

Algorithms and Software Systems for Resource Management in Clouds

Adel Nadjaran Toosi

Faculty of Information Technology

Monash University

Email: adel.n.toosi@monash.edu
Homepage: http://adelnadjarantoosi.info

Adel Nadjaran Toosi Slide 1/37

Outline

- Brief Biography
- Geographical Load Balancing (GLB)
- Resource Provisioning for Data-intensive Applications on Hybrid Clouds
- A Low-Cost Micro Data Center for Software-Defined Cloud Computing
- Summary

Adel Nadjaran Toosi Slide 2/37

Biography and Research Overview

- > PhD, University of Melbourne, 2010-2014
 - Thesis: "On the Economics of Infrastructure as a Service Cloud Providers: Pricing, Markets, and Profit Maximisation"
- Postdoctoral Research Fellow, University of Melbourne, 2014-2018
 - Renewable Energy, Data intensive application Scheduling, Software-defined Clouds
- > Lecturer, Faculty of Information Technology, Monash University, May 2018
- Research Interests
 - Distributed Systems, Cloud Computing, Software-Defined Networking (SDN) and Network Function Virtualization (NFV), Energy Efficiency and Green Computing, Soft Computing
- Publications
 - 29 publications, 17 Journal Articles (11 A/A* ERA Ranking, ACM CSUR, TCC, JCNA, FGCS, TAAS), 11 Conference papers (CloudCom, UCC, HPCC), 1 Book Chapter,
 - o h-index: **16** and **1200+** citations (SRC: Google Scholar)

Adel Nadjaran Toosi Slide 3/37

Geographical Load Balancing for Web Applications

Adel Nadjaran Toosi Slide 4/37

Cloud Computing

- $a\ https://www.lifewire.com/how-many-emails-are-sent-every-day-1171210$
- b http://www.internetlivestats.com/twitter-statistics/
- c http://www.statisticbrain.com/google-searches/
- $d\ https://www.inc.com/tom-popomaronis/amazon-just-eclipsed-records-selling-over-600-items-per-second.html$
- e https://www.brandwatch.com/blog/47-facebook-statistics-2016/
- f http://www.billboard.com/biz/articles/news/1538108/itunes-crosses-25-billion-songs-sold-now-sells-21-million-songs-a-day

Adel Nadjaran Toosi Slide 5/37

Power Hungry Clouds

- Cloud data centres consume large amounts of electricity
 - High operational cost for the cloud providers
 - High carbon footprint on the environment
- US Data Centres
 - 70 billion kilowatt-hours of electricity in 2014
 - = Two-year power consumption of all households in New York
 - = The amount consumed by about 6.4 million average American homes that year
 - Projected nearly 50 million tons of carbon pollution per annum in 2020.
 - Source: US Natural Resources Defense Council (NRDC)

Renewable Energy and Challenges

Cloud providers aims

- Reduce energy consumption
- Abate dependence on brown energy

Renewable energy

Google, Microsoft and Amazon

> Challenges:

- Non-dispatchable, Intermittent and Unpredictable
- Powering data centres entirely with renewable energy sources is difficult

Mixed sources of energy for data centres:

- Grid power or brown energy
- Renewable energy sources or green energy

Challenges:

- Minimising brown energy usage
- Maximising renewable energy utilisation

Source: https://aws.amazon.com/about-aws/sustainability/

Adel Nadjaran Toosi Slide 7/37

Geographical Load Balancing (GLB)

- Geographical load balancing (GLB) potentials:
 - Follow-the-renewables
- GLB approach benefits cloud providers but it raises an interesting, and challenging question:

"With limited or even **no a priori knowledge** of the future workload and **Dynamic** and **unpredictable** nature of renewable energy sources, how to optimise the **overall renewable energy use** and **cost**?"

Adel Nadjaran Toosi Slide 8/37

System Architecture for Web Applications

Adel Nadjaran Toosi Slide 9/37

Grid'5000 Testbed

Adel Nadjaran Toosi Slide 10/37

Workload Traces

Wikipedia

Adel Nadjaran Toosi Slide 11/37

A Prototype System

Adel Nadjaran Toosi Slide 12/37

Renewable Power and Electricity Prices

Adel Nadjaran Toosi Slide 13/37

Results

Adel Nadjaran Toosi Slide 14/37

Results

Site	Metric	RR	Capping	GreenLB
Lyon	Power Consumption (kWh)	36.3	42.9	41.2
	Brown Consumption (kWh)	13.3	19.0	16.9
	Cost (€)	1.71	2.31	2.01
Reims	Power Consumption (kWh)	32.5	Brown Energy: 17% and 7% Cost Saving:	
	Brown Consumption (kWh)	2.1		
	Cost (€)	0.42		
Rennes	Power Consumption (kWh)	36.4	22% and 8%	
	Brown Consumption (kWh)	9.3	2.9	
	Cost (€)	1.23	0.39	0.35
Total	Power Consumption (kWh)	105	105	105
	Brown Consumption (kWh)	25.7	23.0	21.4
	Cost (€)	3.36	2.85	2.63

Adel Nadjaran Toosi Slide 15/37

Resource Provisioning for Data-intensive Applications

on Hybrid Clouds

Adel Nadjaran Toosi Slide 16/37

Background

- Data-intensive applications
 - Analysis of large datasets
 - Explosive growth of data
 - Smart cities, Social networks, Internet of Things (IoT), ...
- Cloud computing
 - Preferred platform
- Common Scenario
 - Data is available in local IT infrastructure with limited processing capacity
- Cloud bursting
 - Hybrid Cloud (PaaS, Middleware)

Adel Nadjaran Toosi Slide 17/37

Scheduling Problem

- Locality
 - Location of the data relative to the available computational resources
- Network bandwidth
 - Can become the bottleneck
- Data transfer
 - Not ideal to move the entire data set to the public cloud
- Data-intensive application
 - Data transfer time to the external cloud is often comparable to the computational time

Adel Nadjaran Toosi Slide 18/37

Our Contribution

- Data-aware provisioning and Scheduling algorithm
 - Minimising cost while meeting the deadline requirements of applications
 - Hybrid cloud environments.
 - Data transfer time, available bandwidth, locality
- Plugged into PaaS
 - Aneka platform
 - Support dynamic resource provisioning for Microsoft Azure
- > Experiments in actual hybrid cloud environment
 - Local resources and Azure virtual machines
 - Compared with existing approaches
 - A real-world case study
 - A data-intensive application in the smart cities context

Adel Nadjaran Toosi Slide 19/37

Aneka

Adel Nadjaran Toosi Slide 20/37

Walkability Index - Melbourne Neighbourhoods

Adel Nadjaran Toosi Slide 21/37

Hybrid Cloud Testbed

Adel Nadjaran Toosi Slide 22/37

Some Experimental Results

Adel Nadjaran Toosi Slide 23/37

A Low-Cost Micro Data Center for SoftwareDefined Cloud Computing

Adel Nadjaran Toosi Slide 24/37

Software-Defined Networking

- Separation of control plane from data forwarding plane
- Platform is decoupled from infrastructure
- Centralized controller, network-wide control by controller SW that performs routing and traffic engineering

Traditional Networking Control Plane Data Forwarding Plane Software-Defined Networking Controller Software Protocol

Adel Nadjaran Toosi

Credit: Jungmin Son

Slide 25/37

Network Function Virtualization (NFV)

- Migration of network functions to the software layer
 - Firewalls, Network Address Translation (NAT), Intrusion Detection
 Systems (IDS)
- Virtualized Network Function (VNF)
 - deployable elements of NFV
- Enables better interoperability of equipment and more advanced network functions

Adel Nadjaran Toosi Slide 26/37

Software-defined clouds

- Virtualization in networking
 - Software-defined networking (SDN) and Network Functions Virtualization (NFV).
- Software-defined Cloud Computing (SDC)
 - Extending the concept of virtualization to all resources
 - compute, storage, and network
- Evaluation and Experimentation
 - Complexity, scaling, accuracy, and efficiency.
- A low-cost experimental testbed/infrastructure
 - Conducting practical research in the domain of software defined clouds.

Adel Nadjaran Toosi Slide 27/37

CLOUDS-Pi

- Our recipe for constructing a platform for conducting empirical research in SDCs
 - Easily Repeatable
 - Low-cost (reusing existing servers and Raspberry Pis)
 - Open Source Software
- Hardware
 - Small scale cloud datacenters (9 physical servers, Fat-tree network)
 - Raspberry Pis as SDN Switches
 - Managed enclosure Power Distribution Units (ePDUs)
- Software
 - OpenStack
 - OpenDaylight (ODL)
 - Open vSwitch

Adel Nadjaran Toosi Slide 28/37

Hardware

Machine	CPU	Cores	Memory	Storage
3 x IBM X3500 M4	Intel(R) Xeon(R) E5-2620 @ 2.00GHz	12	64GB (4 x 16GB DDR3 1333MHz)	2.9TB
4 x IBM X3200 M3	Intel(R) Xeon(R) X3460 @ 2.80GHz	4	16GB (4 x 4GB DDR3 1333MHz)	199GB
2 x Dell OptiPlex 990	Intel(R) Core(TM) i7-2600 @ 3.40GHz	4	8GB (2 x 4GB DDR3 1333MHz)	399GB

Eaton Managed Enclosure Power Distribution Units (ePDUs)

USB 2.0 to 100Mbps Ethernet adapters

Raspberry Pis (Pi 3 MODEL B)

Adel Nadjaran Toosi Slide 29/37

System Architecture

Adel Nadjaran Toosi Slide 30/37

More Photos

Adel Nadjaran Toosi Slide 31/37

Dynamic Flow Scheduling for Virtual Machine Migration

"Is it possible to reduce live VM migration time and overhead by dynamically scheduling flows in a cloud data center with multiple paths available between a given pair of physical hosts?"

Adel Nadjaran Toosi Slide 32/37

Acinonyx: Proposed Algorithm

- When multiple shortest paths are available between the source and destination
 - As long as the VM migration is in progress it exploit residual bandwidth on multiple available paths
 - Redirect the live VM migration traffic on a path with the lowest load
 - Find a path that has the highest residual bandwidth on its most utilized link
 - Push appropriate flow rules into the switches to redirect traffic

Adel Nadjaran Toosi Slide 33/37

Some Results

Metric	Static Routing	Acinonyx
Migration Time (s)	287	256
Average Throughput (Mbs)	32.0	34.4

Migration time for two simultaneous migrations when Static and Acinonyx flow scheduling are used.

Adel Nadjaran Toosi Slide 34/37

Summary

- Cloud computing is a critical building block of many ICT applications.
- Geographical load balancing for maximization of renewable energy usage.
 - Real traces of web requests for English Wikipedia
 - Meteorological data in the location of each data centre to model solar and wind power generation
 - Uses 17% less brown energy and saves cost by almost 22% in comparison to round robin policy.

Adel Nadjaran Toosi Slide 35/37

Summary

- Deadline-aware Scheduling and Resource Provisioning Method for Data-intensive Applications on Hybrid Clouds
 - The proposed method is able to meet strict deadlines for a sample data-intensive application to measure the walkability index
 - It minimizes cost and the total number launched instances compared to other existing algorithms.
- Recipe for constructing an economical testbed for Software Defined Clouds and conducting practical experiment
 - Dynamic flow scheduling algorithm for live VM migration
 - Migration time is reduced by 12% and network throughput is increased by 7%.

Adel Nadjaran Toosi Slide 36/37

THANK YOU Questions?

Adel Nadjaran Toosi Slide 37/37