Introduction to Fuzzy Logic and Fuzzy Systems

Adel Nadjaran Toosi

Objectives

- What Is Fuzzy Logic?
- Fuzzy sets
- Membership function
- Differences between Fuzzy and Probability?
- Fuzzy Inference.
- Why Fuzzy Logic?

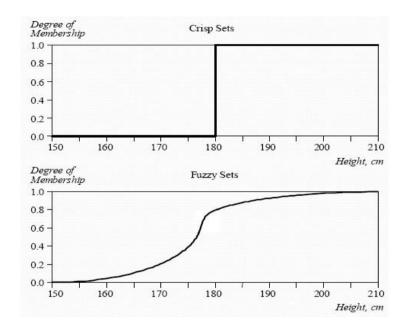
What Is Fuzzy Logic?

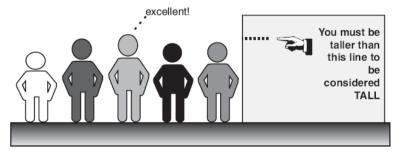
Theory of fuzzy sets

- Membership is a matter of degree.
- Fuzzy sets VS classical set theory.

Basic foundations of fuzzy sets

• Fuzzy sets (Zadeh, 1965), Fuzzy Logic (Zadeh, 1973)


Fuzzy


- Reflect how people think
- Attempts to model our sense of words decision making, and common sense.
- Mathematical principles for knowledge representation based on degrees of membership rather than on crisp membership of classical binary logic.

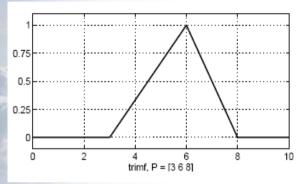
Fuzzy sets

- Accept that things can be partly true and partly false to any degree at the same time.
- Crisp and fuzzy sets of 'tall men'

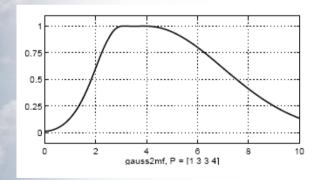
		Degree of Membership		
Name	Height, cm	Crisp	Fuzzy	
Chris	208	1	1.00	
Mark	205	1	1.00	
John	198	1	0.98	
Tom	181	1	0.82	
David	179	0	0.78	
Mike	172	0	0.24	
Bob	167	0	0.15	
Steven	158	0	0.06	
Bill	155	0	0.01	
Peter	152	0	0.00	

Membership function

- Crisp set representation
 - Characteristic function

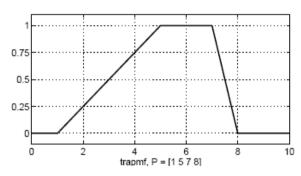

$$f_A(x): X \to 0, 1$$

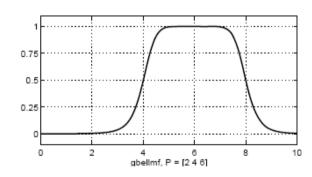
$$f_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$


- Fuzzy set representation
 - Membership function

$$\mu_A(x): X \to [0,1]$$

 $\mu_A(x) = 1 \text{ if } x \text{ is totally in } A;$
 $\mu_A(x) = 0 \text{ if } x \text{ is not in } A;$
 $0 < \mu_A(x) < 1 \text{ if } x \text{ is partly in } A.$


Well known Membership Functions

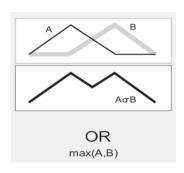

Triangular

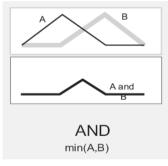
Gaussian

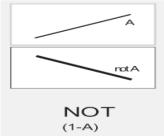
Trapezoidal

Bell

Fuzzy Vs Probability


- Fuzzy \neq Probability $\Rightarrow \mu_A(x) \neq p_A(x)$
- Both map x to a value in [0,1].
- $P_A(x)$ measures our knowledge or ignorance of the truth of the event that x belongs to the set A.
 - Probability deals with uncertainty and likelihood.
- μA(x) measures the degree of belongingness of x to set A and there is no interest regarding the uncertainty behind the outcome of the event x. Event x has occurred and we are interested in only making observations regarding the degree to which x belongs to A.
 - Fuzzy logic deals with ambiguity and vagueness.


Example


- A bottle of water
- 50% probability of being poisonous means 50% chance.
 - 50% water is clean.
 - 50% water is poisonous.
- 50% fuzzy membership of poisonous means that the water has poison.
 - Water is half poisonous.

Fuzzy Logic Operations

- Fuzzy union operation or fuzzy OR
 - $\mu_{A+B} = max[\mu_A(x), \mu_B(x)]$
- Fuzzy intersection operation or fuzzy And
 - $\mu_{A,B} = min[\mu_A(x), \mu_B(x)]$
- Complement operation
 - $\bullet \qquad \mu_{\mathbf{A}} = 1 \mu_{\mathbf{A}}(\mathbf{x})$

Linguistic variables and hedges

- Wind is a little strong.
- Weather is *quite* cold.
- Height is almost tall.
- Weight is very high.
- Wind, Weather, Height and Weight are linguistic variables.
- A little, Quite, Almost, Very are hedges.
- Strong, Cold, Tall and high are linguistic value.

Example

Membership of body fitness

Hedge	Mathematical Expression	Graphical Representation
Very very	$\left[\mu_A(x)\right]^4$	
More or less	$\sqrt{\mu_A(x)}$	

Fuzzy Inference

• Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic.

• If then rules

• if temperature is cold then hot water valve is open and cold water valve is shut

Rule Base

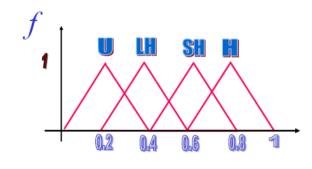
- If the distance to intersection (dti) is far and the speed slow apply gentle breaks
- If dti is near and the speed slow apply medium breaks
- If dti is far and speed fast apply medium breaks
- If dti is near and speed fast apply high breaks

Fuzzy Inference

- Assume we want to evaluate the health of a person based on his height and weight.
- The input variables are the crisp numbers of the person's height and weight.
- Output is percentage of healthiness.

Step 1: Fuzzification

• Fuzzification is a process by which the numbers are changes into linguistic words.



Step 2: Rules

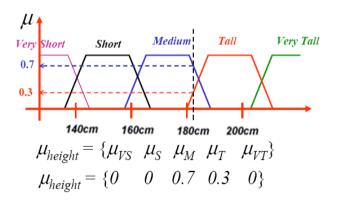
- Rules reflect experts decisions.
- Rules are tabulated as fuzzy words
- Rules can be grouped in subsets
- Rules can be redundant
- Rules can be adjusted to match desired

Rules(Cont.)

- Rules are tabulated as fuzzy words
 - Healthy (H)
 - Somewhat healthy (SH)
 - Less Healthy (LH)
 - Unhealthy (U)
 - Rule function *f*
- $f = \{U, LH, SH, H\}$

 $f = \{U, LH, SH, H\}$

Fuzzy Rule Table


Weight						
		Very Slim	Slim	Medium	Heavy	Very Heavy
<u> </u>	Very Short	Н	SH	LH	U	U
Height	Short	SH	Н	SH	LH	U
H	Medium	LH	Н	Н	LH	U
	Tall	U	SH	Н	SH	U
	Very Tall	U	LH	Н	SH	LH

Step 3: Calculation

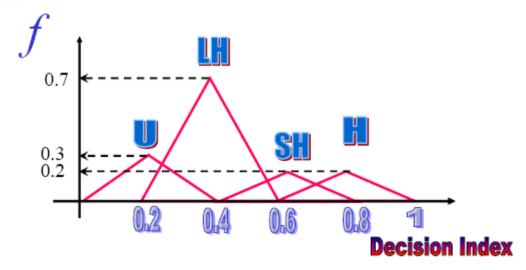
- For a given person, compute the membership of his/her weight and height
- Assume that a person height is 185cm
- Assume that the person's weight is 49

Membership of Weight $\mu_{Very Slim} \qquad Slim \qquad Medium \qquad Heavy \qquad Very Heavy$ $0.8 \qquad 0.2 \qquad 0$

Membership of Height

Calculation(cont.)

Rule Activation

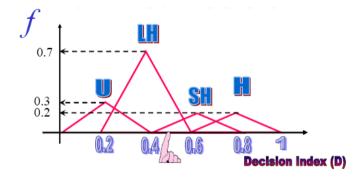

Min Operation

Weight						
		8.0	0.2	Medium	Heavy	Very Heavy
<u>+</u>	Very Short	Н	SH	LH	U	U
Height	Short	SH	Н	SH	LH	U
H	0.7	LH	н	Н	LH	U
	0.3	U	SH	Н	SH	U
	Very Tall	U	LH	Н	SH	LH

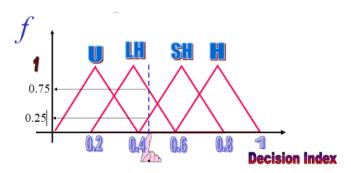
Weight						
		0.8	0.2	Medium (0)	Heavy (0)	V.Heavy (0)
ıt	V. Short (0)	0	0	0	0	0
Height	Short (0)	0	0	0	0	0
H	0.7_	• 0.7 ^{\(\frac{1}{2}\)}	0.2	0	0	0
	0.3	0.3	$\overrightarrow{0.2}$	0	0	0
	V. Tall (0)	0	0	0	0	0

Calculation(cont.)

Scaled Fuzzified Decision



 $f = \{U, LH, SH, H\}$


 $f = \{0.3, 0.7, 0.2, 0.2\}$

Step 4: Final Decision

Defuzzification

Crisp Decision Index (D) is the centroid D = 0.4429

Fuzzy Decision Index (D)
75% in Less Healthy group

25% in Somewhat Healthy group

Why Fuzzy Logic?

- Fuzzy logic is conceptually easy to understand.
- Fuzzy logic is flexible.
- Fuzzy logic is tolerant of imprecise data.
- Fuzzy logic can model nonlinear functions of arbitrary complexity.
- Fuzzy logic can be built on top of the experience of experts.
- Fuzzy logic is based on natural language.
- Fuzzy logic can be blended with conventional control techniques.

THANK YOU Questions?