

Cloud Computing and Cloud Networking

Dr. Adel Nadjaran Toosi

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems The University of Melbourne, Australia

> Email: anadjaran@unimelb.edu.au Homepage: https://adelnadjarantoosi.info/

Biography

- Research Fellow, *University of Melbourne*, 2015-2018
- I am joining *Monash University* as a Lecturer in May 2018.
- PhD, Computer Science and Software Engineering, 2010-2014
 - CLOUDS lab, Computing and Information Systems, University of Melbourne
 - Thesis: "On the Economics of Infrastructure as a Service Cloud Providers: Pricing, Markets, and Profit Maximization"

■ Research Interests

- Cloud Computing, Software-Defined Networking (SDN), Energy Efficiency and Green Computing, Soft Computing and Machine Learning
- Focused on Resource Provisioning and Scheduling in Distributed Systems

Current Research

 Traffic engineering for energy efficient consolidation of virtual machines in SDNenabled clouds

Agenda

- What is cloud computing?
- Inside a cloud data centre
- Cloud networking
- Demo
- Conclusion

What is cloud computing?

- An IT paradigm that enables access to shared pools of configurable system resources in form of services that can be rapidly provisioned with minimal management effort, often over the Internet.
 - Allowing businesses to outsource their IT facilities to cloud providers
 - Avoid expensive up-front investments of establishing their own infrastructure

Essential characteristics

On-demand delivery of IT services

 Get more (or less) resources when you want, without interacting with other people

Broad network access

Everything happens via the Internet

Resource pooling

 Huge amount of resources that are assigned to different users at different times

Rapid elasticity

Get more (or less) resources in seconds

Measured service

- Long-held dream of computing as a utility
- Customers pay for what they use

Why Clouds?

- Classical Computing
 - Buy & Own
 - Hardware,
 - System Software,
 - Applications often to meet peak needs.
 - Install, Configure, Test,
 Verify
 - Manage
 - ..
 - Finally, use it
 - \$\$\$\$....\$(High CapEx)

- Cloud Computing
 - Subscribe
 - Use
 - Automation and reusable components

 Pay for what you use, no upfront investment

Cloud Services

Infrastructure as a Service

- Choose number of virtual machines, operating system, memory, cores, and storage
- Install and configure all the software you want, as if it was a new server you just bought
- Don't worry in finding where to put the servers, in installing air cons and fixing the hardware when it breaks

Platform as a Service

- Develop an app, and submit the code to the cloud, which deploys it
- Don't worry about configuring Apache, Tomcat, Memcache, etc.
- Don't worry in growing the infrastructure if your app becomes popular

Software as a Service

- Just use the application on line
- Don't worry buying a license, installing, configuring, and updating the apps

Deployment Models

Popular Cases

Public Cloud Providers

Aggregators

Users

- Netflix (uses AWS)
- Snapchat (uses Google)
- Dropbox (used to be using AWS)
- AccuWeather (uses Azure)

NETFLIX

Inside a cloud data centre

http://bcsocialcredit.com/server-schrank/tolle-server-schrank-cropped-serverschrank/

More...

Cloud networking

- Massive size: tens of thousands of hosts + thousands of switches
- Specialized hardware (middleboxes) implementing networking functions
 - NAT, load balancing, WAN optimization, firewall...
- Specialized communication protocols for top tiers
- Communication patterns between hosts change frequently

Software-Defined Networking

- Separation of control plane from data forwarding plane
- Platform is decoupled from infrastructure
- Centralized controller, network-wide control by controller SW that performs routing and traffic engineering

Control Plane Data Forwarding Plane Credit: Jungmin Son

Controller Software Protocol

Software-Defined Networking

Benefits

- Enables dynamic configuration of networking
- Real-time responsiveness to traffic demands
- Programmable network
- Load balancing by network
- Open opportunities for innovation
- OpenFlow
 - De facto standard interface for SDN controllers
 - Describes an open interaction protocol in SDN that allows the controller to communicate with the forwarding plane

Network Function Virtualization (NFV)

- Migration of network functions to the software layer
- Enables better interoperability of equipments and more advanced network functions
- Virtualized Network Function (VNF)
 - deployable elements of NFV

Cloud Computing in 5 minutes

https://www.youtube.com/watch?v=QJncFirhjPg

Demo

Nectar Cloud

provides cloud computing services to Australian researchers

■ Virtual Machine

- is an operating system (OS) or application environment that is installed on software, which imitates dedicated hardware.
- The end user has the same experience on a virtual machine as they would have on dedicated hardware.

■ Web Server

Conclusion

- New business model for ICT services
- The core of the cloud are data centres with thousands of hosts and network devices
- Advances in the technology are enabling software-defined networks and virtualization of networking functions

THANK YOU Questions?