

Geographical Load Balancing for Sustainable Cloud Data Centres

Adel Nadjaran Toosi

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems The University of Melbourne, Australia

Email: anadjaran@unimelb.edu.au

Homepage: http://www.cloudbus.org/~adel/

Adel Nadjaran Toosi Slide 1/22

Outline

- Brief Biography
- Backgrounds
- Geographical Load Balancing (GLB)
- Optimal offline algorithm and its intractability
- A GLB framework for web applications
- Results and Performance Evaluation
- Summary and future directions

Adel Nadjaran Toosi Slide 2/22

Biography and Dassarch Overview

- ➤ PhD, I
 - o T
- Postd
 - 0
 - 1.
 - 2.
 - 3.
- Resear
 - 0
 - 0
- > Publi

cing, Markets,

esent

npleted]

) and Network

Computing

uting and

- 27 publications, 15 Journal Articles (11 A/A* ERA Ranking, ACM CSUR, TCC, JCNA, FGCS, TAAS), 11 Conference papers (CloudCom, UCC, HPCC), 1 Book Chapter,
- o h-index: **15** and **1200+** citations (SRC: Google Scholar)

Adel Nadjaran Toosi Slide 3/22

Cloud Computing

 $a\ https://www.lifewire.com/how-many-emails-are-sent-every-day-1171210$

b http://www.internetlivestats.com/twitter-statistics/

c http://www.statisticbrain.com/google-searches/

 $d\ https://www.inc.com/tom-popomaronis/amazon-just-eclipsed-records-selling-over-600-items-per-second.html$

e https://www.brandwatch.com/blog/47-facebook-statistics-2016/

 $f\ http://www.billboard.com/biz/articles/news/1538108/itunes-crosses-25-billion-songs-sold-now-sells-21-million-songs-a-day$

Adel Nadjaran Toosi Slide 4/22

Power Hungry Clouds

- Cloud data centres consume large amounts of electricity
 - High operational cost for the cloud providers
 - High carbon footprint on the environment
- US Data Centres
 - 70 billion kilowatt-hours of electricity In 2014
 - = Two-year power consumption of all households in New York
 - = The amount consumed by about 6.4 million average American homes that year
 - Projected nearly 50 million tons of carbon pollution per annum in 2020.
 - Source: US Natural Resources Defense Council (NRDC)

Renewable Energy

Cloud providers aims

- Reducing energy consumption
- Dependence on brown energy

Renewable energy

- On-site green power generation
- Google, Microsoft and Amazon

"Amazon Web Services (AWS) has built a wind farm in 2017 and exceeded the goal of 50% electrical usage from renewable energy sources"

Not only Data Centres

- Monash Net Zero Project, The University of Melbourne's Sustainability Plan
- Bitcoin Mining

Source: https://aws.amazon.com/about-aws/sustainability/

Adel Nadjaran Toosi Slide 6/22

Challenges

Non-dispatchable, Intermittent and Unpredictable

- Renewable energy sources (Wind and Solar)
- Powering data centres entirely with renewable energy sources is difficult

Mixed sources of energy for data centres:

- Grid power or brown energy
- Renewable energy sources or green energy

> Challenges:

- Minimising brown energy usage
- Maximising renewable energy utilisation

Adel Nadjaran Toosi Slide 7/22

Geographical Load Balancing (GLB)

- Geographical load balancing (GLB) potentials:
 - Follow-the-renewables
- GLB approach benefits cloud providers but it raises an interesting, and challenging question:

"With limited or even **no a priori knowledge** of the future workload and **Dynamic** and **unpredictable** nature of renewable energy sources, how to optimise the **overall renewable energy use** and **cost**?"

Adel Nadjaran Toosi Slide 8/22

Example: Offline GLB Problem

Adel Nadjaran Toosi Slide 9/22

Optimal Offline Algorithm

- Assuming the following information is known for a time window:
 - Future knowledge of renewable energy availability
 - Workload (i.e., number of requests, arrival time, and duration of requests)
- We showed that the optimal strategy is computationally intractable
 - Exponential time complexity
 - Formal proof

Adel Nadjaran Toosi Slide 10/22

GLB for Web Applications

Adel Nadjaran Toosi Slide 11/22

Overall System Architecture

Adel Nadjaran Toosi Slide 12/22

Global Load Balancer (GreenLB)

Adel Nadjaran Toosi Slide 13/22

Grid'5000 Testbed

Adel Nadjaran Toosi Slide 14/22

Workload Traces

Wikipedia

Adel Nadjaran Toosi Slide 15/22

A Prototype System

Adel Nadjaran Toosi Slide 16/22

Renewable Power and Electricity Prices

Adel Nadjaran Toosi Slide 17/22

Results

Adel Nadjaran Toosi Slide 18/22

Results

Site	Metric	RR	Capping	GreenLB	
Lyon	Power Consumption (kWh)	36.3	42.9	41.2	
	Brown Consumption (kWh)	13.3	19.0	16.9	
	Cost (€)	1.71	2.31	2.01	
Reims	Power Consumption (kWh)	32.5			
	Brown Consumption (kWh)	2.1	Brown Energy: 17% and 7% Cost Saving: 22% and 8%		
	Cost (€)	0.42			
Rennes	Power Consumption (kWh)	36.4			
	Brown Consumption (kWh)	9.3	2.9	\setminus \sim	
	Cost (€)	1.23	0.39	0 5	
Total	Power Consumption (kWh)	105	105	105	
	Brown Consumption (kWh)	25.7	23.0	21.4	
	Cost (€)	3.36	2.85	2.63	

Adel Nadjaran Toosi Slide 19/22

Summary and Conclusion

- > A framework for cost and energy efficient load balancing
 - Distributes web application requests among multiple cloud data centres
- > A prototype and experimental studies in a real testbed
 - Real traces of web requests for English Wikipedia
 - Meteorological data in the location of each data centre to model solar and wind power generation
- Uses 17% less brown energy and saves cost by almost 22% in comparison to round robin policy.
- Reduces cost by 8%, Brown energy by 7% in comparison a method by a group of researchers from Rutgers and Princeton universities.
 - Linear Optimisation
 - Workload and Renewable Energy Prediction

Adel Nadjaran Toosi Slide 20/22

Future Works

> GLB for other types of workloads/applications

- Scientific workflows, Map-Reduce
- Web Sticky Sessions
- Demand response

Internet of Things (IoT)

- Healthcare, Smart Vehicles
- Edge and Fog Computing
- Sustainability and Reliability

Challenge

https://erpinnews.com/fog-computing-vs-edge-computing

- Shaping workload to match renewable power supply
 - Offloading IoT tasks to the core clouds
 - Trimming approximation analytics
 - Scheduling deferral tasks
 - Selective microservices power-off
 - Orchestration of network slices

Adel Nadjaran Toosi Slide 21/22

THANK YOU Questions?

Adel Nadjaran Toosi Slide 22/22

Results

CDF of average response time

Adel Nadjaran Toosi Slide 23/22