue	and	
therefore	 invoked	 virtual	 machines	 from	 Amazon.	 Because	 of	 Amazon’s	 user-
friendly	interface,	it	took	him	only	two	hours	to	learn	how	to	operate	the	cloud	
environment.	Consequently,	within	14	hours	and	US	$61,	his	data	analysis	was	
completed.	 Therefore	 it	 becomes	 really	 important	 to	 devise	 strategies	 which	
could	 help	 us	 enjoy	 the	 benefits	 of	 cloud	 computing.	 Whilst	 preventing	 the	
environmental	damage	caused	by	the	brown	energy	consumption	of	these	cloud	
data	centers.	
	
Our	 research	 primarily	 focuses	 on	 devising	 an	 algorithm	 that	 schedules	 the	
received	 jobs	 in	 such	 a	 way	 which	 maximizes	 the	 use	 of	 green	 energy	 and	
minimizes	 the	 cost	 incurred	 to	execute	 those	 jobs	 in	a	data	 center	using	green	
and	brown	energy	 to	power	 itself	up.	The	main	motivation	behind	 formulating	
and	analyzing	 the	 algorithm	 is	 to	 conserve	 the	 environment	 and	 to	 reduce	 the	
carbon	 footprint	 of	 any	 data	 center,	 which	 schedules	 the	 jobs	 using	 this	
algorithm.	
	
The	aim	of	our	research	is	to	develop	an	energy	efficient	algorithm,	which	could	
be	 integrated	 with	 any	 cloud	 management	 studio,	 for	 example	 Aneka.	 In	 this	
way,	 these	 cloud	 management	 studios	 could	 be	 made	 more	 cost	 and	 energy	
efficient.	
	
We	 know	 that	 the	 Internet	 is	 the	 single	 biggest	 thing	 our	 species	 has	 come	
across.	But	when	we	 issue	such	statements	about	 the	network,	 it	also	becomes	
important	 that	 we	 deal	 with	 the	 responsibilities	 associated	 with	 it.	 All	 these	

	 15	

technological	advancements	are	 to	make	our	 future	sustainable	and	secure.	All	
the	technological	benefits	will	mean	nothing	if	we	have	no	future	at	all.	
	
Many	 scholars	 and	 researchers	 have	 done	 a	 significant	 amount	 of	 research	
around	 the	 problem	 of	 how	 to	 efficiently	 use	 renewable	 energy	 to	 power	 up	
cloud	data	 centers.	Mostly	 the	 research	done	has	 focused	on	 the	 scheduling	of	
interactive	 requests.	 The	 solutions	 proposed	 by	 some	 of	 them	 include	
distributing	 the	 requests	 amongst	 multiple	 data	 centers,	 which	 are	
geographically	 located	 at	 different	 locations	 and	 hence	 leveraging	 temporal	
difference.	 Some	 of	 the	 solutions	 include	 efficiently	 switching	 the	 states	 of	 the	
servers	from	idle	to	active.	In	this	thesis,	we	have	examined	an	alternate	path	to	
this	 problem	 and	 mainly	 focused	 on	 jobs.	 I	 hope	 that	 results	 and	 analysis	
presented	in	this	thesis	will	bring	us	one	step	closer	to	the	solution	of	the	above-
discussed	problem.	
	

3.2 	Background	
Powering	 data	 centers	 with	 renewable	 energy	 (RE).	 Renewable	 forms	 of	
energy	 are	 hailed	 as	 the	 most	 environmental	 friendly	 forms	 of	 energy.	 Their	
usage	 minimizes	 the	 generation	 of	 secondary	 wastage,	 carbon	 footprint,	 and	
other	environmental	impacts	if	they	are	used	appropriately	and	judiciously.		[22]	
On	the	other	hand,	non-renewable	source	of	energy	is	on	the	brink	of	extinction.	
This	 is	because	of	 the	 rising	 trend	of	 energy	 consumption.	The	 speed	at	which	
these	resources	are	being	consumed	has	had	serious	environmental	effects	such	
as	 the	 release	 of	 poisonous	 gases,	 which	 have	 led	 to	 the	 phenomenon	 called	
global	 warming.	 This	 is	 why	 renewable	 energy	 is	 being	 regarded	 as	 the	 clean	
source	of	energy	[23].	Another	major	reason	to	switch	to	a	renewable	source	of	
energy	is	that	due	to	a	surge	in	consumption	of	energy,	the	prices	of	energy	being	
produced	 by	 non-renewable	 forms	 of	 energy	 are	 soaring	 every	 day.	 This	
indicates	 that	non-renewable	sources	of	energy	are	being	consumed	at	a	 faster	
pace	than	they	are	being	replaced	in	the	environment	[24].	
Sun	is	considered	to	be	the	primary	source	of	renewable	or	green	energy.	Mainly,	
it	provides	us	with	sunlight,	constituting	of	light	and	heat,	which	contributes	to	
solar	energy.	Other	major	 forms	[24]	of	renewable	energy	are	 the	wind,	water,	
tidal	 and	 geothermal.	 Renewable	 energy	 can	 satisfy	 energy	 demands	 based	 on	
current	and	future	economic	trend.		
However,	after	discussing	some	of	 their	advantages,	one	of	 the	most	 important	
disadvantages	of	using	renewable	energy	and	its	sources	is	the	intermittency	in	
their	 supply.	 The	 sources	 of	 renewable	 energy	 chiefly	 depend	 upon	 the	
environmental	conditions,	which	affects	their	supply	and	makes	it	 intermittent.	
Therefore,	 it	 is	 very	 important	 to	 build	 a	 reliable	 renewable	 energy	 supply	
system.		
The	availability	of	these	sources	varies	from	place	to	place	and	their	availability	
is	 not	 guaranteed	 at	 a	 certain	 place	when	 they	 are	 needed	 [25].	 For	 example,	
hydropower	sources	vary	much	depend	upon	the	geography	of	the	area	and	are	
mostly	 present	 near	 seashores	 and	 in	 remote	 areas.	 Tidal	 energy	 can	 also	 be	
obtained	 from	 places	 close	 to	 the	 seashore.	 Whereas	 wind	 energy	 can	 be	
harnessed	maximum	at	higher	altitudes	where	wind	velocity	is	relatively	higher	
and	 sufficient	 to	 produce	 electricity.	 These	 energy	 sources	 require	 very	 costly	

	 16	

machinery	 to	 generate	 electricity.	 This	 also	 leads	 to	 increase	 in	 the	 cost	 of	
bringing	 the	 electricity	 to	 cities	 using	 expensive	 electricity	 wires.	 One	 of	 the	
other	problems	 that	electricity	produced	by	 these	sources	 is	 the	 inefficiency	of	
storing	 large	amounts	of	 electricity	 generated	by	 them,	 for	 later	use.	All	 of	 the	
above	factors	are	obstacles	to	the	growth	of	renewable	energy	and	its	uses.		[25]	
As	per	the	current	records,	net	renewable	energy	production	worldwide	is	10%	
out	of	which	8%	is	in	the	United	States.	
Comparing	costs	of	RE	sources.	Even	though	the	sources	of	RE	such	as	water,	
sunlight	 etc.	 are	 available	 in	 abundance	 in	 nature	 but	 still,	 to	 harness	 the	
electricity	 from	these	resources	 is	still	not	cheap.	This	 is	because;	 these	energy	
sources	require	highly	advanced	machinery	and	equipment	to	extract	electricity	
from	them.		
Often,	 the	 cost	 associated	 with	 an	 RE	 source	 and	 its	 electricity	 production	
constitutes	 of	 the	 total	 cost	 to	 build	 and	 operate	 a	 power	 plant,	 initial	
investment,	 continuous	 maintenance,	 return	 on	 investment,	 continuous	
operation	 and	 fuel	 required	 to	 operate	 the	 whole	 facility.	 The	 overall	 cost	 is	
called	Levelized	energy	costs	(LEC)	[25].	
	

Power	Plant	Type	 Cost	
$/kWh	

Coal	 $0.095-0.15	
Natural	Gas	 $0.07-0.14	
Nuclear	 $0.095	
Wind	 $0.07-0.20	
Solar	PV	 $0.125	

Solar	Thermal	 $0.24	
Geothermal	 $0.05	
Biomass	 $0.10	
Hydro	 $0.08	

Table	1:	Cost	of	electricity	produced	by	different	plant	types	as	taken	from	US	EIA	statistics	and	
analysis	from	Annual	Energy	Outlook.	

The	 content	 of	 above	 table	 is	 based	 on	 the	 data	 provided	 from	 US	 Energy	
Information	 Administration	 (EIA)	 statistics	 and	 analysis	 from	 Annual	 Energy	
Outlook	 [25].	 The	 data	 shows	 average	 LEC	 in	 dollars	 per	 kilowatt-hour	 of	
renewable	and	non-renewable	sources	of	energy.	The	above	data	shows	that	RE	
sources	 are	 expensive	 than	 NRE	 sources.	 All	 the	 points,	 which	 have	 been	
discussed	above,	contribute	in	the	same	direction.	
	
Even	 though	 there	 are	 many	 hurdles,	 as	 discussed	 above,	 in	 using	 RE	 as	 the	
source	of	electricity,	still	many	countries	and	their	governments	are	promoting	
the	use	of	RE	by	introducing	lucrative	incentives	for	the	companies	using	RE.	
	

	 17	

							 	

	 	 	 	 	 	
	

Figure	1:	Country	wise	incentives	based	on	solar	energy	and	wind	energy.	

The	 two	 world	 maps	 presented	 above	 show	 all	 those	 countries,	 which	 have	
introduced	 incentives	 to	 encourage	 companies	 to	 use	 RE	 [26].	 The	 left	 map	
shows	 countries	 having	 incentives	 based	 on	 solar	 energy	 and	 the	 right	 one	
shows	countries	having	incentives	based	on	wind	energy.	
	
These	incentives	include	[26]	[27]	[28]	[29]:	

• Generation	of	electricity	based	incentives,	for	example,	the	producer	will	
have	to	pay	a	least	possible	cost	per	kWh	for	a	given	period	of	time.	

• Incentives	 based	on	 investment	 such	 as	 tax	 credits	 for	 investment,	 VAT	
exemption,	loan	guarantees	and	interest-free	loans.	

• A	 legal	 framework	 to	 be	 streamlined	 and	 hurdle	 free	 which	 includes	
building	regulations	and	streamlined	planning	process.	

• Feed-in	 tariffs,	 which	 allow	 anyone	 to	 install	 a	 solar	 power	 system	 on	
their	 rooftops	 and	 then	 sell	 generated	 electricity	 back	 to	 the	 grid,	 for	
which	power	company/government	pays	rebate	or	some	premium	rate.	

	
Converting	RE	 into	electricity.	There	are	many	processes	to	convert	different	
forms	of	RE	 to	electricity	but	we	will	mainly	 talk	about	 solar	and	wind	energy	
conversion.		
To	 convert	 solar	 energy	 into	 electricity,	 solar	 panels	 are	 used,	 which	 produce	
direct	current.	It	is	then	converted	to	alternate	current	by	passing	it	through	an	
inverter	 and	 hence,	 is	 supplied	 for	 residential/commercial	 use.	 These	 solar	
panels	 consist	 of	 silicon	 semiconductors	 or	 photovoltaic	 cells,	 which	 convert	
sunlight	 into	electricity.	When	sunlight	 falls	on	 the	 surface	of	 these	panels,	 the	
photos	 transfer	 their	 energy	 to	 electrons	 present	 in	 these	 silicon	
semiconductors.	 This	 results	 in	 negatively	 charged	 electrons	 to	 gather	 at	 one	
side	of	the	cell,	thus	resulting	in	the	creation	of	electric	voltage.	The	current	thus	
produced	can	be	channeled	 through	wiring	multiple	solar	cells	and	 is	collected	
for	further	use.	
However,	 wind	 energy	 requires	 a	 different	 mechanism	 to	 generate	 electricity.	
The	 kinetic	 energy	 in	 wind	 is	 used	 to	 generate	 electricity.	 To	 realize	 the	
generation	 of	 electricity,	 wind	 turbines	 are	 used.	 As	 the	 wind,	 with	 a	 certain	

	 18	

velocity	 passes	 through	 the	 blades	 of	 the	 turbine,	 it	 results	 in	 spinning	 of	 the	
blades	and	hence,	the	shaft.	To	produce	electricity,	a	generator	connected	to	the	
shaft	of	the	turbine	is	used.	The	generator	uses	this	motion	of	the	shaft	to	rotate	
the	 rotor,	 which	 results	 in	 the	 creation	 of	 electromagnetic	 induction	 due	 to	
oppositely	charged	magnets	and	loops	of	copper	wire	around	them.	
	
Supplying	 RE	 produces	 electricity	 for	 commercial	 use	 (data	 center).	 As	
discussed	earlier,	once	electricity	from	RE	sources	is	produced	it	can	be	stored	in	
batteries	for	further	usage.	The	electricity	produced	is	direct	current.	Therefore,	
in	order	to	use	it	for	datacenter	purposes,	an	inverter	has	to	be	used,	to	convert	
the	generated	DC	into	alternating	current	(AC).	Extra	electricity	produced	using	
these	means	can	be	fed	to	a	grid	as	well.	
However,	the	study	that	we	have	done	required	the	data	center	to	be	connected	
to	 a	 grid	 as	well.	 This	 is	 to	minimize	 the	 interruption	 experienced	 due	 to	 the	
intermittent	availability	of	RE.	Therefore,	in	the	times	when	RE	is	scarce	or	if	the	
electricity	 produced	 by	 RE	 cannot	 satisfy	 the	 demands	 of	 the	 workload,	 our	
algorithm	 uses	 electricity	 from	 the	 grid	 (Brown	 electricity)	 to	 satisfy	 the	
demand.	
	
Using	 grid	 electricity	 to	 reduce	 the	 cost.	 Generally,	 datacenters	 have	 some	
kind	of	agreements	with	power	companies,	which	provide	them	grid	electricity.	
These	 agreements	 usually	 give	 variable	 pricing	 to	 data	 centers.	 There	 are	 two	
types	of	pricing,	off-peak	electricity	price,	and	on-peak	electricity	price.	Off	peak	
electricity	price	is	cheaper	than	on	peak	electricity	price.	It	is	generally	available	
at	night	whereas	on	peak	electricity	price	is	available	in	the	daytime.	Therefore,	
in	order	to	reduce	the	overall	cost	to	execute	a	given	workload,	it	will	be	highly	
beneficial	for	a	datacenter	if	it	can	push	the	workload	execution	to	nighttime,	in	
order	to	avail	the	benefits	of	cheaper	off-peak	electricity	pricing.	
	
The	 algorithm	 that	we	 have	 proposed	 in	 this	 thesis	 does	 not	 consider	 battery	
system.	 This	means	 that	whatever	 green	 energy	 is	 produced,	 if	 not	 consumed	
will	 be	 wasted.	 But	 our	 algorithm	 minimizes	 the	 use	 of	 green	 energy	 with	
different	kinds	of	logical	incentives,	which	we	will	discuss	in	later	sections	of	this	
thesis.	 While	 scheduling	 the	 jobs,	 we	 have	 taken	 into	 consideration	 the	
environmental	 effect	 on	 green	 energy	 availability	 and	 therefore,	 chosen	 30	
minutes	 as	our	 time	 slot	period.	This	 is	 because	 after	 analyzing	historical	data	
and	traces	of	green	energy,	we	could	see	that	availability	of	green	energy	varies	
substantially	 in	 every	30-45	minutes.	Our	major	 aim	 is	 to	 schedule	 the	 jobs	 in	
such	a	way	 that	 they	don’t	 violate	 their	deadlines,	use	maximum	green	energy	
and	incur	the	minimum	cost.	
	
	
	
	
	
	
	
	
	

	 19	

4. Problem	Definition	
	
As	discussed	above,	 cloud	 computing	has	become	one	of	 the	necessities	of	 our	
lives.	 Today’s	market	which	dwells	 on	data	needs	 specialized	 infrastructure	 to	
gather,	 store	and	process	 the	data,	whose	volume	multiplies	with	each	passing	
second.	
In	 an	 ideal	 situation,	 the	 algorithms	 employed	 to	 run	 the	 cloud	 management	
infrastructure	should	aim	to	execute	the	tasks	or	jobs	allotted	to	the	cloud	data	
centers	in	the	most	efficient	manner.	They	should	aim	to	execute	the	bag	of	jobs	
with	 the	 minimum	 cost	 incurred	 by	 the	 data	 center.	 They	 should	 aim	 at	
increasing	 the	 amount	 of	 renewable	 energy	 used	 to	 execute	 the	 jobs	 and	
henceforth,	 minimizing	 the	 use	 of	 a	 brown	 or	 non-renewable	 form	 of	 energy.	
Data	 centers	also	 should	not	 just	depend	upon	 the	availability	of	 green	energy	
but	 should	 also	 be	 flexible	 enough	 to	 use	 brown	 energy	when	 available	 green	
energy	is	insufficient	to	satisfy	the	energy	requirements.	Also,	in	the	ideal	world,	
the	 runtime	 of	 the	 jobs,	 when	 they	 are	 being	 submitted	 to	 the	 system	 for	
execution,	would	be	consciously	estimated	along	with	flexible	deadlines	and	not	
tighter	deadlines.	
However,	 when	 we	 discuss	 the	 current	 situation,	 there	 are	 many	 problems,	
which	exist	and	need	to	be	looked	into.	Coal	deposits	are	decreasing	day	by	day.	
This	 will	 result	 in	 an	 increase	 in	 the	 electricity	 cost	 produced	 using	 brown	
energy.	 As	 per	 the	 example,	 which	was	 discussed	 in	 the	 earlier	 section,	 cloud	
data	 centers	 around	 the	 world	 consume	 a	 very	 large	 amount	 of	 electricity	 to	
function.	 If	 we	 continue	 with	 this	 pace,	 it	 will	 lead	 to	 the	 extinction	 of	 non-
renewable	sources	of	energy	such	as	coal.	Although,	currently	the	cost	of	using	
green	energy	 is	higher	than	brown	energy,	but	we	predict	that	 in	 future,	 it	will	
decrease,	keeping	in	mind	the	multiple	government	initiatives	to	encourage	the	
power	companies	to	do	the	same.	Another	big	concern	associated	with	the	use	of	
brown	energy	 is	 the	 carbon	 footprint,	which	 is	 left	behind	by	 these	 cloud	data	
centers.	This	carbon	footprint	is	depleting	the	environment	around	us	and	hence,	
is	 one	 of	 the	most	 important	 causes	 for	 greenhouse	 effect	 and	 rise	 of	 Earth’s	
surface	temperature.		
Another	problem	which	needs	to	be	dealt	with	equal	importance,	is	how	to	tackle	
the	intermittence	in	the	availability	of	energy	using	renewable	resources.	Since,	
most	of	 the	energy	produced	by	 renewable	and	environment-friendly	methods	
depend	upon	environmental	factors	such	as	availability	of	sunlight,	low	tides	and	
high	tides,	velocity	of	wind	etc.,	it	is	very	difficult	to	guarantee	their	presence	at	a	
certain	place	and	at	a	certain	time	when	required.	
Another	problem	that	persists	and	is	related	to	the	jobs	submitted	by	institutions	
to	 the	 cloud	management	 studios	 is,	 in	 order	 to	 get	 their	work	 (job	 or	 bag	 of	
jobs)	done	quickly	or	on	a	priority	basis,	an	unconscious	estimate	of	the	runtime	
is	done.	Hence,	 the	resources	which	are	employed	for	 the	execution	of	 the	said	
job	get	wasted	because	they	are	used	for	more	time	than	required.	To	get	their	
jobs	 prioritized,	 these	 institutions	 sometimes	 recklessly	 give	 tighter	 deadlines	
and	 hence,	 other	 jobs	 are	 deprived	 of	 the	 resources	 and	 time	 required	 to	 run	
them.	
Many	 researchers	 have	 proposed	 solutions	 to	 the	 above-mentioned	 problems	
but	 mostly,	 they	 have	 considered	 and	 leveraged	 the	 scheduling	 of	 jobs	
geographically.	 These	 solutions	 have	 underestimated	 the	 cost	 required	 to	

	 20	

transfer	 the	 data	 and	 metadata	 required	 to	 execute	 a	 given	 job	 at	 a	 different	
geographical	 location	 in	 order	 to	 leverage	 the	 cheap	 electricity	 prices	 of	 that	
location	to	reduce	the	overall	cost	of	executing	that	job.	
When	 we	 talk	 about	 the	 financial	 cost	 of	 using	 green	 energy	 as	 the	 primary	
source	of	electricity	to	power	up	the	cloud	data	centers,	we	expect	that	the	prices	
of	 electricity	 unit	 will	 go	 down.	 This	 belief	 has	 been	 bolstered	 by	 several	
governments	generous	initiatives	that	have	been	implemented	all	over	the	world	
in	 different	 countries	 which	 encourage	 the	 use	 of	 green	 energy	 for	 example	
central	 and	 state	 initiatives	which	 can	 reduce	 capital	 cost	 up	 to	 60%	 [30].	 In-	
house	 generation	 of	 electricity	 using	 solar	 panels,	 wind	 mills	 etc.	 is	 also	
becoming	 popular	 all	 over	 the	 world	 as	 demonstrated	 by	 small	 and	 medium-	
sized	data	centers	[11,	31].	We	have	observed	that	in	the	last	20	years,	the	cost	of	
solar	energy	has	decreased	by	7	 times	 [16,	32].	We	believe	 that	 this	 trend	will	
continue	in	future	as	well.	If	the	carbon	taxes	which	have	been	introduced	across	
Asia	and	Europe,	spread	throughout	the	world,	the	financial	cost	associated	with	
green	energy	generation	should	further	dip	down	[33].	
In	 this	 thesis,	we	propose	 a	 job-scheduling	 algorithm	 for	 cloud	data	 centers	 in	
order	to	maximize	the	usage	of	green	energy	and	minimize	the	incurred	cost	to	
execute	a	given	 job.	The	algorithm	 focuses	on	single	data	center	and	 is	 flexible	
enough	to	accommodate	brown	energy,	whenever	green	energy	is	not	sufficient	
to	satisfy	the	needs	of	a	given	workload.	We	also	compare	and	analyze	different	
scheduling	policies,	when	used	in	association	with	our	algorithm.	
Some	 of	 the	 benefits	 of	 the	 proposed	 algorithm,	 other	 than	maximizing	 green	
energy	and	minimizing	the	cost,	are	that	the	cost	model	that	we	have	considered	
doesn’t	 only	 depend	 upon	 the	 electricity	 prices.	 It	 focuses	 on	 and	 is	 directly	
proportional	to	the	running	time	and	nodes	requirement	provided	in	the	script	
when	a	job	is	submitted	to	the	algorithm.	This	will	help	to	keep	the	unnecessary	
longer	 running	 times	 and	 requirement	 of	 extra	 nodes	 in	 check.	 Our	 algorithm	
also	leverages	upon	the	fact	that	brown	electricity	prices	in	the	night	are	cheaper	
than	in	the	day.	
Optimization	of	utilization	of	green	energy	has	become	crucial	for	running	cloud	
data	centers	 in	order	 to	protect	 the	environment.	 In	 this	 thesis,	we	propose	an	
efficient	 method	 to	 do	 the	 same	 with	 its	 analysis	 and	 feasibility.	 We	 have	
incorporated	 different	 scheduling	 policies	 with	 our	 algorithm	 and	 discussed	
their	 advantages	 and	 disadvantages	 individually	 when	 they	 are	 used	 in	
association	with	the	proposed	algorithm.		
	

4.1 	Thesis	Statement	
In	this	thesis,	we	emphasize	and	encourage	the	use	of	green	energy	in	order	to	
power	up	cloud	data	centers.	By	this	we	mean,	that	a	data	center	which	is	using	
renewable	energy	sources	to	power	itself	up	and	receiving	jobs	with	deadlines.	
We	 present	 an	 efficient	 way	 of	 scheduling	 jobs	 in	 a	 cloud	 data	 center,	 which	
maximizes	the	use	of	green	energy	and	simultaneously	reduces	the	overall	cost	
of	executing	a	workload.		
	
	
	
	

	 21	

	

5.	Scheduling	Algorithm	
	

5.1 Introduction	
In	this	thesis,	we	have	proposed	a	job	scheduling	strategy	for	a	cloud	data	center.	
This	 strategy	 can	 be	 integrated	with	 different	 cloud	management	 platforms	 to	
efficiently	schedule	jobs	in	a	cloud	data	center.	The	proposed	algorithm	utilizes	
green	energy,	which	is	used	to	power	up	the	data	center.	The	source	of	this	green	
energy	could	be	anything	such	as	solar	energy,	wind	energy	or	any	other	form.	
The	 algorithm	 proposed	 in	 this	 thesis	 is	 flexible	 enough	 and	 in	 green	 energy	
deficient	times,	it	uses	brown	energy	to	satisfy	the	energy	demand	of	jobs.	In	this	
manner,	it	does	not	only	rely	on	green	energy	availability.	
The	work	proposed	in	this	thesis	is	greatly	influenced	by	[34]	and	their	strategy	
has	been	taken	as	the	base	model,	upon	which	our	work	has	been	built	on.	
	
The	proposed	algorithm	schedules	 the	 job	 in	 such	a	way	 that	 it	maximizes	 the	
use	of	green	energy	and	minimizes	 the	cost	 incurred	to	execute	 these	 jobs.	We	
have	also	 included	a	basic	 cost	model	 in	our	algorithm	to	calculate	and	reduce	
the	cost	required	to	execute	given	jobs	to	its	minimum	which	will	be	discussed	in	
detail	in	later	sections	of	this	thesis.	
The	basic	machinery	of	this	scheduling	algorithm	is	the	inner	scheduling	strategy	
that	we	have	used	which	decides	which	 job	has	 to	be	scheduled	next.	To	make	
our	 study	 meaningful	 and	 more	 helpful	 towards	 the	 cause,	 we	 have	 used,	
compared	and	analyzed	 the	overall	algorithm	 in	a	simulated	environment	with	
four	different	scheduling	strategies	namely:	
	

• LSTF	–	Least	 slack	 time	 first:	which	picks	up	 the	 job	with	 the	minimum	
slack	time	that	 is	 the	difference	between	the	current	 time	and	the	 latest	
possible	start	time	of	the	given	job.	

• FCFS	–	First	Come	First	Serve	–	which	picks	up	a	job	depending	upon	its	
arrival	time	and	schedules	it.	

• LRTF	 –	 Least	 Running	 Time	 First	 –	 Which	 picks	 up	 the	 job	 depending	
upon	its	running	time	and	schedules	it.	

• Least	Nodes	First	–	Which	picks	up	the	job	depending	upon	the	number	of	
nodes	required	to	execute	the	given	job	and	schedules	it.	

	
We	have	presented	a	detailed	analysis	and	comparison	of	our	algorithm	with	the	
above	mentioned	strategies	based	on	factors	such	as	cost	incurred	in	each	case,	
amounts	 of	 green	 energy	 used	 and	 wasted	 in	 each	 case,	 quantities	 of	 brown	
energy	used	and	wasted	in	each	case,	number	of	jobs	scheduled	and	number	of	
jobs	rejected	in	each	cases	respectively.	
We	 have	 kept	 in	mind	 that	 the	most	 important	 factor	when	 it	 comes	 to	 cloud	
management	is	the	deadline	of	a	job.	Therefore,	we	have	presented	the	solution	
which	schedules	the	jobs	in	such	a	way	that	deadline	of	a	job	is	not	violated,	even	
if	we	have	to	compromise	a	bit	on	cost.	
The	main	contributions	of	this	thesis	are:	

	 22	

1. We	propose	a	greedy	strategy	to	schedule	the	jobs	in	a	cloud	data	center	
in	such	a	way	that	minimizes	cost	and	maximizes	the	use	of	green	energy.	

2. We	 show	 the	 working	 of	 our	 algorithm	 integrated	 with	 four	 different	
scheduling	strategies	with	their	detailed	analysis.	We	leave	the	decision	in	
customer’s	 hand	 for	which	 strategy	 to	 use,	 since	 all	 the	 strategies	 have	
their	own	advantages	and	disadvantages.	

3. We	 evaluate	 our	 proposed	 algorithm	 in	 a	 simulated	 environment	 with	
real	world	traces	of	available	renewable	energy,	electricity	prices	and	real	
one	day	long	workloads	of	a	data	center.	

	

	
Figure	2:	A	conventional	scheduler	

	
Figure	3:	Scheduling	using	the	proposed	job	scheduling	algorithm	

	
The	 above	 present	 figures	 show	 a	 very	 high-level	 comparison	 between	 a	
conventional	 job	 scheduler	 and	 the	 job	 scheduling	 algorithm	 which	 has	 been	
proposed	in	this	thesis.	
The	 blocks	 in	 the	 above	 figures	 represent	 three	 different	 jobs	 consuming	 a	
specified	amount	of	energy	over	a	certain	period	of	time.	JOB1	and	JOB2	arrive	at	
the	starting	of	the	time	whereas	JOB3	arrives	at	the	same	time	as	the	deadline	of	
the	 other	 two	 jobs.	 The	 elliptical	 line	 shows	 the	 availability	 of	 green	 energy	
during	that	time	of	the	day.	We	assume	that	JOB3	requires	a	maximum	number	
of	nodes,	then	JOB1	and	finally	JOB2,	which	requires	the	least	number	of	nodes	
for	their	execution	respectively.		We	also	assume	that	these	jobs	can	run	only	in	
the	fixed	time	slots	as	shown	in	the	figures.	
Figure	2	shows	a	conventional	scheduler	which	schedules	the	jobs	as	they	arrive	
in	the	system.	It	does	not	make	any	intelligent	decision	based	on	the	availability	

	 23	

of	 green	 energy.	 This	 results	 in	 the	 use	 of	more	 of	 brown	 energy	 rather	 than	
green	energy,	even	though	when	green	energy	is	available.	Any	scheduler,	which	
would	 not	 consider	 the	 availability	 of	 green	 energy	 and	 associated	 electricity	
prices	when	scheduling	the	jobs,	would	presumably	behave	in	the	same	fashion.	
Figure	 3	 shows	 scheduling	 of	 the	 same	 jobs	 using	 the	 greedy	 job	 scheduling	
algorithm	which	has	been	proposed	 in	this	 thesis.	As	shown	in	the	 figure,	even	
though	JOB1	and	JOB2	arrive	at	the	same	time,	but	they	are	not	executed	as	soon	
as	they	arrive.	Execution	of	JOB1	is	delayed	but	its	deadline	is	never	violated.	The	
execution	of	JOB1	is	delayed	to	utilize	the	available	green	energy	to	its	maximum	
potential	 and	 hence	 use	 minimum	 brown	 energy.	 It	 also	 tries	 to	 shift	 the	
execution	of	 the	 jobs	 towards	off-peak	electricity	 timings,	 since	 in	 the	off-peak	
time	we	have	cheapest	electricity	prices.	We	can	delay	the	execution	of	the	jobs	
but	never	violate	the	deadlines	of	the	jobs	respectively.	In	green	energy	deficient	
time	slots,	the	algorithm	uses	brown	energy	to	satisfy	the	energy	requirements	
of	the	jobs	in	a	given	workflow.	
	
In	 the	 next	 subsections	 of	 this	 thesis,	we	 provide	 a	 detailed	 description	 of	 the	
proposed	scheduling	algorithm,	along	with	our	integrated	green	energy	and	cost	
model.	Then,	we	describe	how	the	proposed	algorithm	schedules	the	given	jobs	
according	to	the	available	green	energy	and	the	cost	model.	We	also	describe	the	
various	 scheduling	 policies	 used	 in	 integration	 with	 the	 algorithm	 and	 their	
advantages	and	disadvantages	respectively.	
	

5.2 Overview	
The	main	purpose	of	the	proposed	scheduling	algorithm	is	to	schedule	the	jobs	
in	 such	 a	 way	 that	 maximum	 amount	 of	 green	 energy	 is	 used	 and	 minimum	
amount	 of	 green	 energy	 is	 wasted.	 The	 result	 or	 the	 schedule	 generated	 is	
strategized	 in	 such	 a	way	 that	minimum	cost	 is	 incurred	without	 violating	 the	
deadlines	of	the	jobs.	
Our	algorithm	requires	the	user	to	give	the	initial	inputs	in	the	form	of	a	script,	
as	 in	 the	 case	of	 any	other	 jobs	or	 tasks	 scheduler	 in	 cloud	environments.	The	
script	provided	at	the	beginning	consists	of	four	relevant	pieces	of	information.	
The	information	to	be	provided	in	the	script	is	job	ID,	the	deadline	of	the	job,	the	
running	 time	 of	 the	 job,	 the	 number	 of	 nodes	 required	 to	 execute	 the	 job	 and	
arrival	time	of	the	job	respectively.	The	output	provided	by	the	algorithm	at	the	
end	 is	 a	 workflow	 consisting	 of	 jobs.	 This	 workflow	 is	 a	 schedule	 suggesting	
which	 job	 should	be	 allotted	 in	which	 time	 slots	 keeping	 all	 the	 criteria	 in	 the	
account.	
At	the	beginning	of	the	algorithm,	it	first	checks	for	any	other	queued	or	pending	
jobs	 from	 previous	 scheduling	 window.	 Scheduling	 window	 is	 the	 time	 frame	
within	 which	 we	 are	 scheduling	 the	 jobs.	 The	 scheduling	 window	 in	 the	
proposed	greedy	job	scheduling	algorithm	is	one	day	(24	hours)	long.	Once	it	has	
figured	 out	 the	 pending	 or	 queued	 jobs,	 it	 tries	 to	 schedule	 them	 first	 before	
beginning	with	 the	 fresh	 jobs	 submitted	 to	 the	algorithm.	 In	our	algorithm	 the	
scheduling	window	has	been	divided	into	48-time	slots,	each	time	slot	being	half	
an	hour	(30	minutes)	long.	We	have	taken	30	minutes	as	the	time	slot	length	to	
keep	weather	changes	in	check.	Weather	can	change	rapidly	and	especially	in	a	
country	like	Australia,	30	minutes	are	more	than	enough	for	a	sunny	weather	to	

	 24	

change	into	a	rainy	one.	This	will	directly	affect	the	availability	of	green	energy	
and	hence,	the	scheduling	of	the	jobs.	In	our	algorithm,	the	first	slot	always	starts	
with	either	the	current	time	slot	or	if	there	are	multiple	jobs	given	in	the	script	
with	different	arrival	times,	then	it	is	the	arrival	time	of	the	most	recent	job	out	
of	all	of	them.	
We	 use	 a	 very	 specific	 cost	 model	 to	 minimize	 the	 cost.	 The	 model	 has	 been	
inspired	 by	 work	 done	 in	 [34].	 In	 order	 to	 push	 our	 scheduling	 algorithm	
towards	 using	 the	maximum	 amount	 of	 green	 energy,	 green	 energy	 price	 has	
been	 set	 to	 zero.	 Therefore,	 any	 workflow,	 which	 will	 be	 generated	 with	
maximum	 green	 energy	 usage,	 will	 have	 the	 minimum	 cost.	 In	 cases	 when	
sufficient	 green	 energy	 is	 unavailable	 to	 satisfy	 the	 energy	 requirement	 of	 the	
jobs,	 our	 algorithm	 switches	 to	 brown	 energy.	 The	 cost	 of	 brown	 energy	 has	
been	 set	 to	 normal	 electricity	 prices,	 which	 is	 cheaper	 in	 off	 peak	 time.	
Considering	 and	 leveraging	 this	 fact,	 whenever	 brown	 energy	 is	 required	 to	
execute	 a	 bunch	 of	 jobs,	 the	 proposed	 algorithm	 tries	 to	 push	 them	 towards	
night	 time	 to	 avail	 cheaper	 brown	 energy	 electricity	 prices	 to	 bring	 down	 the	
overall	cost	of	a	workflow.	Therefore,	 time	of	usage	or	time	of	execution	of	 the	
job	affects	the	brown	energy	price	and	hence,	the	overall	cost	incurred.	
Another	 addition	 to	 our	 cost	 model	 is	 penalties.	 For	 a	 given	 job,	 high-cost	
penalties	are	applied	to	the	time	slots	which	violate	the	deadline	of	the	job.	We	
have	 included	 this	 particular	 condition	 because	when	 the	 algorithm	 generates	
more	than	one	workflow	(giving	the	user	the	option	to	choose	between	multiple	
workflow	options)	 for	a	 job,	all	 the	workflows	will	 automatically	get	discarded	
which	include	time	slots	violating	the	deadline	of	the	job.	This	is	because	of	their	
very	 high-cost	 requirement	 due	 to	 penalty	 applied.	 Hence,	 this	 will	 result	 in	
execution	of	the	jobs	staying	within	their	deadlines.	
To	 schedule	 the	 jobs	 and	 feed	 them	 to	 the	 cost	 based	workflow	modeling,	we	
have	used	four	different	strategies	to	analyze	the	performance	of	the	algorithm	
with	each	of	them.	The	first	one	used	is	LSTF	i.e.	the	least	slack	time	first.	Slack	
time	 in	 the	 simplest	 words	 is	 the	 difference	 between	 the	 latest	 possible	 start	
time	 of	 a	 job	 and	 the	 current	 time.	 The	 second	 strategy	 used	 is	 FCFS	 i.e.	 first	
come	first	serve	which	is	self-explanatory	and	is	based	on	the	arrival	times	of	the	
jobs.	 The	 third	 strategy	 used	 is	 LRTF	 i.e.	 least	 running	 time	 first	 which	 is	
dependent	on	the	running	time	of	the	jobs	as	provided	by	the	user	in	the	initial	
script.	 The	 last	 strategy	 used	 is	 least	 nodes	 first,	 which	 is	 dependent	 on	 the	
number	of	nodes	required	to	execute	the	job,	which	is	again	provided	by	the	user	
in	the	initial	script.	If	a	job	is	scheduled	then	the	next	job	will	be	scheduled	only	
on	 the	 remaining	 free	 time	 slots	 if,	 the	 occupied	 time	 slots	 do	 not	 meet	 the	
requirement	of	the	next	job	in	terms	of	nodes	requirement.		
As	per	the	algorithm	we	assume	that	if	a	 job	has	started	on	a	certain	node	or	a	
set	 of	 nodes,	 then	 it	will	 finish	 on	 the	 same	node	 or	 the	 same	 set	 of	 nodes.	 In	
order	 to	 save	 up	 energy,	 all	 the	 nodes	 which	 are	 not	 in	 use	 i.e.	 idle,	 are	 not	
activated	and	hence,	wastage	of	energy	is	prevented.	
	
	

	 25	

	
Figure	4:	Figure	showing	how	the	proposed	algorithm	spreads	out	the	energy	consumption	over	

time	to	maximize	the	usage	of	Green	Energy	

In	the	above	figure,	the	graph	on	the	left	shows	the	energy	consumed	by	a	single	
day	 real	 world	 workload.	 It	 shows	 the	 total	 energy	 requirement	 and	
consumption	of	all	the	jobs	in	a	one-day	scheduling	window.	We	assume	that	the	
scheduling	window	starts	at	0th	time	slot.	We	also	assume	that	the	deadline	of	all	
the	 jobs	 submitted	 is	 the	 end	 of	 the	 day.	 Since	 no	 scheduling	 policy	 or	 energy	
aware	policy	is	used,	all	the	jobs	get	scheduled	as	soon	as	they	arrive	and	we	can	
see	the	energy	peak	around	15th	time	slot.	The	same	load	when	is	provided	to	the	
proposed	 algorithm	 along	 with	 real	 world	 traces	 of	 green	 energy	 availability,	
using	 least	 nodes	 first	 policy,	 it	 spreads	 the	 jobs	 in	 such	 a	 way	 that	 the	 total	
energy	 consumption	 is	 spread	 across	 the	 whole	 scheduling	 window	 and	 the	
maximum	amount	of	green	energy	is	used.	

5.3 Algorithm	
	

	
Figure	5:	Cost	and	energy	efficient	job	scheduling	algorithm	for	a	cloud	data	center.	

The	proposed	algorithm	is	described	above	step	by	step.	The	algorithm	has	been	
inspired	by	work	done	in	[34].	Line	0	describes	the	initial	user	input	which	user	
feeds	to	the	algorithm	in	the	form	of	a	script.	Each	line	of	the	script	represents	a	
different	job	which	has	to	be	scheduled.	Each	line	of	the	script	should	have	the	
job	ID,	its	deadline,	running	time	of	the	job,	a	number	of	nodes	required	and	the	
arrival	time	of	the	job	in	the	system.	A	single	job	in	the	script	looks	like:	

	 26	

	
JOB11	12/08/2016	18:05:00	15799	3	12/07/2016	18:05:00	

	
In	the	above	example,	JOB11	is	the	job	ID.		12/08/2016	18:05:00	represents	the	
job	deadline	time.	15799	represent	the	running	time	of	this	job	in	seconds.	The	
number	of	slots	this	job	will	use	is	calculated	by:	
	

(15799 / 60) / 30 = 8.77 ≈ 9 	
Figure	6:	Slot	Calculation	

(15799/60)	 is	divided	by	30	because	each	slot	 is	30	minutes	 long.	3	 represent	
the	number	of	nodes	required	i.e.	throughout	the	9	slots,	which	this	job	requires	
to	 execute,	 it	 will	 use	 3	 nodes	 in	 each	 slot.	 Finally,	 12/07/2016	 18:05:00	
represents	 the	 arrival	 time	 of	 the	 job	 in	 the	 system.	The	 algorithm	works	 in	 a	
very	 strict	 fashion	 such	 that	 first,	 it	will	 calculate	 the	 latest	possible	 start	 time	
with	 the	help	of	 expected	 running	 time,	 arrival	 time	and	deadline	provided	by	
the	 user.	 For	 example	 in	 this	 case,	 the	 expected	 running	 time	 of	 the	 job	
(15799/60	 =	 263.31	minutes	 and	 263.31/60	 =	 4.38	 hours)	 is	 4	 hours	 and	 22	
minutes	 approximately.	 So	 it	 cannot	 start	 at	 any	 time	 later	 than	 12/08/2016	
13:43:00.	And	hence,	 keeping	 this	 latest	 possible	 start	 time,	 the	 algorithm	will	
start	the	scheduling	of	each	job.	
Line	1	and	2	 represents	 the	 initialization	part	of	 the	algorithm.	Before	 starting	
with	preparing	 the	workflow	 schedule	 for	 each	of	 the	 jobs	 to	 be	 executed,	 the	
algorithm	does	some	basic	initializations.	The	algorithm	checks	if	there	is	any	job	
from	 the	 previous	 workflow	 which	 was	 not	 scheduled	 in	 the	 last	 scheduling	
window.	It	checks	if	the	deadline	of	that	job	is	in	this	scheduling	window.	If	yes,	it	
proceeds	 with	 including	 that	 queued	 job	 to	 the	 list	 of	 jobs,	 which	 are	 to	 be	
scheduled	 in	 this	window.	Lines	2a,	2b	and	2c	 show	some	basic	 initializations,	
which	 include	 loading	 up	 of	 the	 available	 green	 energy	 information.	 	 Another	
initialization	 is	 regarding	 the	number	 of	 available	 nodes	 in	 the	data	 center	 for	
which	scheduling	is	taking	place.	Both	of	these	initializations	take	place	for	48-	
time	slots	that	are	one-day	long	scheduling	window.	Each	time	slot	spans	for	30	
minutes.	The	most	important	initialization	in	this	step	is	of	the	calculation	of	the	
total	 energy	 required	 by	 each	 job.	 In	 order	 to	 calculate	 the	 amount	 of	 energy	
required	by	each	job	the	below-described	formula	[34]	has	been	used:	
	

Job	Energy	Constant	(JEC)	=	[JGT	+	JIT	+	JST	+	SE	+	SC]	
Individual	Job	Energy	Requirement	=	[JEC	+	(JRT	*Job	Run	Time	as	provided	

by	the	user	in	the	script)]	
Formula	1:	Formulae	used	to	calculate	individual	job	energy	requirement	

	
The	 various	 acronyms	 used	 in	 the	 above	 formulae	 are	 Job	 Gather	 Time	 (JGT),	
which	 is	 the	average	time	required	to	gather	 the	various	resources	required	to	
run	a	job	on	a	node.	Job	Initialization	Time	(JIT)	is	the	average	time	required	to	
initialize	a	job	which	might	include	initializing	objects,	variables,	data	structures	
etc.	for	the	execution	of	the	job.	Job	Split	Time	(JST)	is	the	average	time	required	
to	 split	 the	 job	 over	multiple	 time	 slots	 if	 required.	 Switch	 Energy	 (SE)	 is	 the	
average	energy	required	to	change	the	state	of	a	node	from	active	to	idle	or	vice	
versa.	It	is	the	same	energy	required	to	alter	the	state	of	the	server	as	well,	as	in	

	 27	

activating	 or	 deactivating	 the	 server.	 Server	 Consumption	 (SC)	 is	 the	 average	
energy	consumed	by	one	server.	All	of	 these	are	constants	and	their	values	are	
per	second.	The	sum	of	all	 these	constants	gives	us	the	resultant	as	 Job	Energy	
Constant.	To	 calculate	 the	 individual	 job’s	 energy	 requirement,	 JEC	 is	 added	 to	
the	product	of	running	time	of	a	job	provided	by	the	user	in	the	initial	script	and	
average	energy	required	to	a	run	a	job	per	second	over	a	node	(constant).		
Line	3	shows	the	steps	to	generate	a	workflow	for	the	jobs	fed	to	the	algorithm	
through	the	script.		
Line	3a	describes	the	very	first	step	of	workflow	creation.	The	algorithm	updates	
the	 availability	 of	 green	 energy	 over	 the	 48-time	 slots.	 This	 takes	 place	 after	
subtracting	 the	 green	 energy	 which	 has	 already	 been	 consumed	 by	 the	
previously	 scheduled	 jobs	 in	 this	 scheduling	 window	 from	 the	 overall	 green	
energy	 available	 for	 the	 data	 center.	 The	 same	 takes	 place	 with	 information	
regarding	the	availability	of	nodes.	If	one	node	has	been	allotted	to	a	job,	or	if	a	
job	is	already	running	on	a	node	then	that	node	will	not	be	used	for	any	other	job	
i.e.	 no	 other	 job	 will	 be	 scheduled	 on	 that	 node.	 In	 our	 algorithm,	 we	 have	
assumed	 that	 the	 nodes	 are	 not	 shared	 between	 two	 jobs.	 A	 node	 which	 is	
already	 in	 use	 or	 has	 been	 allotted	 will	 not	 be	 used	 for	 further	 scheduling	
process.	
Once	 all	 the	 updates	 and	 initializations	 have	 been	 done,	 then	 the	 algorithm	
proceeds	to	order	the	jobs	for	scheduling	into	a	workflow.	In	our	algorithm	and	
experiments,	 we	 have	 used	 four	 different	 ordering	 policies	 to	 test	 the	
performances	and	various	other	factors.	The	four	policies	used	are:	

• Least	Slack	Time	First	
As	 per	 this	 policy,	 the	 difference	 between	 the	 current	 time	 in	 the	
scheduling	 window	 and	 the	 latest	 possible	 start	 time	 of	 the	 job	 is	
calculated,	which	is	the	slack	time	of	a	job.	The	job	having	the	least	slack	
time	is	sent	for	scheduling	first.	For	example,	 if	there	are	two	jobs	Job	A	
and	job	B.	Running	time	of	job	A	is	1	hour	i.e.	3600	seconds	and	running	
time	of	job	B	is	2	hours	i.e.	7200	seconds	and	both	end	at	5	am.	Let’s	say	
current	time	is	12	am.	Then	the	latest	possible	start	time	for	job	A	would	
be	 4	 am	 and	 job	B	would	 be	 3	 am.	 The	 slack	 time	 of	 job	A	would	 be	 4	
hours	(4	am	–	12	am)	and	slack	time	for	job	B	would	be	3	hours	(3	am	–	
12	 am).	 	 As	 per	 LSTF	 policy,	 job	 B	 would	 be	 sent	 before	 job	 A	 for	
scheduling.	
	

• First	Come	First	Serve	
Jobs	 are	 reordered	 on	 the	 basis	 of	 their	 arrival	 times.	 The	 job	with	 the	
arrival	 time	 closest	 to	 the	 current	 time	 is	 sent	 for	 scheduling	 first.	 For	
example,	if	there	are	two	jobs,	job	A	and	job	B	and	their	arrival	times	are	
12	 am	 and	 12.30	 am	 respectively.	 In	 this	 case,	 Job	 A	will	 be	 scheduled	
before	job	B.	
	

• Least	Running	Time	First	
In	this	ordering	policy,	 jobs	are	re	ordered	on	the	basis	of	 their	running	
time	provided	in	the	initial	script.	Job	with	smallest	running	time	is	sent	
for	 scheduling	 first.	 For	 example,	 if	 there	 are	 two	 jobs,	A	 and	B	 and	A’s	
running	time	is	3600	seconds	and	B’s	running	time	is	7200	seconds,	then	
A	will	be	sent	for	scheduling	before	B	as	per	LRTF.	

	 28	

	
• Least	Nodes	First	

As	per	this	policy,	jobs	are	reordered	as	per	the	number	of	nodes	required	
to	 execute	 them.	 A	 job	 requiring	 the	 least	 number	 of	 nodes	 is	 sent	 for	
scheduling	first.	For	example,	if	there	are	two	jobs,	A	and	B	and	A’s	nodes	
requirement	 is	5	and	B’s	nodes	requirement	 is	3,	 then	B	will	be	sent	 for	
scheduling	before	A	as	per	this	ordering	policy.	

	
In	 step	 3b,	 as	 soon	 as	 one	 job	 is	 ordered	 it	 is	 then	 sent	 for	 scheduling	 and	 is	
removed	 from	 the	 initial	 list	 of	 jobs	which	 are	 to	 be	 scheduled.	 Step	 3c	 in	 the	
algorithm	shows	how	the	cost	for	a	particular	job	is	calculated	and	what	factors	
affect	the	overall	cost.	When	a	job	reaches	step	3c,	the	cost	for	executing	the	job	
at	each	time	slot	is	calculated	for	every	available	slot	in	the	scheduling	window.	
In	order	to	prioritize	green	energy	over	brown	energy,	we	have	assumed	that	the	
(i)	cost	of	using	green	energy	is	0.	If	the	job	ends	in	this	scheduling	window	and	
we	have	enough	resources	to	satisfy	its	resource	requirement,	the	(ii)	algorithm	
accounts	for	brown	energy	as	well	wherever	the	brown	energy	is	used.	(iii)	If	the	
cost	of	execution	is	not	 infinity	but	the	time	slot	schedule	of	a	 job	ends	outside	
the	 deadline	 of	 the	 job,	 all	 the	 slots	 outside	 the	 deadline	 of	 the	 job	 will	 be	
penalized	with	a	cost	penalty.	
The	cost	of	scheduling	a	job	will	be	infinite	only	in	two	cases:	

• If	the	job	ends	outside	this	scheduling	window.	
• The	 data	 center	 does	 not	 have	 enough	 resources,	 in	 terms	 of	 nodes	

availability	to	satisfy	the	demands	of	a	job	to	be	executed.	
Infinity	 cost	 is	 a	 representation	 of	 the	 inability	 of	 the	 algorithm	 or	 the	 data	
center	to	accommodate	a	job	in	this	scheduling	window.		
The	time	slot	schedule	with	the	cheapest	cost	is	selected	as	output	and	included	
in	 the	 overall	 schedule	 as	 the	 workflow.	 In	 the	 overall	 schedule,	 which	 is	
prepared	by	the	algorithm,	 if	 there	 is	more	than	one	schedule	of	 the	 time	slots	
with	the	same	amount	of	cost,	then	the	algorithm	tries	to	allot	those	slots	to	the	
execution	of	 this	 job,	which	consume	a	minimum	amount	of	brown	energy	and	
the	maximum	amount	of	green	energy.	This	way	it	spreads	out	the	whole	energy	
consumption	over	the	time	slots	in	a	consistent	way.	A	job	will	not	be	scheduled	
in	this	window	if	it	satisfies	any	of	the	below-mentioned	scenarios:	

• All	the	schedules	generated	for	the	job	have	cost	as	infinity.	This	indicates	
that	 either	 the	 data	 center	 is	 out	 of	 resources	 or	 job	 ends	 outside	 this	
scheduling	window.	

• If	the	job’s	deadline	is	in	this	scheduling	window,	but	none	of	the	slots	are	
free	 or	 cannot	 accommodate	 this	 job,	 then	 also	 this	 job	will	 be	 rejected	
and	won’t	be	scheduled.	

For	all	those	cases,	in	which	job	gets	rejected,	the	user	can	either	submit	the	job	
for	 the	 next	 round	 of	 scheduling	 or	 if	 the	 job	 is	 queued,	 the	 algorithm	 will	
automatically	 try	 to	 schedule	 it	 in	 the	 next	 round.	 Once	 the	 job	 has	 been	
scheduled,	 the	 overall	 green	 energy	 availability	 and	 nodes	 availability	
information	is	updated.	This	updated	information	is	used	for	further	scheduling	
of	the	next	job.	This	is	represented	by	lines	3e	to	3g.	
Step	4	and	5	show	the	final	steps	of	the	algorithm.	Once	the	workflow	has	been	
prepared	 for	 all	 the	 jobs	 submitted	 to	 the	 algorithm,	 they	 are	 sent	 for	 the	
execution	 to	 the	data	 center.	As	per	 the	per	 time	 slot	node	 requirement	of	 the	

	 29	

workflow,	data	center	switches	nodes	 from	deactivated/idle	state	 to	activated/	
active	state.	On	these	active	nodes,	the	jobs	are	started	as	per	the	schedule	and	
hence	the	whole	workflow	is	executed	in	the	same	fashion.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 30	

6.	Performance	Evaluation	
	

6.1 	Experimental	Setup	
Software.	 We	 have	 evaluated	 the	 algorithm	 which	 has	 been	 proposed	 in	 this	
paper	by	writing	its	code	in	C#	language.	The	code	involves	approximately	800	
lines	of	coding.	To	run	different	policies	and	analyze	them,	 four	separate	codes	
were	written,	 each	with	 a	 different	 ordering	 policy.	We	 created	 a	 SLURM	 [17]	
like	script	in	order	to	feed	workload	information	into	the	algorithm.	We	created	
this	 script	 in	 Microsoft	 Notepad	 only	 and	 the	 program	 picked	 up	 the	 JOB	
information	from	this	text	file.	Another	Microsoft	Notepad	file	was	used	in	order	
to	 provide	 renewable	 energy	 availability	 information	 to	 the	 algorithm.	 This	
information	about	 renewable	 energy	availability	was	provided	 slot	wise	 to	 the	
algorithm.	
	
Workload.	 In	 order	 to	 test	 our	 algorithm,	 we	 used	 two	 workloads.	 The	 first	
workload	consists	of	10	JOBs.	These	JOBs	were	part	of	workload	2,	which	will	be	
discussed	 in	 the	next	section,	but	with	stricter	deadlines.	The	purpose	of	using	
this	workload	was	to	study	the	initial	results	of	the	algorithm	and	the	behavior	of	
the	 energy	 graph.	The	 sole	purpose	of	 using	 this	workload	was	 to	 check	 if	 the	
algorithm	was	 giving	 the	desired	 results	 or	 not.	 This	workload	 comprised	of	 a	
diverse	bag	of	JOBs.	The	initial	script	for	this	workload	is	present	below:	
	

JOB1	12/07/2016	13:55:00	2509	03	12/07/2016	12:00:00	
JOB2	12/07/2016	14:00:00	2000	01	12/07/2016	13:00:00	
JOB3	12/08/2016	18:00:00	20000	05	12/07/2016	18:00:00	
JOB4	12/07/2016	15:00:00	3600	01	12/07/2016	13:00:00	
JOB5	12/07/2016	15:55:00	3000	01	12/07/2016	13:00:00	
JOB6	12/07/2016	14:00:00	2000	01	12/07/2016	13:00:00	
JOB7	12/07/2016	16:00:00	1800	01	12/07/2016	13:00:00	
JOB8	12/07/2016	15:00:00	3600	01	12/07/2016	13:00:00	
JOB9	12/07/2016	15:55:00	3000	01	12/07/2016	13:00:00	
JOB10	12/07/2016	13:55:00	2509	03	12/07/2016	12:00:00	

Script	1:	Initial	Script	for	10	JOBs	of	workload	1	

	
As	can	be	seen	from	this	script	it	consisted	of	7	JOBs	requiring	only	one	node	for	
their	processing,	2	JOBs	requiring	3	nodes	and	one	JOB	requiring	5	nodes	for	the	
same.	As	per	 this	workload,	 two	 JOBs	arrived	at	12/07/2016	12:00:00,	7	 JOBs	
arrived	at	12/07/2016	13:00:00	and	one	JOB	arrived	at	12/07/2016	18:00:00.	
The	deadline	 time	 for	each	of	 these	 JOBs	vary,	earliest	being	 JOB	1	and	 JOB	10	
with	 12/07/2016	 13:55:00	 and	 the	 latest	 being	 JOB	 3	 with	 a	 deadline	 as	
12/08/2016	 18:00:00.	 The	 running	 time	 for	 the	 JOBs	 in	 this	workload	 greatly	
varies	too.	The	least	running	time	is	1800	seconds,	which	is	30	minutes	for	JOB	7.	
The	maximum	 running	 time	 being	 20,000	 seconds	 for	 JOB	 3,	 which	 is	 333.33	
minutes	or	5.55	hours.	The	scheduling	window	for	this	workload	spans	over	48-
time	 slots;	 each	 time	 slot	 is	 30	minutes	 long	 and	hence,	 in	 totality	 is	 24	hours	
long.		
The	 other	 workload	 that	 we	 used	 consisted	 of	 one	 day	 long	 actual	 workload	
trace	provided	 in	 [18]	 for	 the	 experiment.	 This	workload	 consisted	of	 40	 JOBs	

	 31	

each	 with	 the	 deadlines	 ending	 within	 the	 24	 hours	 scheduling	 window.	 The	
detailed	workload	is	present	below,	with	the	initial	script,	which	was	fed	to	the	
algorithm:	
	

JOB2	12/08/2016	18:00:00	48575	1	12/07/2016	18:00:00	
JOB3	12/08/2016	18:00:00	33934	2	12/07/2016	18:00:00	
JOB8	12/08/2016	18:02:00	60332	1	12/07/2016	18:02:00	
JOB11	12/08/2016	18:05:00	15799	3	12/07/2016	18:05:00	
JOB13	12/08/2016	18:12:00	35523	1	12/07/2016	18:12:00	
JOB9	12/08/2016	18:13:00	33269	1	12/07/2016	18:13:00	
JOB21	12/08/2016	18:13:00	27490	1	12/07/2016	18:13:00	
JOB23	12/08/2016	18:17:00	30188	1	12/07/2016	18:17:00	
JOB30	12/08/2016	18:29:00	17537	1	12/07/2016	18:29:00	
JOB31	12/08/2016	18:34:00	30317	1	12/07/2016	18:34:00	
JOB37	12/08/2016	18:38:00	28063	1	12/07/2016	18:38:00	
JOB16	12/08/2016	19:03:00	25217	1	12/07/2016	19:03:00	
JOB52	12/08/2016	19:22:00	12399	4	12/07/2016	19:22:00	
JOB54	12/08/2016	19:34:00	20208	1	12/07/2016	19:34:00	
JOB62	12/08/2016	19:51:00	20579	1	12/07/2016	19:51:00	
JOB35	12/08/2016	20:01:00	23219	1	12/07/2016	20:01:00	
JOB59	12/08/2016	20:02:00	16761	1	12/07/2016	20:02:00	
JOB50	12/08/2016	20:24:00	7833	5	12/07/2016	20:24:00	
JOB15	12/08/2016	21:01:00	11876	1	12/07/2016	21:01:00	
JOB77	12/08/2016	21:20:00	21046	1	12/07/2016	21:20:00	
JOB78	12/08/2016	21:42:00	12850	3	12/07/2016	21:42:00	
JOB82	12/08/2016	21:56:00	13367	1	12/07/2016	21:56:00	
JOB25	12/08/2016	22:30:00	11719	4	12/07/2016	22:30:00	
JOB95	12/08/2016	23:00:00	16273	1	12/07/2016	23:00:00	
JOB45	12/08/2016	23:01:00	12888	1	12/07/2016	23:01:00	
JOB113	12/08/2016	23:11:00	19518	1	12/07/2016	23:11:00	
JOB128	12/08/2016	23:33:00	22722	1	12/07/2016	23:33:00	
JOB130	12/08/2016	23:39:00	13705	1	12/07/2016	23:39:00	
JOB118	12/08/2016	23:46:00	13909	1	12/07/2016	23:46:00	
JOB55	12/09/2016	0:14:00	5971	5	12/08/2016	0:14:00	
JOB41	12/09/2016	0:14:00	18214	1	12/08/2016	0:14:00	
JOB12	12/09/2016	0:36:00	11504	1	12/08/2016	0:36:00	
JOB143	12/09/2016	0:39:00	9614	2	12/08/2016	0:39:00	
JOB72	12/09/2016	0:57:00	4822	3	12/08/2016	0:57:00	
JOB151	12/09/2016	1:12:00	20309	1	12/08/2016	1:12:00	
JOB87	12/09/2016	1:34:00	8234	2	12/08/2016	1:34:00	
JOB155	12/09/2016	1:35:00	5133	2	12/08/2016	1:35:00	
JOB156	12/09/2016	1:39:00	10052	1	12/08/2016	1:39:00	
JOB1	12/09/2016	1:42:00	18183	1	12/08/2016	1:42:00	
JOB89	12/09/2016	2:14:00	14630	1	12/08/2016	2:14:00	

Script	2:	Initial	script	for	day	long	JOBs	scheduling	experiment	of	workload	2	

	
This	workload	 represents	 actual	 real	world	 JOBs	which	were	 submitted	 to	 the	
cloud	 system	 for	 scheduling.	 In	 the	 overall	workload	 there	 are	 29	 JOBs	which	
required	 1	 node	 for	 their	 execution,	 4	 JOBs	 which	 required	 2	 nodes	 for	 their	

	 32	

execution,	3	 JOBs	which	required	3	nodes,	2	 JOBs	which	required	4	and	2	JOBs	
which	required	5	nodes	for	their	execution.	The	arrival	time	of	these	JOBs	varies,	
the	earliest	being	JOB	2	with	arrival	 time	as	12/07/2016	18:00:00	and	the	 last	
one	 to	 arrive	 being	 JOB	 89	 with	 arrival	 time	 as	 12/08/2016	 2:14:00.	 The	
deadlines	for	these	JOBs	being	one	day	long	that	is	if	the	arrival	time	of	the	JOB	is	
12/07/2016	18:00:00	then	the	deadline	of	the	JOB	is	12/08/2016	18:00:00,	i.e.	
24	hours	window	to	schedule	a	 JOB.	The	running	 time	 for	 these	 JOBs	varies	 in	
time.	The	smallest	running	time	being	4822	seconds,	which	is	1.34	hours	for	JOB	
72.	The	largest	running	time	being	60,332	seconds,	which	is	16.75	hours	for	JOB	
8.	The	scheduling	window	for	this	workload	also	spans	over	48-time	slots;	each	
time	slot	is	30	minutes	long	and	hence,	in	totality	is	24	hours	long.	
As	 it	 is	 clear	 from	 the	 scripts	above,	 that	we	 tried	 to	 cover	as	many	variations	
with	respect	to	the	JOBs,	their	running	times,	their	arrival	times,	their	deadlines	
and	nodes	requirement	as	possible	 in	 the	workloads.	 In	 the	results	section,	we	
will	 be	 covering	 the	 behavior	 of	 the	 algorithm	 with	 respect	 to	 both	 the	
workloads	and	how	the	results	varied,	with	respect	to	the	4	ordering	policies.	
	
Renewable	 Energy	 and	 power	 consumption.	 The	 renewable	 energy	
information	which	was	fed	into	the	algorithm	in	each	experiment	is	a	real	world	
trace	of	available	renewable	energy.	The	source	of	this	trace	is	Lyon,	from	where	
we	 got	 this	 trace	 for	 experimental	 purposes	 as	 is	 discussed	 in	 [35].	 The	 trace	
spans	over	the	24	hour	time	period	and	fits	in	48-time	slots.	The	trace	provided	
to	us	was	a	standardized	form	of	available	renewable	energy	i.e.	spanning	from	0	
to	 1,	 where	 0	 denotes	 unavailability	 of	 renewable	 energy	 and	 when	 available	
renewable	 energy	 is	 enough	 to	 satisfy	 the	 overall	 energy	demand,	 then	 it	 is	 1.	
The	trace	is	plotted	in	graph	2.	
In	 order	 to	 compute	 the	 amount	 of	 energy	 required	 by	 each	 JOB,	 as	 discussed	
earlier,	the	various	constants	used	were	[34]	JOB	initialization	time,	which	uses	
140W,	 the	 splitting	 of	 a	 JOB	 requires	 90W,	 gathering	 of	 a	 JOB	 (after	 split)	
requires	 102W,	 the	 switching	 used	 in	 the	 process	 requires	 55W	 and	 a	 server	
consumes	 30W.	A	 JOB	 running	 constantly	 consumes	 105W.	All	 of	 these	 values	
have	 been	 taken	 from	 [34]	 and	 are	 in	 W	 per	 hour.	 When	 these	 values	 were	
converted	into	their	corresponding	per	second	values,	they	are:	
	

Job	Initialization	Time	 0.039	W	
Job	Split	Time	 0.025	W	
Job	Gather	Time	 0.0283	W	
Switch	Energy	 0.0153	W	

Server	Consumption	 0.008	W	
Job	Running	Time	 0.0292	W	

Table	2:	Energy	consumption	values,	in	watts	per	second	

A	server	when	in	the	idle	state	takes	about	8.6W	per	hour	as	per	[34].		
	
Electricity	Prices.	We	have	used	a	very	popular	model	for	electricity	pricing	in	
the	algorithm,	the	on/off-peak	electricity	pricing.	The	on	peak	time	is	when	there	
is	 huge	 demand	 for	 electricity.	 The	 off-peak	 time	 is	 when	 the	 demand	 for	
electricity	is	below	a	certain	threshold.	Generally,	the	on	peak	time	is	mostly	in	
the	 daytime	 and	 at	 this	 time	 electricity	 prices	 are	 higher.	Whereas,	 in	 the	 off-

	 33	

peak	time,	which	is	nighttime,	the	electricity	prices	are	cheaper	than	the	on	peak	
timing.	In	Australia,	the	on	peak	timings	are	7	AM	to	10	PM	and	off	peak	timings	
are	10	PM	to	7	AM	[12,	36].	The	on-peak	price	 in	Victoria	 is	$1.20	and	the	off-	
peak	electricity	tariff	is	$0.84	[13,	37].	
	
Penalty.	 In	our	algorithm,	we	have	adopted	a	penalizing	strategy	to	demotivate	
the	unconscious	estimation	of	 the	deadline	of	a	 JOB	by	 the	user.	Any	 time	slot,	
which	will	be	on	the	schedule	for	a	JOB,	such	that	it	violates	the	deadline	of	the	
JOB,	will	be	penalized.	The	sole	motivation	of	this	strategy	is	to	increase	the	cost	
of	the	workflow,	which	includes	time	slots,	which	violate	the	deadline	for	a	JOB,	
such	that	eventually,	their	overall	cost	will	shoot	up.	This	will	help	the	algorithm	
to	choose	a	cheaper	workflow	over	the	expensive	one	and	hence,	will	prevent	it	
from	choosing	the	workflow	having	time	slots	which	violate	JOB’s	deadline.	The	
penalty	included	in	our	algorithm	is	$100	per	slot.	
	
Standardization	 of	 green	 energy	 trace.	 In	order	 to	standardize	 the	available	
energy	 trace	 values,	 the	 strategy	 which	 we	 adopted	 was	 that	 we	 plotted	 the	
graph	of	the	energy	required	by	the	JOBs,	such	that	the	JOBs	were	ordered	in	the	
order	 of	 their	 arrival	 time,	 without	 any	 kind	 of	 ordering	 policy.	 The	 graph	
(Workload	2	case)	is	present	below:	
	

	
Figure	7:	Overall	energy	requirement	if	the	jobs	were	ordered	in	the	order	of	their	arrival	time.	

Once	this	figure	was	created,	we	found	the	area	under	the	curve.	The	area	under	
this	figure	was	24528.85	time	slot-watt.	The	second	step	was	to	plot	the	graph	of	
the	available	renewable	energy	trace.	The	figure	is	present	below:	

	 34	

	
Figure	8:	Standardised	available	green	energy	trace	

We	found	the	area	under	this	curve	as	well.	The	area	under	 figure	7	was	16.70	
time	slot-watt.	These	figures	were	plotted	with	the	help	of	MINITAB	[14,	38]	and	
area	was	 found	with	 the	 help	 of	 Microsoft	 Excel.	 	 In	 order	 to	 standardize	 the	
renewable	energy	 trace	values,	we	multiplied	each	 trace	value	with	a	 factor	of	
1468.26	 (24528.85/16.70	 =	 1468.26)	 by	 equating	 the	 two	 areas	 in	 the	 two	
figures	 present	 above.	 The	 resulting	 trace	 values,	 which	 were	 fed	 to	 the	
algorithm,	are	present	in	the	below	table:	
	
TIME	SLOTS	 RENEWABLE	

ENERGY	
AVAILABLE	
(Standardized	

values)	

Resultant	values	in	Watts	
(Standardized	values	*	standardization	

factor)	

0	 0.19	 272.10	
1	 0.28	 409.42	
2	 0.28	 409.42	
3	 0.19	 272.10	
4	 0.19	 272.10	
5	 0.28	 409.42	
6	 0.58	 853.18	
7	 0.58	 853.18	
8	 0.47	 685.97	
9	 0.28	 409.42	
10	 0.28	 409.42	
11	 0.34	 498.15	
12	 0.35	 512.05	
13	 0.63	 928.04	
14	 0.67	 982.78	
15	 0.23	 342.94	

	 35	

16	 0.24	 358.58	
17	 0.32	 465.85	
18	 0.33	 483.22	
19	 0.29	 420.67	
20	 0.32	 469.32	
21	 0.40	 584.93	
22	 0.40	 584.06	
23	 0.71	 1041.71	
24	 0.71	 1041.71	
25	 0.57	 838.89	
26	 0.57	 836.28	
27	 0.68	 991.32	
28	 0.67	 990.45	
29	 0.67	 981.76	
30	 0.65	 960.91	
31	 0.39	 572.00	
32	 0.37	 540.72	
33	 0.49	 712.91	
34	 0.47	 696.40	
35	 0.47	 685.97	
36	 0.34	 492.07	
37	 0.47	 685.97	
38	 0.19	 272.10	
39	 0.00	 0.00	
40	 0.00	 0.00	
41	 0.00	 0.00	
42	 0.00	 0.00	
43	 0.00	 0.00	
44	 0.00	 0.00	
45	 0.15	 218.70	
46	 0.15	 218.70	
47	 0.12	 168.85	
Table	3:	Resultant	available	renewable	energy	values	which	were	fed	to	the	algorithm	

The	method	was	applied	for	Workload	1	case	also	and	the	factor	to	be	multiplied	
with	the	standardized	green	energy	values	was	much	smaller	i.e.	174.092.	
	
Selecting	the	appropriate	number	of	nodes.	In	figure	6,	when	we	plotted	the	
JOBs	without	any	ordering	policy	and	just	on	the	basis	of	their	arrival	time,	we	
could	see	that	most	of	the	JOBs	were	scheduled	in	time	slot	15.The	total	number	
of	 nodes	 required	 to	 execute	 the	 overall	 schedule	 is	 49,	 such	 that	 none	 of	 the	
JOBs	 get	 left	 out	 because	 of	 unavailability	 of	 resources.	 Hence,	 the	 number	 of	
nodes	present	in	the	data	center,	for	simulation	purposes,	in	our	algorithm	is	49.		
	
Output.	The	output	of	the	algorithm	looks	somewhat	like:	
	

		Job	130	Requirement:		1	Energy	Requirement:	400.3016	

	 36	

												0	1	2	3	4	5	6	7	
		 												Cost	of	this	list	is:	360.144	

	
Job	12	Requirement:		1	Energy	Requirement:	336.0324	

											40	41	42	43	44	45	46	
											Cost	of	this	list	is:	201.944	

	
The	 output	 shown	 above	 is	 just	 a	 very	 small	 part	 of	 the	 overall	 workflow.	 It	
shows	how	Job	130	and	Job	12	should	be	scheduled	in	the	overall	workflow,	the	
energy	 requirements	of	 these	 two	 JOBs	 respectively	 and	 if	 these	 schedules	are	
chosen	for	these	two	JOBs	then	the	cost	for	executing	these	JOBs	respectively.	
	

6.2 	Experimental	Results	
In	 this	 section,	we	will	 analyze	 the	 results	 obtained	 from	 the	 experiments.	We	
will	mainly	elaborate	the	workflow	obtained	in	each	of	the	policies,	in	each	of	the	
two	 cases	 i.e.	 workload	 1	 and	 workload	 2.	 The	 focus	 of	 this	 detailed	 analysis	
would	be	the	green	energy	usage	behavior	of	each	scenario.	We	will	focus	on	the	
cost	 associated	 with	 the	 resultant	 schedule.	 We	 will	 discuss	 and	 analyze	 the	
results	case	wise.		
	
Case	1:	Workload	1	
As	discussed	earlier,	in	this	case,	10	JOBs	were	used	chiefly	to	test	the	behavior	
of	the	algorithm	with	respect	to	the	availability	of	green	energy.	As	per	the	initial	
script	 provided	 in	 the	 beginning,	 10	 JOBs	 were	 ordered	 in	 different	 orders	
because	of	four	different	ordering	policies	used	in	scheduling.	The	tables	present	
below	 show	 the	 order	 of	 the	 JOBs	 in	 each	 of	 the	 four	 cases,	 with	 different	
ordering	policies,	 along	with	a	 schedule	of	 the	 time	slots	 for	 their	execution	 in	
each	of	the	cases.	
	

Job	Names	(In	the	order	of	
scheduling)	

Time	Slots	Schedule	

JOB2	 3,4	
JOB6	 2,3	
JOB1	 4,5	
JOB10	 4,5	
JOB4	 5,6	
JOB8	 5,6	
JOB5	 6,7	
JOB9	 6,7	
JOB7	 1	
JOB3	 7,8,9,10,11,12,13,14,15,16,17,18	

Table	4:	LSTF	Workflow	schedule	for	workload	1	

	

	
	
	
	

	 37	

Job	Names	(In	the	order	of	
scheduling)	

Time	Slots	Schedule	

JOB1		 3,4	
JOB10		 4,5	
JOB2		 3,4	
JOB4		 5,6	
JOB5		 6,7	
JOB6		 3,4	
JOB7		 1	
JOB8		 4,5	
JOB9		 6,7	
JOB3		 5,6,7,8,9,10,11,12,13,14,15,16	

Table	5:	FCFS	Workflow	schedule	for	workload	1	

Job	Names	(In	the	order	of	
scheduling)	

Time	Slots	Schedule	

JOB7		 3	
JOB2		 3,4	
JOB6		 1,2	
JOB1		 4,5	
JOB10		 4,5	
JOB5		 6,7	
JOB9		 6,7	
JOB8		 1,2	
JOB4		 5,6	
JOB3		 6,7,8,9,10,11,12,13,14,15,16,17	

Table	6:	LRTF	Workflow	schedule	for	workload	1	

Job	Names	(In	the	order	of	
scheduling)	

Time	Slots	Schedule	

JOB2		 3,4	
JOB4		 5,6	
JOB5		 6,7	
JOB6		 1,2	
JOB7		 1	
JOB8		 2,3	
JOB9		 6,7	
JOB1		 3,4	
JOB10		 4,5	
JOB3		 7,8,9,10,11,12,13,14,15,16,17,18	

Table	7:	Least	Nodes	First	for	workload	1	

	
The	figures	present	below	show	the	above	scheduling	in	each	case,	along	with	a	
comparison	with	available	green	energy.	The	orange	bars	show	energy	per	watt	
consumed	 in	 a	 given	 time	 slot.	 The	 blue	 line	 shows	 the	 trend	 of	 the	 available	
green	energy	(standardized	form).	
	

	 38	

	
Figure	9:	Schedule	generated	through	LSTF	for	workload	1	

	

	
Figure	10:	Schedule	generated	through	FCFS	for	workload	1	

	

	
Figure	11:	Schedule	generated	through	LRTF	for	workload	1	

	

	

	 39	

	
Figure	12:	Schedule	generated	through	least	nodes	first	policy	for	workload	1	

The	 above	 figures	 show	 the	 energy	 consumed	 per	 slot,	 when	 the	 10	 JOBs	 or	
workload	1	was	scheduled	as	per	each	policy.	
From	the	above	figures,	it	can	be	clearly	concluded	that	mostly	after	time	slot	8,	
the	plots	have	a	similar	trend.	This	is	why	in	our	analysis	we	will	mainly	focus	on	
the	plot	of	the	figures	before	time	slot	8.	Again,	this	experiment	was	conducted	to	
check	 the	behavior	of	 the	overall	 algorithm.	Our	major	analysis	has	been	done	
with	workload	2,	which	follows	after	this	section	since	 it	consists	of	real	world	
workload.	One	of	the	most	important	observations	from	the	above	figures	is	that	
in	all	the	four	cases,	one	or	more	than	one	JOB	(s)	could	have	been	scheduled	in	
time	 slot	 8,9,14	 and	 15	 because,	 in	 all	 of	 the	 cases,	 there	 is	 a	 considerable	
amount	of	green	energy	which	 is	unused	 in	 these	 time	slots.	This	 is	one	of	 the	
main	drawbacks	of	the	experiment,	of	selecting	such	a	small	number	of	JOBs	for	a	
workload	 with	 stricter	 deadlines	 and	 also	 one	 of	 the	 other	 reasons,	 which	
motivated	us	to	conduct	an	experiment	with	the	real	workload,	and	is	presented	
in	the	next	case.	
The	 tables	present	below	show	the	 total	green	energy,	 total	brown	energy	and	
overall	cost	of	the	schedule	created	by	each	of	the	policies	respectively.	

	

Ordering	Policy	 Total	Green	Energy	Used	(in	Watts)	
Least	Slack	Time	First	 845.28	
First	Come	First	Server	 724.85	
Least	Running	Time	First	 867.92	

Least	Nodes	First	 864.59	
Table	8:	Total	green	energy	used	by	each	policy	for	workload	1	

	
Ordering	Policy	 Total	Brown	Energy	Used	(in	Watts)	

Least	Slack	Time	First	 441.18	
First	Come	First	Server	 561.63	
Least	Running	Time	First	 418.57	

Least	Nodes	First	 421.89	
Table	9:	Total	green	energy	used	by	each	policy	for	workload	1	

	

	 40	

Ordering	Policy	 Total	Cost	of	the	Overall	Schedule	
(in	$)	

Least	Slack	Time	First	 529.40	
First	Come	First	Server	 673.96	
Least	Running	Time	First	 502.28	

Least	Nodes	First	 506.27	
Table	10:	Total	cost	of	the	overall	schedule	as	per	each	policy	

	
Some	of	the	important	points	which	have	been	highlighted	from	the	above	data	
are	 the	 maximum	 green	 energy	 was	 used	 by	 least	 running	 time	 first	 (LRTF)	
policy.	 The	minimum	 amount	 of	 green	 energy	 in	 this	 experiment	was	 used	 by	
first	 come	 first	 serve	 (FCFS)	 policy.	 Another	 point	 to	 be	 focused	 on	 is	 the	
minimum	 brown	 energy	 was	 used	 by	 Least	 running	 time	 first	 and	 maximum	
brown	 energy	 was	 used	 by	 first	 come	 first	 serve.	 We	 could	 also	 see	 that	 the	
disparity	 amongst	 LRTS,	 LSTF	 and	 Least	 nodes	 first	 is	 not	 that	 much,	 when	
compared	to	the	results	of	FCFS.	The	same	is	highlighted	in	cost	table	(rounded	
off	up	to	2	places)	as	well,	where	we	can	see	that	maximum	cost	was	incurred	by	
FCFS’s	work	schedule	where	as	the	minimum	cost	was	incurred	by	LRTF	for	the	
same	workload.	This	cost	was	calculated	by	taking	green	energy	as	0	and	brown	
energy	as	$1.20	per	watt,	which	is	the	day	price	for	electricity.	In	this	case,	since	
the	number	of	JOBs	was	very	less	that	is	10,	and	these	JOBs	had	strict	deadlines,	
all	 of	 these	 JOBs	 were	 scheduled	 in	 the	 first	 20	 slots	 of	 the	 overall	 schedule	
produced	by	all	of	the	policies.	
Another	observation	that	can	be	made	from	the	figures	is	that	even	though	FCFS	
is	 the	 most	 expensive	 and	 least	 effective	 policy	 when	 it	 comes	 to	 the	 cost	
incurred	to	execute	all	the	JOBs	or	amount	of	green	energy	consumed,	however,	
it	took	the	least	number	of	slots	to	schedule	and	execute	all	the	slots.	That	is,	in	
the	schedule	generated	by	FCFS,	 the	workflow	ends	at	slot	16	whereas,	 for	 the	
same	workload,	LSTF	and	least	nodes	first	take	the	maximum	number	of	slots	to	
schedule	all	the	JOBs	which	are	18-time	slots.	
From	these	observations	we	can	conclude	that	for	workload	1,	that	is	workload	
consisting	of	 fewer	 JOBs,	 LRTF	was	 the	most	 efficient	with	 respect	 to	usage	of	
green	energy	and	hence,	 the	 cost	 incurred	 to	execute	 the	overall	 schedule.	But	
for	 a	 user,	 for	 whom	 time	 is	 more	 important	 than	 the	 overall	 cost	 of	 the	
execution	 schedule	 and	 utilization	 of	 green	 energy,	 FCFS	 will	 be	 the	 more	
efficient	one.	
	
Case	2:	Workload	2:	
As	discussed	earlier,	in	this	case,	a	total	of	40	real	time	JOBs	[18]	were	used	and	
fed	 to	 the	 algorithm.	 The	 initial	 script	 which	 was	 used	 is	 present	 under	 the	
workload	 title.	 The	 standardized	 values	 of	 the	 green	 energy	 used	 in	 this	
experiment	have	been	also	provided	in	the	previous	section.	We	will	discuss	the	
results	of	 all	 the	 four	policies,	when	 this	 real	world	workload	was	provided	 to	
the	algorithm.	Table	13	shows	the	energy	required	by	each	of	the	JOB,	which	was	
calculated	before	the	scheduling	of	these	JOBs.	

	
JOB	IDs	 Energy	Required	

(in	Watts)	
JOB	IDs	 Energy	Required	

(in	Watts)	

	 41	

JOB2	 1418.5056	 JOB78	 375.3356	
JOB3	 990.9884	 JOB82	 390.432	
JOB8	 1761.81	 JOB25	 342.3104	
JOB11	 461.4464	 JOB95	 475.2872	
JOB13	 1037.3872	 JOB45	 376.4452	
JOB9	 971.5704	 JOB113	 570.0412	
JOB21	 802.8236	 JOB128	 663.598	
JOB23	 881.6052	 JOB130	 400.3016	
JOB30	 512.196	 JOB118	 406.2584	
JOB31	 885.372	 JOB55	 174.4688	
JOB37	 819.5552	 JOB41	 531.9644	
JOB16	 736.452	 JOB12	 336.0324	
JOB52	 362.1664	 JOB143	 280.8444	
JOB54	 590.1892	 JOB72	 140.918	
JOB62	 601.0224	 JOB151	 593.1384	
JOB35	 678.1104	 JOB87	 240.5484	
JOB59	 489.5368	 JOB155	 149.9992	
JOB50	 228.8392	 JOB156	 293.634	
JOB15	 346.8948	 JOB1	 531.0592	
JOB77	 614.6588	 JOB89	 427.3116	

Table	11:	Energy	requirement	of	each	JOB	in	workload	2	

Table	14	represents	the	order	in	which	the	JOBs	were	sent	for	scheduling	as	per	
the	different	policies.		
	
	

LSTF	 LRTF	 FCFS	 Least	Nodes	First	
JOB2	 JOB72	 JOB2	 JOB2	
JOB3	 JOB155	 JOB3	 JOB8	
JOB8	 JOB55	 JOB8	 JOB13	
JOB11	 JOB50	 JOB11	 JOB9	
JOB13	 JOB87	 JOB13	 JOB21	
JOB9	 JOB143	 JOB9	 JOB23	
JOB21	 JOB156	 JOB21	 JOB30	
JOB23	 JOB12	 JOB23	 JOB31	
JOB30	 JOB25	 JOB30	 JOB37	
JOB31	 JOB15	 JOB31	 JOB16	
JOB37	 JOB52	 JOB37	 JOB54	
JOB16	 JOB78	 JOB16	 JOB62	
JOB52	 JOB45	 JOB52	 JOB35	
JOB54	 JOB82	 JOB54	 JOB59	
JOB62	 JOB130	 JOB62	 JOB15	
JOB35	 JOB118	 JOB35	 JOB77	
JOB59	 JOB89	 JOB59	 JOB82	
JOB50	 JOB11	 JOB50	 JOB95	
JOB15	 JOB95	 JOB15	 JOB45	

	 42	

JOB77	 JOB59	 JOB77	 JOB113	
JOB78	 JOB30	 JOB78	 JOB128	
JOB82	 JOB1	 JOB82	 JOB130	
JOB25	 JOB41	 JOB25	 JOB118	
JOB95	 JOB113	 JOB95	 JOB41	
JOB45	 JOB54	 JOB45	 JOB12	
JOB113	 JOB151	 JOB113	 JOB151	
JOB128	 JOB62	 JOB128	 JOB156	
JOB130	 JOB77	 JOB130	 JOB1	
JOB118	 JOB128	 JOB118	 JOB89	
JOB55	 JOB35	 JOB55	 JOB3	
JOB41	 JOB16	 JOB41	 JOB143	
JOB12	 JOB21	 JOB12	 JOB87	
JOB143	 JOB37	 JOB143	 JOB155	
JOB72	 JOB23	 JOB72	 JOB72	
JOB151	 JOB31	 JOB151	 JOB11	
JOB87	 JOB9	 JOB87	 JOB78	
JOB155	 JOB3	 JOB155	 JOB52	
JOB156	 JOB13	 JOB156	 JOB25	
JOB1	 JOB2	 JOB1	 JOB50	
JOB89	 JOB8	 JOB89	 JOB55	

Table	12:	Jobs	in	their	scheduling	order	as	per	each	of	the	policy	

Table	 15	 shows	 the	 overall	 resultant	 schedule	 for	 each	 of	 the	 JOB	which	 was	
created	by	each	policy.	
	

JOB	IDs	 LSTF	 FCFS	 LRTF	 Least	Nodes	
First	

JOB2		 14-40	 14-40	 14-40	 14-40	
JOB3		 18-36	 20-38	 18-36	 18-36	
JOB8		 10-44	 10-44	 10-44	 10-44	
JOB11		 31-39	 31-39	 31-39	 31-39	
JOB13		 0-19	 0-19	 0-19	 18-37	
JOB9		 0-18	 0-18	 0-18	 0-18	
JOB21		 30-45	 30-45	 30-45	 30-45	
JOB23		 2-18	 2-18	 18-34	 2-18	
JOB30		 9-18	 9-18	 9-18	 8-17	
JOB31		 1-17	 1-17	 1-17	 1-17	
JOB37		 2-17	 2-17	 18-33	 31-46	
JOB16		 2-16	 2-16	 2-16	 32-46	
JOB52		 8-14	 8-14	 0-6	 8-14	
JOB54		 0-11	 0-11	 4-15	 32-43	
JOB62		 0-11	 0-11	 14-25	 33-44	
JOB35		 21-34	 21-34	 21-34	 21-34	
JOB59		 2-11	 2-11	 36-45	 6-15	
JOB50		 41-45	 32-36	 20-24	 1-5	

	 43	

JOB15		 39-45	 39-45	 1-7	 22-28	
JOB77		 18-30	 18-30	 18-30	 18-30	
JOB78		 23-30	 23-30	 23-30	 23-30	
JOB82		 39-46	 23-30	 39-46	 7-14	
JOB25		 2-8	 2-8	 0-6	 0-6	
JOB95		 0-9	 0-9	 0-9	 36-45	
JOB45		 2-9	 2-9	 27-34	 6-13	
JOB113		 18-29	 18-29	 18-29	 2-13	
JOB128		 21-34	 21-34	 21-34	 21-34	
JOB130		 25-32	 25-32	 25-32	 25-32	
JOB118		 0-7	 0-7	 10-17	 4-11	
JOB55		 26-29	 26-29	 18-21	 26-29	
JOB41		 18-29	 18-29	 18-29	 18-29	
JOB12		 40-46	 40-46	 1-7	 24-30	
JOB143		 2-7	 2-7	 2-7	 2-7	
JOB72		 28-30	 28-30	 23-25	 6-8	
JOB151		 18-30	 18-30	 18-30	 0-12	
JOB87		 25-29	 25-29	 41-45	 25-29	
JOB155		 43-45	 32-34	 24-26	 7-9	
JOB156		 2-7	 2-7	 2-7	 24-29	
JOB1		 22-33	 22-33	 22-33	 21-32	
JOB160		 22-40	 22-40	 22-40	 21-39	
Table	13:	This	table	shows	the	time	slots	in	which	each	job	was	scheduled	by	the	respective	policies	

for	the	workload	2	

The	 four	 figures	 present	 below	 show	 the	 spread	 of	 energy	 consumption	
throughout	 the	 span	 of	 48-time	 slots,	 along	with	 available	 green	 energy.	 Each	
figure	belongs	 to	one	of	 the	 four	ordering	policies.	The	blue	vertical	bars	show	
energy	 per	watt	 consumed	 in	 a	 given	 time	 slot.	 The	 light	 blue	 line	 shows	 the	
trend	of	the	available	green	energy	(standardized	form).	
	
	

	
Figure	13:	LSTF	energy	spread	as	per	its	schedule	for	workload	2	

	

	 44	

	
Figure	14:	FCFS	energy	spread	as	per	its	schedule	for	workload	2	

	
Figure	15:	LRTF	energy	spread	as	per	its	schedule	for	workload	2	

	

	 45	

	
Figure	16:	Least	Nodes	First	energy	spread	as	per	its	schedule	for	workload	2	

One	 of	 the	 most	 important	 observations	 that	 could	 be	 made	 from	 the	 above	
figures	is	that	the	algorithm	tries	the	spread	the	jobs	in	such	a	manner	that	it	will	
be	able	to	spread	the	energy	consumption	throughout	the	scheduling	window	to	
utilize	maximum	green	energy	as	possible.	
	
The	 tables	 below	 show	 the	 green	 energy	 consumption,	 brown	 energy	
consumption	and	 total	overall	 cost	of	 the	 schedule,	with	 respect	 to	each	of	 the	
ordering	policies	for	workload	2.	
	

Ordering	Policy	 Total	Green	Energy	Used	(in	Watts)	
Least	Slack	Time	First	 19393.89	
First	Come	First	Server	 19871.21	
Least	Running	Time	First	 19857.06	

Least	Nodes	First	 20180.34	
Table	14:	Total	green	energy	used	by	each	policy	for	workload	2	

	
Ordering	Policy	 Total	Brown	Energy	Used	(in	Watts)	

Least	Slack	Time	First	 4565.60	
First	Come	First	Server	 3900.84	
Least	Running	Time	First	 3980.56	

Least	Nodes	First	 3941.48	
Table	15:	Total	green	energy	used	by	each	policy	for	workload	2	

	

Ordering	Policy	 Total	Cost	of	the	Overall	Schedule	
(in	$;	rounded	off	up	to	two	places)	

Least	Slack	Time	First	 4738.11	
First	Come	First	Server	 4160.93	
Least	Running	Time	First	 4071.16	

Least	Nodes	First	 3635.98	
Table	16:	Total	cost	of	the	overall	schedule	as	per	each	policy	for	workload	2	

	 46	

From	 the	 information	 in	 the	 tables,	 we	 can	 see	 that	 the	maximum	 amount	 of	
green	energy	was	utilized	by	 least	nodes	 first	policy.	We	can	also	observe	 that	
there	is	not	much	disparity	amongst	the	other	policies	as	well	when	it	comes	to	
usage	of	green	energy.	However,	the	minimum	amount	of	green	energy	was	used	
by	LSTF.	From	Table	15,	we	can	observe	that	maximum	amount	of	brown	energy	
was	 used	 by	 LSTF	 and	 minimum	 was	 used	 by	 FCFS	 policy.	 However,	 the	
difference	 between	 the	 brown	 energy	 usage	 between	 LRTF,	 FCFS	 and	 Least	
nodes	 first	 is	 not	 much.	 From	 Table	 16,	 we	 can	 observe	 that	 the	 minimum	
amount	of	cost	incurred	was	with	least	nodes	first	policy	and	the	most	expensive	
scheduling	was	done	by	LSTF.		
One	important	thing	to	notice	in	the	above	information	trend	is	that	even	though	
the	 brown	 energy	 usage	 by	 FCFS	 was	 lesser	 than	 LRTF	 and	 least	 nodes	 first	
policy,	then	also	the	cost	of	scheduling	the	jobs	as	per	FCFS	is	higher	than	LRTF	
and	least	nodes	first.	This	is	because,	in	LRTF	and	least	nodes	first	policy,	many	
jobs	were	scheduled	in	the	later	half	of	the	day	that	is	when	the	cost	of	electricity	
is	cheaper.	Whereas	in	FCFS,	these	jobs	were	scheduled	in	the	first	half	of	the	day	
which	comes	under	on	peak	electricity	timings.	This	can	be	clearly	observed	 in	
the	figures	as	well.		
In	FCFS	and	LSTF,	the	schedule	prepared	was	up	till	46-time	slots,	that	is,	all	the	
jobs	were	scheduled	and	executed	in	these	time	slots.	Where	as	in	LRTF	and	least	
nodes	first,	schedule	extends	to	47-time	slots.	
From	the	above	observations,	it	can	be	concluded	that	if	the	priority	of	the	user	
is	to	maximize	the	usage	of	green	energy,	then	the	user	should	go	for	least	nodes	
first	as	per	the	results	in	workload	2.	We	could	also	see	that,	the	cost	incurred	by	
the	schedule	prepared	by	the	least	nodes	first	policy	is	the	cheapest.	However,	if	
the	user’s	 priority	 is	 to	 use	 the	minimum	amount	 of	 brown	energy,	 then	FCFS	
should	be	selected.	Another	advantage	of	FCFS	being	that	in	both	the	cases,	that	
is	workload	1	and	workload	2	it	used	the	minimum	number	of	slots	to	schedule	
all	the	jobs.	Hence,	it	is	time	efficient	as	well.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 47	

7. Conclusion	
	

In	this	thesis,	we	presented	a	scheduling	algorithm,	which	maximizes	the	amount	
of	 green	 energy	 to	 schedule	 the	 jobs	 in	 a	 workload.	 The	 schedule	 which	 it	
prepares	uses	the	minimum	amount	of	brown	energy.	It	schedules	the	jobs	while	
preserving	their	deadlines.	In	cases	when	enough	green	energy	is	not	present	to	
satisfy	the	demand	of	a	job	and	the	deadline	of	the	job	is	not	violated,	to	reduce	
or	minimize	the	overall	cost	incurred	to	execute	this	job,	it	tries	to	schedule	it	in	
the	 later	 half	 of	 the	 day	 because	 of	 cheaper	 brown	 energy	 sourced	 electricity	
prices.	 We	 tried	 this	 algorithm	 with	 four	 different	 scheduling	 policies	 to	
understand	the	behavior	of	each	scheduling	policy	with	respect	to	the	algorithm	
and	hence	figured	out	the	best	circumstances	in	which	each	of	the	policies	should	
be	used.		
In	 cases	 of	 lighter	 workload,	 we	 found	 out	 that	 LRTF	 policy	 was	 the	 most	
efficient	from	green	energy	and	cost	perspective	but	for	someone,	who	has	time	
as	 their	 priority,	 FCFS	 would	 be	 preferred.	 However,	 with	 our	 real-time	
workload	experiment,	we	found	that	Least	Nodes	first	gave	the	best	results	with	
respect	 to	 green	 energy	 usage	 and	 execution	 cost.	 But	 FCFS	 could	 be	 still	
preferred	for	time-saving	scenarios.	
There	 are	 some	 limitations	 to	 the	 algorithm.	 There	might	 be	 a	 case,	 in	 which	
algorithm	rejects	or	does	not	schedule	some	jobs,	which	can	be	brought	to	light	if	
the	higher	number	of	 jobs	 is	 fed	 into	the	system.	We	did	not	see	this	case	with	
our	experiments	but	we	do	not	 ignore	 the	possibility	of	 it	 and	 this	 is	why	 it	 is	
part	of	our	future	works.	
Our	other	future	works	include	increasing	the	size	of	the	scheduling	window	to	
more	 than	 24	 hours.	 	 In	 the	workload	 2	 experiments	which	 consisted	 of	 real-	
world	jobs,	the	deadlines	of	all	the	jobs	were	one	day	long.	In	our	future	works,	
we	plan	to	make	these	deadlines	stricter.		
The	study	that	we	have	presented	in	this	thesis	helps	us	to	take	a	step	towards	a	
sustainable	system	in	which	cloud	computing	can	harmoniously	coexist	with	the	
environment.		

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 48	

References:	
	
1.	 BURRINGTON,	I.,	The	Environmental	Toll	of	a	Netflix	Binge,	in	The	Atlantic	Daily.	2015.	
2.	 Brown,	R.,	Report	to	Congress	on	Server	and	Data	Center	Energy	Efficiency:	Public	Law	109-431.	

2008.	
3.	 Matteson,	S.,	How	cloud	computing	will	impact	the	on-premise	data	center,	in	TechRepublic.	2013.	
4.	 An	Inefficient	Truth	Executive	Summary.	2007.	
5.	 Luomi,	M.,	Abu	Dhabi's	Alternative-Energy	Initiatives:	Seizing	Climate-Change	Opportunities.	Middle	

East	Policy	Council.	
6.	 Mathews,	J.A.,	Green	growth	strategies—Korean	initiatives.	Futures,	2012.	44(8):	p.	761-769.	
7.	 Goiri,	I.,	et	al.	Energy-aware	scheduling	in	virtualized	datacenters.	in	Cluster	Computing	(CLUSTER),	

2010	IEEE	International	Conference	on.	2010.	IEEE.	
8.	 Green	Web	Hosting	Business.	http://www.ecobusinesslinks.com	
9.	 Adnan,	M.A.,	R.	Sugihara,	and	R.K.	Gupta.	Energy	efficient	geographical	load	balancing	via	dynamic	

deferral	of	workload.	in	Cloud	Computing	(CLOUD),	2012	IEEE	5th	International	Conference	on.	
2012.	IEEE.	

10.	 Adnan,	M.A.,	et	al.,	Dynamic	deferral	of	workload	for	capacity	provisioning	in	data	centers.	arXiv	
preprint	arXiv:1109.3839,	2011.	

11.	 Zhang,	Y.,	Y.	Wang,	and	X.	Wang.	Greenware:	Greening	cloud-scale	data	centers	to	maximize	the	use	
of	renewable	energy.	in	ACM/IFIP/USENIX	International	Conference	on	Distributed	Systems	
Platforms	and	Open	Distributed	Processing.	2011.	Springer.	

12.	 Stewart,	C.	and	K.	Shen.	Some	joules	are	more	precious	than	others:	Managing	renewable	energy	in	
the	datacenter.	in	Proceedings	of	the	workshop	on	power	aware	computing	and	systems.	2009.	IEEE.	

13.	 Brown,	M.	and	J.	Renau,	Rerack:	Power	simulation	for	data	centers	with	renewable	energy	
generation.	ACM	SIGMETRICS	Performance	Evaluation	Review,	2011.	39(3):	p.	77-81.	

14.	 Le,	K.,	et	al.,	Cost-and	energy-aware	load	distribution	across	data	centers.	Proceedings	of	HotPower,	
2009:	p.	1-5.	

15.	 Li,	C.,	A.	Qouneh,	and	T.	Li,	Characterizing	and	analyzing	renewable	energy	driven	data	centers.	ACM	
SIGMETRICS	Performance	Evaluation	Review,	2011.	39(1):	p.	323-324.	

16.	 Sharma,	N.,	et	al.	Blink:	managing	server	clusters	on	intermittent	power.	in	ACM	SIGPLAN	Notices.	
2011.	ACM.	

17.	 Yoo,	A.B.,	M.A.	Jette,	and	M.	Grondona.	Slurm:	Simple	linux	utility	for	resource	management.	in	
Workshop	on	Job	Scheduling	Strategies	for	Parallel	Processing.	2003.	Springer.	

18.	 Toosi,	A.N.	and	R.	Buyya.	A	Fuzzy	Logic-based	Controller	for	Cost	and	Energy	Efficient	Load	
Balancing	in	Geo-Distributed	Data	Centers.	in	Utility	and	Cloud	Computing	(UCC),	2015	IEEE/ACM	
8th	International	Conference	on.	2015.	IEEE.	

19.	 York,	K.,	The	Internet	is	the	single	biggest	thing	we’re	going	to	build	as	a	species.	2016:	Twitter.	
20.	 Drake,	N.,	Cloud	computing	beckons	scientists.	Nature,	2014.	
21.	 Drake,	N.,	How	to	catch	a	cloud.	Nature,	2015.	522(7554).	
22.	 What	is	Energy?		;	Available	from:	http://www.conserve-energy-future.com.	
23.	 Panwar,	N.,	S.	Kaushik,	and	S.	Kothari,	Role	of	renewable	energy	sources	in	environmental	

protection:	a	review.	Renewable	and	Sustainable	Energy	Reviews,	2011.	15(3):	p.	1513-1524.	
24.	 contributors,	W.,	Renewable	energy,	in	Wikipedia,	The	Free	Encyclopedia.	2017,	Wikipedia,	The	Free	

Encyclopedia.	
25.	 Rozenblat,	L.,	YOUR	GUIDE	TO	RENEWABLE	ENERGY	2017.	
26.	 Ltd.,	G.R.E.,	Global	Map	of	Incentives	for	Renewable	Energy.	2013.	
27.	 Lewis,	J.I.,	The	evolving	role	of	carbon	finance	in	promoting	renewable	energy	development	in	China.	

Energy	Policy,	2010.	38(6):	p.	2875-2886.	
28.	 Frondel,	M.,	et	al.,	Economic	impacts	from	the	promotion	of	renewable	energy	technologies:	The	

German	experience.	Energy	Policy,	2010.	38(8):	p.	4048-4056.	
29.	 Shaikh,	P.H.,	et	al.,	Building	energy	for	sustainable	development	in	Malaysia:	A	review.	Renewable	

and	Sustainable	Energy	Reviews,	2017.	75:	p.	1392-1403.	
30.	 DSIRE:	Database	of	State	Incentives	for	Renewables	&	Efficiency.	
31.	 Green	Web	Hosting	Companies.	https://www.sustainablebusinesstoolkit.com/best-green-web-

hosting/	
32.	 Power	&	Energy	Technology	Report.	2011.	https://technology.ihs.com/Research-by-

Market/450473/power-energy-technology	
33.	 A	UK’s	government	initiative	-	Carbon	Reduction	Commitment.	
34.	 Goiri,	Í.,	et	al.	Greenslot:	scheduling	energy	consumption	in	green	datacenters.	in	Proceedings	of	2011	

International	Conference	for	High	Performance	Computing,	Networking,	Storage	and	Analysis.	2011.	
ACM.	

35.	 Toosi,	A.N.,	et	al.,	Renewable-aware	geographical	load	balancing	of	web	applications	for	sustainable	
data	centers.	Journal	of	Network	and	Computer	Applications,	2017.	83:	p.	155-168.	

36.	 What	is	flexible	pricing?	https://www.agl.com.au/residential/help-and-support/flexible-pricing	
37.	 Energy	&	Gas	Prices.	https://www.energyaustralia.com.au/home/electricity-and-gas/plans	

	 49	

38.	 Minitab.	http://www.minitab.com/en-us/	
	

