
Container Orchestration
in Heterogeneous Edge Computing
Environments

Daghash K. Alqahtani and Adel N. Toosi

Abstract The emerging latency-sensitive applications and Internet of Things tech-
nology have resulted in the development of Edge computing. Therefore, improving
Quality-of-Service (QoS) requirements such as response time is a fundamental goal
in Edge environments. However, as edge devices are heterogeneous and resource-
constrained, placing replicas of software containers in these environments is not a
trivial task. Yet, the scheduler of well-known container orchestration tools such as
Kubernetes places pods in nodes by only considering available resources (CPU, mem-
ory, etc.). Our study aims to minimize application latency by optimizing resource
allocation through efficient scheduling. We customize the Kubernetes scheduler to
assign pods to nodes with the least response time and integrate it with a customized
autoscaler to scale up/down replicas. We evaluate our algorithm on a small-scale
cluster with two types of deployments (web and object detection services), and eval-
uation results show better response time and throughput than the default scheduler.

Keywords Edge computing · Latency · Kubernetes · Scheduling · Replicas

1 Introduction

The term “containerization” refers to a method of developing software in which a
single “container image” contains an application or service, all its required dependen-
cies, and its configuration (represented abstractedly in deployment manifest files).
The containerized software may then be individually tested and deployed to the host
OS as an instance of the container image. Containers are a standard unit of software
deployment that may include varied code and dependencies, like shipping containers
that enable items to be delivered by ship, rail, or truck independent of the contents

D. K. Alqahtani (B) · A. N. Toosi
Monash University, Melbourne, Australia
e-mail: daghash.Alqahtani@monash.edu

A. N. Toosi
e-mail: adel.n.toosi@monash.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Mukherjee et al. (eds.), Resource Management in Distributed Systems, Studies in Big
Data 151, https://doi.org/10.1007/978-981-97-2644-8_8

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-2644-8_8&domain=pdf
http://orcid.org/0009-0001-5309-6996
http://orcid.org/0000-0001-5655-5337
daghash.Alqahtani@monash.edu%0A%2520854%252053672%2520a%2520854%252053672%2520a%0A%2520
mailto:daghash.Alqahtani@monash.edu
adel.n.toosi@monash.edu%0A%2520854%252056550%2520a%2520854%252056550%0Aa%0A%2520
mailto:adel.n.toosi@monash.edu
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8
https://doi.org/10.1007/978-981-97-2644-8_8

152 D. K. Alqahtani and A. N. Toosi

within. Programmers and system administrators may efficiently distribute applica-
tions to other platforms with few changes by packaging applications in containers.
In the same way, containers partition applications running on the same OS. Con-
tainerized applications are deployed to and executed by a container host, which is
deployed to and managed by the operating system (Linux or Windows). This means
that container images need far less space than VM images [3].

Kubernetes becomes a de facto tool to orchestrate containers in scale clusters.
Famous companies and organizations adopt Kubernetes to manage and maintain
their services, such as Amazon, Alibaba, and IBM. This is because it is open source
and compatible with large clusters which consist of hundreds or thousands of devices.
Kubernetes scheduler is responsible for assigning coming workloads to the ideal node
among other nodes in a group. The default scheduler considers consistently placing a
pod to a node with the most available resources (CPU and memory). Kubernetes was
invented for cloud computing, and many works have been created to optimize it for
edge and fog computing. The main goal of these works is customizing the scheduler
to be aligned with their purposes.

At the same time, the tremendous rise and increased computational capability of
IoT devices have resulted in previously unheard-of data quantities. Also, volumes of
data will keep rising as the number of mobile devices linked to 5G networks increases.
At the same time, the promise of cloud and AI was to automate and accelerate innova-
tion by generating actionable insights from data. However, the extraordinary volume
and complexity of data generated by connected devices have exceeded network and
infrastructure capacities. By 2025, [17] predicts that 75% of all data will be handled
outside the conventional data centre or on the cloud. Bandwidth and latency prob-
lems emerge when all this data is sent from disparate devices to a single location in
a data centre or the cloud. Data can be processed and analysed much more quickly
since it is done much closer to the creation site using edge computing. There is far
less delay when processing data locally than sending it over the network to a cloud or
data centre. Edge computing makes faster and more thorough data analysis possible,
especially mobile edge computing on 5G networks, which may lead to more sig-
nificant insights, quicker reaction times, and enhanced consumer experiences. Edge
computing is defined by [17] as technologies that enable data processing at or near the
source of data production. In the context of the Internet of Things (IoT), for example,
the origins of data creation are often things with sensors or embedded devices. Edge
computing is a decentralized extension of campus networks, cell phone networks,
data centre networks, and cloud computing.

As one of the reasons the demand for releasing edge computing is latency, so
Kubernetes scheduler has been adjusted to achieve that. Many works attempt to
improve response time by placing pod to node, considering the delay between nodes.
However, the variety of devices in edge computing can result in different perfor-
mances. In other words, resource scheduling in heterogeneous edge computing has
not received adequate studies, so it must be investigated further. Our goals are cus-
tomizing the Kubernetes scheduler to improve response time and optimize resource
utilization in the heterogenous edge computing environment. We propose a schedul-
ing algorithm that considers the delay between nodes and the execution time of

Container Orchestration in Heterogeneous Edge Computing Environments 153

nodes in a heterogenous edge cluster for placing replicas and integrating Kubernetes
Event-Driven Autoscaler (KEDA) tool to scale up/down replicas when the number
of requests increases/decreases.

The proposed scheduler algorithm enables the clients to state the response time
constraint. Then, the nodes are filtered based on the latency threshold by comparing
the response time of each node with these constraints. First, our algorithm calculates
the delay between nodes and the execution time of the service in worker nodes. After
that, it excludes the nodes with a response time that violates the threshold latency.
Next, we sort nodes based on the latency value of nodes, then place the first replica
to a node with a minimum value. In addition, when replicas increase, the scheduler
places them in different nodes unless all the nodes become busy, then places a pod
in the same node with the first replica. In contrast, the pods that have lately been
created are terminated when replicas decrease.

We evaluate our scheduler in a small cluster and compare it with the default
scheduler. We utilize Kind to emulate a small real cluster which consists of one
master node and four worker nodes. The configuration of nodes has been customized
to mimic the heterogeneity of edge devices. Furthermore, we create Locust files to
stress the workloads and simulate multiple clients sending requests.

The key contributions of this paper are summarized as

• We provide a review of recent works on Kubernetes schedulers in edge computing
and discuss the gap in the knowledge.

• We design and implement our proposed scheduler to improve response time along-
side integrating it with an autoscaler to maximize resource utilization.

• We perform experiments to evaluate our proposed algorithm in an emulated setup
and compare it with Kubernetes default scheduler.

The rest of this paper is organized as follows: Sect. 2 introduces Kubernetes and
container autoscaling along with other related studies. Next, the system design and
proposed algorithm are presented in Sect. 3. After describing the evaluation environ-
ment in Sect. 4, the results are analysed in Sect. 5. Section 6 discusses the findings
and the work’s limitations. Finally, we conclude the work and suggest future works
in Sect. 7.

2 Background and Related Works

2.1 Kubernetes

Kubernetes is a sophisticated open-source technology created by Google that is used
to orchestrate containerized applications in a clustered environment. It strives to
improve the management of connected dispersed components and services across
various infrastructures. At its core, Kubernetes groups separate physical or virtual
computers into a cluster that communicates through a shared network. This cluster

154 D. K. Alqahtani and A. N. Toosi

serves as the physical substrate for all Kubernetes components, capabilities, and
workloads.

Each node in the cluster is assigned a role in the Kubernetes ecosystem. The master
(control plane) node is one node (or a small group in highly available installations).
This node serves as the cluster’s gateway and brain, presenting an API to users and
clients, assessing the health of other nodes, choosing how to break up and allocate
work (known as “scheduling”), and organizing communication between different
components. The master node is the principal point of contact with the cluster and
is in charge of the majority of the centralized logic provided by Kubernetes. The
other workstations in the cluster are known as workers: nodes that accept and per-
form tasks utilizing local and external resources. Kubernetes runs applications and
services in containers to help with isolation, administration, and flexibility. Hence
each node must be equipped with a container runtime (like Docker). The node gets
work instructions from the master node and builds or destroys containers as needed,
modifying networking rules as needed to route and forward traffic [15].

Kubernetes’s control plane includes the Kube-scheduler, which is the platform’s
default scheduler. The Kube-scheduler framework was created so that you may
replace it with your custom scheduling mechanism if necessary. Kube-scheduler
picks a node for the pod in a two-step operation: Filtering and Scoring. As a result
of the filtering process, a list of nodes where it is possible to schedule the pod is
identified. For instance, the Pod Fits Resources filter determines whether a potential
node has enough resources to fulfil a pod’s requirements. As a result of this process,
the node list will include all relevant Nodes; in most cases, this will be more than one.
If there are no pods on the list, they cannot be scheduled at this time. In the scoring
stage, the scheduler rates the remaining nodes to find the optimal pod placement. The
nodes that made it through the scheduler’s filtering process are given scores based
on the currently applied scoring criteria. At last, the Kube-scheduler places the pod
on the best rated node. If there are many equally scored nodes, the Kube-scheduler
will choose one at random [14].

A pod is a single instance of a Kubernetes-running application. Containerized
applications are the workloads that you run on Kubernetes. Containers cannot be run
directly on Kubernetes as they can in a Docker environment. Instead, the container
is packaged into a Kubernetes object known as a pod. A pod is the smallest item
that Kubernetes can produce. A single pod may house a collection of one or more
containers. On the other hand, a pod does not often include numerous instances of
the same application. A pod contains information on shared network and storage
setup, as well as instructions for running its bundled containers. Pod templates are
used to describe information about the pods that run in a cluster. To handle pod
deployments, pod templates are YAML-coded files that can be reused and embedded
in other objects.

A replication controller employs pod templates and specifies the number of pods
that must execute. The controller makes it possible to run numerous instances of the
same pod and guarantees that pods are constantly operating on one or more cluster
nodes. If running pods fail, are removed, or are terminated, the controller replaces
them with fresh pods in this manner [15].

Container Orchestration in Heterogeneous Edge Computing Environments 155

2.2 Autoscaling

To automatically scale a workload in Kubernetes to meet demand, a Horizontal Pod
Autoscaler can change a workload resource (such as Deployment or StatefulSet).
With horizontal scalability, additional pods are added to handle the extra work as
demand rises. In contrast, when scaling vertically with Kubernetes, developers would
add other resources (such as memory or CPU) to the pods currently operating for
the task. Horizontal Pod Autoscaler directs the workload resource (the Deployment,
StatefulSet, or similar resource) to de-scale if the demand reduces and the number
of pods exceeds the defined minimum [13].

Kubernetes Event-Driven Autoscaling (KEDA) is a piece of software that helps
automate the scaling of applications. The KEDA’s event count may control any
Kubernetes container’s scalability. KEDA is a minimal, single-function component
that can be integrated into any existing Kubernetes environment. It is compatible with
the default Kubernetes components, such as the Horizontal Pod Autoscaler, and may
add new features without replacing or duplicating existing ones. In addition, KEDA
allows developers to selectively define which applications benefit from event-driven
scaling while leaving others unaffected. This ensures that KEDA can safely coexist
with any Kubernetes framework or application [10].

2.3 Related Works

Numerous Kubernetes-based studies have been performed to build optimized con-
tainer schedulers for various use case scenarios [1, 2, 4– 6, 8, 9, 16, 18, 20– 24, 26,
27]. Many of these require either the introduction of a custom scheduler or modifica-
tions to the existing scheduler. In this section, we review the literature on customizing
the Kubernetes scheduler and classify them based on some categories, as depicted in
Table 1. Various studies have focussed on reducing power consumption, optimizing
resource utilization, or improving quality of service, using different strategies such
as leveraging application states, resource metrics or network states. As a result, there
is no single optimal scheduler that can fulfill all use cases and circumstances. For
example, some papers place emphasis on reducing power consumption [16, 18, 22],
while many others aim to optimize resource utilization [1, 8, 9, 20, 21, 27]. Besides,
Kubernetes’ scheduler has been the subject of several QoS optimization research.
Many of these methods aim to satisfy the user’s need for fast response while main-
taining a reasonable latency. This is because fog and edge computing came into
existence due to recent years’ substantial breakthroughs and the widespread distri-
bution of apps and devices. Therefore, in this section, we will describe the related
work that emphasizes delay.

Network-aware scheduling (NAS) addition for Kubernetes is being proposed by
[23]. This extension offers up-to-date information on the latest characteristic of the
network infrastructure (bandwidth and latency). The paper proposes a network-aware

156 D. K. Alqahtani and A. N. Toosi

Table 1 Summary of related literature on scheduling strategies
Paper Objective Evaluation Heterogeneity Autoscaling Target

environment

[22] E Testbed Size & H No Cloud

[16] E Emulation Size No Cloud

[18] E Simulation No No Edge

[27] R Testbed Size No Edge

[20] R Testbed Size No Edge

[1] R Testbed No No Fog

[9] R Testbed No No Fog

[21] R Testbed Size &
CPU-GPU

No Edge

[8] R Testbed Size & H No Fog

[23] QoS Testbed Size No Fog

[4] QoS Testbed H No Fog

[2] QoS Testbed No No Edge

[6] QoS Testbed No No Edge

[26] QoS Testbed No No Edge

[24] QoS Testbed No No Cloud & Edge

[5] QoS Simulation &
Testbed

No Yes Fog

E: Energy Consumption, R: Resource utilization, QoS: Quality of Service, H: Hardware architecture

scheduling method for Smart City container-based apps, which makes resource allo-
cation choices based on the actual state of the network. First, the suggested NAS
analyses the pod configuration file to determine the optimal deployment site for a
service, taking into account the Round-Trip Time (RTT) labels set at key nodes. After
the filtering process is complete, the node selection is made based on the minimiza-
tion of the RTT depending on the service’s intended destination. In addition, NAS
uses the service’s bandwidth requirement label to determine whether the best can-
didate node has sufficient bandwidth to handle the service. Yet, this work is specific
for placing one pod, and it fails to consider the variety of edge nodes.

Eidenbenz et al. [4] present a fog layer architecture to handle the computation and
deployment of latency-aware industrial applications on top of Kubernetes. Conse-
quently, the fog layer automatically optimizes the allocation of resources and delivers
containerized applications across the networks of automation systems. Moreover, it
does so without actively altering Kubernetes, making it ideal for environments where
such changes would be undesirable. It is also superior to a vendor-specific solu-
tion since it is not limited by infrastructure and proprietary protocols. This article
describes a case study in which a generic latency-aware resource allocation method
was modified to be Kubernetes-compatible. To that purpose, they created K8S-GBA,
based on the Greedy Border Allocation (GBA) heuristic. However, this paper makes
no attempts to address autoscaling and the heterogeneity of fog nodes.

Container Orchestration in Heterogeneous Edge Computing Environments 157

To dynamically orchestrate Industrial IoT (IIoT) applications, [2] suggest consid-
ering environmental, functional, and network aspects in addition to software states.
They develop a method that gives the custom scheduler more responsiveness to exter-
nal factors and programmatic alterations. With 5G radio and connection installed
close to the IoT devices, a fully functional 5G and Edge computing network was
constructed. Following the notion of Edge Computing, all the LTE virtualized func-
tions are located on the same server rack as the Kubernetes cluster. They demonstrate
that the system can optimize workload distribution among nodes, taking into account
memory and CPU utilization and a wide range of network and infrastructure factors.
The approach speeds up application launches and cuts down on scheduling times
without sacrificing quality. The authors do not consider the diversity edge nodes and
their work is particular to deploying a single replica.

A topology-aware Kubernetes is required to enhance its popular feature set con-
cerning network latency since most delay-sensitive applications are to be deployed
on edge. Thus, Haja et al. [6] take the initiative to mould Kubernetes into a tool that
can be used with edge infrastructure. Furthermore, self-healing capabilities need
more attention than in the default Kubernetes since edge infrastructure is vulnera-
ble to failures and is thought to be costly to create and maintain. Considering the
need to meet both application delay restrictions and edge resilience, they developed
a customized Kubernetes scheduler. Their product is an add-on to Kubernetes that
monitors latency between individual nodes. Each node will release a measurement
pod, ping each other at regular intervals, and keep track of the round-trip timings.
The scheduler takes the collected data and creates a delay matrix, using the matrix to
assign node labels. Whereas this study aims to improve latency, it does not consider
optimization of resource utilization. Also, they do not consider the heterogeneity of
edge nodes.

To schedule pods in Kubernetes using the latest network measurements, [26]
create and deploy a tool called NetMARKS. This scheduler extender makes use of
data gathered by Service Mesh. In particular, they noted that there was room for
development in pod collocation. Findings showed that application response times
might be cut by as much as 30%, even for a modest pipeline consisting of just a few
services. Using Istio Service Mesh, they showed a new way to inform the Kubernetes
scheduler of dependencies between pods. The experimental findings demonstrate
that the Service Mesh may enhance pod placement by utilizing the data it collects,
leading to a decrease in application response time and conservation of inter-node
bandwidth. In contrast, this work is designed only for minimizing response time, yet
it is important to make the best use of resources. This is because edge devices are
limited in resources, and it is important to examine the heterogeneity of edge nodes.

A novel distributed system and orchestration called Geolocate is implemented for
hybrid Cloud and Edge computing in [24]. To achieve this, the scheduler must be
able to determine, for a particular data-processing task, which node is best suited
to handle the data coming from a specific data-producing system situated in a spec-
ified geographic region. In addition to enhancing network latency, data-processing
delay, and service response time, the chosen nodes should reduce the physical dis-
tance between data producers and consumers. Computational times, service response

158 D. K. Alqahtani and A. N. Toosi

times, and network performance all improve with Geolocate, and bandwidth uti-
lization is diminished, leading to higher throughput for applications under typical
cluster settings. Response times for all services is cut by up to 62% with Geolocate’s
algorithm which help simply by minimizing the lag time between the services that
generate and analyse data. Nevertheless, the paper does not study the variety of edge
environments and placing a set of replicas as well.

According to [5], Hona is a replica scheduler for applications that consider tail
latency, which is proposed as an addition to the Kubernetes container orchestration
platform. Hona relies on Kubernetes to keep a watch on the state of the system’s
resources, Vivaldi to calculate the ping times between nodes, and Proxymity to
check up on where the traffic is coming from and where it is going. After placing
the first duplicate, Hona employs several heuristics to effectively filter through all
the available choices for where to put the next one. Last but not least, it performs
proactive replacement tasks automatically when end-user demands are incredibly
different. However, the paper does not consider the execution time, which might
vary between the heterogenous cluster nodes, and it is designed for fog computing.
Also, the authors do not take into account the elastic provision resources.

3 System Design

This study aims to significantly minimize user-experienced latency by dynamically
selecting the location of edge application replicas in a heterogeneous edge computing
architecture. Also, we aim to optimize resource utilization by integrating Kubernetes
Event-Driven Autoscaling (KEDA) tool within our proposed scheduler. As Fig. 1
shows, developers or system managers submit the deployment file to the proposed
scheduler, where it is placed in the master node. Then, the scheduler assigns the
first pod to a node with the least response time. The following section explains in
detail how the proposed scheduler calculates the response time and places the initial
replica. After deploying the application, the system managers expose the deployment
to be accessed externally by configuring the Kubernetes service (Node Port). After
that, the number of maximum replicas, the number of target requests, and the service
name are specified in KEDA’s file. When the clients send requests to the system,
KEDA intercepts them for scale-up/down replicas based on the configuration file.
If KEDA increased replicas, our schedulers placed pods in different nodes without
violating threshold latency. However, when no request comes to the service, KEDA
decreases the replicas to the minimum number. Thus, the proposed scheduler deletes
the last pods created and keeps only the first pod live.

Container Orchestration in Heterogeneous Edge Computing Environments 159

Fig. 1 System’s Architecture Design

3.1 Replica Placement

Our scheduling method considers the latency between the nodes and execution time
to improve the response time and meet the user requirements. When deploying an
application, the scheduler ensures placing it in a node with the least response time.
Algorithm 1 presents that there are three inputs to the scheduler. Nodes: Kubernetes
manages everything about them, from the pods and their resources to the node they
run. Kubernetes’s etcd service allows us to access node’s data easily. Response time
threshold: The client provides the threshold latency for an application that needs to be
met when deploying the application. Profiling: The execution time of an application
for all the nodes in the cluster should be provided to the scheduler. This is because
the execution time of a service varies between nodes as the nodes are different in
their abilities.

The scheduler goes over all the nodes that have been provided as inputs and
measures the distance between the node and the master node where the scheduler
is placed. This happened by pinging the node and getting the value, and then the
scheduler calculates the predicted response time for that node by summing the dis-
tance value with execution time. In addition, our algorithm filters nodes that meet
the delay constraints and excludes nodes when the response time prediction does not
meet the latency threshold. After that, we label the nodes with key-value pairs of
the prediction response time that has been calculated. Before placing the first pod
of replicas, the scheduler sorts all the nodes based on the label and then binds the

160 D. K. Alqahtani and A. N. Toosi

pod to the node with the lowest predicted response time value. When the scheduler
receives the first pod, it assigns it to a node with a negligible response time value.

3.2 Autoscaling Replicas

We use KEDA to optimize resource utilization, which sometimes means when there
is no traffic coming to the service, there is no need to have multiple replicas. Thus, it
enables the cluster to have more available resources and can be utilized from another
deployment. KEDA works based on the events as it collects metrics from the database
and intercepts them, then scales the application when it reaches the target event. We
utilize KEDA to scale the replicas based on the number of HTTP requests. Therefore,
the KEDA uses Prometheus to monitor the Traffic and then scale-up or scale-down
the replicas. When the target number of requests is reached, our algorithm increases
the number of pods. When KEDA notifies the proposed scheduler to increase the
number of replicas, it places the pod in a node that is close to the first pod. This
is because we ensure a balance between nodes in the cluster and, simultaneously,
do not violate the response time constraints as Algorithm 1 depicts. As the number
of replicas increases, the scheduler assigns the pods to nodes in our cluster until
all the nodes have replicas (first round). Then goes again over the nodes and places
pods in the nodes that have available space (second round). The maximum number
of replicas should not exceed the number of nodes. This is to ensure our algorithm
works probably. When the target events decline, the autoscaler decreases the number
of replicas. As Algorithm 1 shows, our scheduler investigates the nodes and tries to
find a node with a pod with a minimum value of time creation. Then it unbinds that
pod which also has the maximum response time value, and the scheduler behaves like
this every time when KEDA scales down the replicas. When no requests are coming
to the service, KEDA scales the number of replicas down to a minimum of one replica
in our system’s design. This is because when putting the minimum number of replicas
to zero, the service would provide some latency to the first incoming requests due
to the starting-up time of the first pod [19]. Therefore, our scheduler terminates the
pods created lately and keeps only the first pod with the least response time.

4 Evaluation Environment and Experimental Setup

4.1 Testbed Configuration

We utilize Kind to build our Kubernetes cluster, because it enables us to run Kuber-
netes cluster on a local machine without needing a large infrastructure. Consequently,
we can emulate real cluster environment. According to [12], using Docker containers
as “nodes”, Kind facilitates the operation of local Kubernetes clusters. The primary

Container Orchestration in Heterogeneous Edge Computing Environments 161

Algorithm 1 Pseudo code for proposed scheduler
Require: nodes, responsetimethreshold, prof iling
1: for each node in nodes do
2: distance[nodes] = ping(node)
3: predictionresponse[node] = distance[node] + prof iling[node]
4: if prediction response [node] ≤ response time threshold then
5: group1 = add(node : predictionresponse[node])
6: end if
7: end for
8: if place 1st pod then
9: Function bind initial pod(group1):
10: score = min(group1)
11: Return score
12: else if increase replicas then
13: Function bind replicas(group1):
14: if all nodes in group1 contain same pod then
15: score = min(group1)
16: else
17: score = min(group1 − ignorenodesthathavesamepod)
18: end if
19: Return score
20: else if decrease replicas then
21: Function unbind replicas(group1):
22: remove = terminateslastpodwascreated
23: Return remove
24: end if

intent of kind is to test Kubernetes, although it may also be used for local develop-
ment and continuous integration. We build our configuration in Kind to create five
nodes: one master node and four worker nodes with their capacity, as Fig. 2 depicts.
The heterogeneous edge devices have been emulated in our setup regarding the size
of the CPU, memory [11]. We emulate the latency between nodes and the nodes
distributed over different places by using the control traffic tool (tc) [25]. We use
MacBook Pro laptop with 8 GB memory and 8 CPUs as our local machine and install
Docker Desktop v4.12.0 as well as kind v0.14.0.

4.2 Benchmark Applications and Workloads

We test our scheduler over two types of workloads to ensure that our proposed
algorithm is not workload specific and works perfectly with any service. The requests
are sent using Locust to stress the services. Locust is an open-source tool for load
testing [7]. The first workload is web service, and we used Nginx image as an open
source. The Locust file of the web service was written to send five parallel requests to
the target service for each user. We ran various tests and changed the number of users
every time to invoke the autoscaler for scaling up/down replicas, as Fig. 3 shows. As

162 D. K. Alqahtani and A. N. Toosi

Fig. 2 Experimental setup diagram

Fig. 3 Test workload for web service

the target event of autoscaling is 50 requests, we set ten users for first step. Then, we
increase the number of users to 20 to invoke the autoscaler and have two replicas.
Likewise for step 3 and step 4, we add ten users per step incrementally. After that,
the number of users is decreased by ten users for each step in decremental.

Moreover, we created an object detection service written in Python language
and using Flask as a web application framework. OpenCV (Open-Source Computer
Vision Library) is used to execute necessary image operations/transformations, and

Container Orchestration in Heterogeneous Edge Computing Environments 163

Fig. 4 Test workload for Object Detection service

the YOLO (you only look once) library is used since it is a cutting-edge real-time
object recognition system. The YOLO and OpenCV libraries are open-source and
popular computer vision and machine learning technologies written in Python. The
function of this application is to return detected objects and a box around them in
a JSON format when the client posts an image to the service. We created a Locust
file to invoke the object detection application and simulate that every user post ten
images, and the size of each image is 201 KB. We run the test and change the work-
load for object detection service same as web service workload manner (increment,
decrement) as Fig. 4 depicts. However, since the target event for autoscaling is 20
requests, we initially set the number of users to two each sending 10 parallel requests
in order to trigger the autoscaler. Similarly, for steps 2, 3, and 4, we incrementally
added two users per step. Subsequently, we decreased the number of users by two
for each decremental step.

4.3 Metrics

We evaluate our work using response time and throughput to demonstrate the effec-
tiveness of the proposed method. Response time is the total elapsed time from when a
request is made to when it is completed, and the client receives the response. Response
time is automatically provided by Locust results when sending requests. We report
the average and standard deviation of response time for all requests submitted in each
step. In addition, throughput is the number of requests processed successfully per
second. To ensure our evaluation results are more reliable, we run each experiment
five times and report the average of collected results and add these values as error
bar in figures.

164 D. K. Alqahtani and A. N. Toosi

Fig. 5 Response time of Web service deployment

5 Results and Analysis

5.1 Web Service Results

We evaluate our scheduler’s algorithm and compare it with the Kubernetes default
scheduler using web service deployment. Firstly, our scheduler places the first replica
in a node considering response time. Therefore, as Fig. 5 presents that it improves
the response time significantly. On the other hand, the default scheduler assigns
the initial replica to a node with the most available resources (CPU, memory) and
does not consider the latency between nodes. Thus, it violates the response time
constraints and results in a significant delay. After that, we increase the workloads
to invoke the system to scale up the replicas. Then, the proposed scheduler increases
the pods and places them in nodes in the cluster except the nodes whose response
time would reduce the excess of the threshold. As a result, the response time rises
while the replicas increase. However, the default scheduler declines the response
time when scaling up the replicas. This is because it spreads the replicas over all the
nodes, so the probability of getting the nodes with higher latency goes up. There is
more similarity of response time and throughputs between our scheduler and default
scheduler when the system has the maximum number of replicas, whereas step 4 in
Fig. 5 shows that.

Moreover, we decrease the workloads to scale down the number of replicas. The
pattern of response time when decreasing the workload is the same as increasing.
This is because the default scheduler deletes the pod in a node that has the least
available resources. In contrast, our scheduler terminates the pod in a node with a
high response time. Regarding the throughput, our scheduler has better results while
increasing the replicas until it has three pods; then, we have stable throughputs.
This is because placing more than one replica in the same node would result in
traffic bottlenecks. Nevertheless, the default scheduler has identical throughput to

Container Orchestration in Heterogeneous Edge Computing Environments 165

Fig. 6 Throughput of Web service deployment

the proposed scheduler in step 4 in Fig. 6. This is because it places the pods in
different nodes.

5.2 Object Detection Service Results

In this section, we explore the results of object detection service deployment and
analyse the comparison between the default scheduler and our proposed scheduler.
The experiment demonstrates that our scheduler substantially enhances the response
time when placing the initial replica. However, after the workloads are increased, the
default scheduler reduces the latency and the response time between both schedulers
becomes slightly different. Yet, the service delay in our scheduler shows better results
when it reaches the maximum number of replicas, as Fig. 7 in step 4 depicts. This
is because of assigning the pod to the same node as the first replica. However, the
default scheduler tries to place the replicas on different nodes as there are available
resources.

Regarding the throughput, the proposed scheduler has higher results than the
default one. However, the throughputs of both schedulers have the same outputs
when the service has three replicas. This is because default improves the throughputs
by placing the pods to different nodes, which increases the opportunity of finding
the nodes that can process a request quickly. After that, our scheduler has better
throughputs in step 4, as Fig. 8 shows, because it assigns the replica to the node with
the initial replica. Moreover, we decrease the workloads to let the system scale down
the number of replicas. Thus, the results demonstrate that our scheduler has provided
better throughput compared to the default scheduler.

166 D. K. Alqahtani and A. N. Toosi

Fig. 7 Response time of Object Detection service deployment

Fig. 8 Throughput of Object Detection service deployment

6 Discussions and Limitations

It is essential to consider the delay between nodes and the execution time of services
in nodes to improve the response time in the heterogeneous edge computing envi-
ronment. Also, maximizing resource utilization can be achieved by activating the
autoscaler in the system for scale-up and scale-down replicas. The findings support
that our proposed scheduler algorithm is able to minimize the latency and have better
throughput than the default scheduler when placing initial replicas. Whereas using
KEDA to scale down the replicas shows excellent performance regarding resource
utilization, scaling up presents similar results for both schedulers. We evaluated our
proposed method in a small cluster which consists of four nodes as we used real
emulator that could be ran over a single machine. We set the maximum number of
replicas to four as the number of nodes, the default scheduler using spread policy

Container Orchestration in Heterogeneous Edge Computing Environments 167

when placing replicas. Therefore, the possibility of getting the nodes with less delay
is high. It is worth testing the proposed scheduler in a larger cluster and comparing
it with the default scheduler, which might affect the response time results.

7 Conclusions and Future Work

The rise of edge computing has created a demand for optimizing Kubernetes sched-
ulers. Therefore, many studies have addressed latency by considering delays between
nodes, and they evaluate their work using a homogeneous cluster. Yet, the nature of
edge nodes is diverse in capacity (CPU and memory), and heterogeneity is an insepa-
rable part of every edge domain. Thus, we proposed a scheduler to consider improv-
ing the quality of service and optimizing resource utilization in heterogeneous edge
computing environments. We addressed these objectives by considering the delay
between nodes, the execution time of different nodes, and adapting an autoscaler
such as KEDA and resource schedulers. Our algorithm tries to prioritize the place-
ment of replicas on nodes with the least response time to maintain latency constraints.
When decreasing replicas, the proposed scheduler terminates in the reverse order of
creation and placement. Moreover, we utilize Kind to emulate heterogeneous clusters
for evaluation purposes. The results demonstrate that the proposed scheduler signif-
icantly reduces response time and has better throughputs for placing initial replicas.
However, scaling up the replicas increases latency slightly and shrinks the differ-
ence between the default scheduler and our scheduler. In future, we will evaluate our
proposed scheduler in a larger cluster and write a scheduler plugin for filtering and
sorting steps.

References

1. Casquero, O., Armentia, A., Sarachaga, I., Pérez, F., Orive, D., Marcos, M.: Distributed schedul-
ing in kubernetes based on mas for fog-in-the-loop applications. In: 2019 24th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1213–1217.
IEEE (2019)

2. Chima Ogbuachi, M., Reale, A., Suskovics, P., Kovács, B.: Context-aware kubernetes scheduler
for edge-native applications on 5g. J. Commun. Softw. Syst. 16(1), 85–94 (2020)

3. Docker: What is a container? (2023). https://www.docker.com/resources/what-container/
4. Eidenbenz, R., Pignolet, Y.A., Ryser, A.: Latency-aware industrial fog application orchestration

with kubernetes. In: 2020 Fifth International Conference on Fog and Mobile Edge Computing
(FMEC), pp. 164–171. IEEE (2020)

5. Fahs, A.J., Pierre, G.: Tail-latency-aware fog application replica placement. In: Service-
Oriented Computing: 18th International Conference, ICSOC 2020, Dubai, United Arab Emi-
rates, December 14–17, 2020, Proceedings 18, pp. 508–524. Springer (2020)

6. Haja, D., Szalay, M., Sonkoly, B., Pongracz, G., Toka, L.: Sharpening kubernetes for the edge.
In: Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, pp. 136–137
(2019)

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/

168 D. K. Alqahtani and A. N. Toosi

7. Jonatan, H., Hugo, H., Carl, B., Joakim, H.: A modern load testing framework (2023). https://
locust.io/

8. Katenbrink, F., Seitz, A., Mittermeier, L., Mueller, H., Bruegge, B.: Dynamic scheduling for
seamless computing. In: 2018 IEEE 8th International Symposium on Cloud and Service Com-
puting (SC2), pp. 41–48. IEEE (2018)

9. Kayal, P.: Kubernetes in fog computing: Feasibility demonstration, limitations and improve-
ment scope. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6. IEEE
(2020)

10. Keda: Kubernetes event-driven autoscaling (2023). https://keda.sh/
11. Kind: Configuration (2023). https://kind.sigs.k8s.io/docs/user/configuration/
12. Kind: Home (2023). https://kind.sigs.k8s.io/
13. Kubernetes: Horizontal pod autoscaling (2023). https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/
14. Kubernetes: Kubernetes scheduler (2023). https://kubernetes.io/docs/concepts/scheduling-

eviction/kube-scheduler/
15. Kubernetes: Overview of kubernetes (2023). https://kubernetes.io/docs/concepts/overview/
16. Menouer, T.: Kcss: kubernetes container scheduling strategy. J. Supercomput. 77(5), 4267–

4293 (2021)
17. Meulen, R.: What edge computing means for infrastructure and operations lead-

ers (2018). https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-
infrastructure-and-operations-leaders

18. Nastic, S., Pusztai, T., Morichetta, A., Pujol, V.C., Dustdar, S., Vii, D., Xiong, Y.: Polaris
scheduler: Edge sensitive and slo aware workload scheduling in cloud-edge-iot clusters. In:
2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 206–216. IEEE
(2021)

19. Polencic, D.: Scaling kubernetes to zero (and back) (2022). https://www.linode.com/blog/
kubernetes/scaling-kubernetes-to-zero-and-back/

20. Pusztai, T., Rossi, F., Dustdar, S.: Pogonip: Scheduling asynchronous applications on the edge.
In: 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 660–670.
IEEE (2021)

21. Rausch, T., Rashed, A., Dustdar, S.: Optimized container scheduling for data-intensive server-
less edge computing. Futur. Gener. Comput. Syst. 114, 259–271 (2021)

22. Rocha, I., Göttel, C., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: Heats: Heterogeneity-
and energy-aware task-based scheduling. In: 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 400–405. IEEE (2019)

23. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards network-aware resource provi-
sioning in kubernetes for fog computing applications. In: 2019 IEEE Conference on Network
Softwarization (NetSoft), pp. 351–359. IEEE (2019)

24. Vilaça, J.P.M.: Orchestration and distribution of services in hybrid cloud/edge environments.
Ph.D. thesis, Universidade do Minho (Portugal) (2021)

25. Vouzis, P.: How to use the linux traffic control (2017). https://netbeez.net/blog/how-to-use-
the-linux-traffic-control/

26. Wojciechowski, Ł., Opasiak, K., Latusek, J., Wereski, M., Morales, V., Kim, T., Hong, M.:
Netmarks: Network metrics-aware kubernetes scheduler powered by service mesh. In: IEEE
INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2021)

27. Yang, S., Ren, Y., Zhang, J., Guan, J., Li, B.: Kubehice: Performance-aware container
orchestration on heterogeneous-isa architectures in cloud-edge platforms. In: 2021 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 81–91. IEEE (2021)

https://locust.io/
https://locust.io/
https://locust.io/
https://keda.sh/
https://keda.sh/
https://keda.sh/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/docs/user/configuration/
https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-%20application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-%20eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://www.linode.com/blog/kubernetes/scaling-kubernetes-to-zero-and-back/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/
https://netbeez.net/blog/how-to-use-the-linux-traffic-control/

	Preface
	Contents
	About the Editors
	 Resource Management in Distributed Computing
	1 Introduction
	2 Resource Management in Cloud Computing
	3 Resource Allocation in Edge Computing
	4 Resource Allocation in Fog Computing
	5 Load Balancing in Resource Utilization
	6 Resource Allocation and Scheduling Algorithms
	7 Summary
	References

	 Cloud Computing Resource Management
	1 Introduction
	2 Categories of Cloud Resources
	2.1 Fast Computation Utility
	2.2 Storage Utility
	2.3 Communication Utility
	2.4 Energy/Power Utility
	2.5 Security Utility

	3 Classification of Cloud Resource Management Methods
	3.1 Energy-Aware Resource Management
	3.2 SLA-Aware Resource Management
	3.3 Market-Based Resource Management
	3.4 Load-Balanced Resource Management
	3.5 Network Load-Aware Resource Management
	3.6 Hybrid Cloud Resource Management
	3.7 MCC Resource Management

	4 Mathematical Model of Performance Evaluation Parameters
	4.1 Throughput
	4.2 Network Overhead
	4.3 VM Migration Time
	4.4 Number of VM Migrations
	4.5 Resource Utilization
	4.6 Energy Consumption
	4.7 Revenue and Profit
	4.8 SLA Violation

	5 Resource Management for Edge and Fog Computing
	5.1 Resource Management in Edge Computing
	5.2 Resource Management Issues of Fog Computing

	6 Resource Management Systems and Simulation Tools
	6.1 Resource Management Systems in Practice
	6.2 Simulators for Resource Management

	7 Research Challenges
	7.1 Consumer-Based Service Management
	7.2 Autonomic Resource Management
	7.3 Resource Information Management
	7.4 Heterogeneous Resources
	7.5 Sharing of Network Resources
	7.6 Security
	7.7 Large-Scale Cloud Management
	7.8 Computational Risk Analysis and Management
	7.9 Multi-parametric Performance Evaluation
	7.10 Service Benchmarking
	7.11 Robustness

	8 Summary
	References

	 Resource Allocation and Placement in Multi-access Edge Computing
	1 Introduction
	2 MEC Scenarios and Optimization Objectives
	3 Resource Allocation
	3.1 Computing
	3.2 Communication
	3.3 Storage
	3.4 Multi-resource Allocation
	3.5 Network Slicing

	4 Placement Issues
	4.1 Server Placement
	4.2 Service Placement
	4.3 NFV Placement

	5 Challenges and Future Research Directions
	6 Conclusions
	References

	 Resource Scheduling in Integrated IoT and Fog Computing Environments: A Taxonomy, Survey and Future Directions
	1 Introduction
	2 Challenges in Cloud Computing
	3 Fog Computing Architecture
	3.1 IoT Layer
	3.2 Fog Layer
	3.3 Cloud Layer

	4 Taxonomy of Recent Resource Scheduling Techniques
	4.1 Static Scheduling
	4.2 Dynamic Scheduling
	4.3 Artificial Intelligence

	5 Federated Learning for QoS Optimisation
	6 Open Issues and Future Research Directions
	7 Conclusions
	References

	 Trusted Task Offloading and Resource Allocation Strategy in MEC Environment
	1 Introduction
	2 Mobile Edge Computing
	2.1 Cloud Computing
	2.2 Mobile Edge Cloud Computing

	3 Trust Evaluation Mechanism
	3.1 Trusted Identity
	3.2 Trusted Behavior
	3.3 Trusted Capability

	4 Resource Allocation Strategy
	4.1 Markov Decision Process
	4.2 Deep Reinforcement Learning
	4.3 Federated Learning

	5 Balanced Multi-objective Approach
	5.1 Entropy
	5.2 Principal Component Analysis
	5.3 Kernel Principal Component Analysis

	6 Experiment
	6.1 Experiment Setup
	6.2 Target Weight Coefficient
	6.3 Task Scaling
	6.4 Compute Node Expansion

	7 Conclusion
	References

	 Resource Management in Edge Clouds: Latency-Aware Approaches for Big Data Analysis
	1 Introduction
	2 Fog, Edge, and Dew Computing
	3 Why Latency is Important in Emerging Cloud-Based Services?
	4 Resource Management in Fog/Edge-Cloud Architecture
	5 Resource Management Approaches
	5.1 Application Placement
	5.2 Load Balancing
	5.3 Resource Scheduling
	5.4 Offloading and Caching
	5.5 Virtual Machine (VM) Migration and Service Function Chaining (SFC)

	6 Role of SDN in Latency-Aware Resource Management
	7 AI-Powered Latency-Aware Resource Management
	8 Conclusion and Future Works
	References

	 FSRmSTS—An Optimize Task Scheduling with a Hybrid Approach: Integrating FCFS, SJF, and RR with Median Standard Time Slice
	1 Introduction
	2 Literature Survey
	3 Proposed Work
	3.1 Analyzing Median

	4 Experimental Results and Analysis
	4.1 Illustrative Example 1
	4.2 Ready Queue Using FCFS
	4.3 Ready Queue Using SJF
	4.4 Ready Queue Using RR
	4.5 Illustrative Example 2

	5 Performance Analysis
	5.1 Comparison—Performance Metric: Turn Around Time

	6 Conclusion
	References

	 Container Orchestration in Heterogeneous Edge Computing Environments
	1 Introduction
	2 Background and Related Works
	2.1 Kubernetes
	2.2 Autoscaling
	2.3 Related Works

	3 System Design
	3.1 Replica Placement
	3.2 Autoscaling Replicas

	4 Evaluation Environment and Experimental Setup
	4.1 Testbed Configuration
	4.2 Benchmark Applications and Workloads
	4.3 Metrics

	5 Results and Analysis
	5.1 Web Service Results
	5.2 Object Detection Service Results

	6 Discussions and Limitations
	7 Conclusions and Future Work
	References

	 Resource Targeted Cybersecurity Attacks in Cloud Computing Environments
	1 Introduction
	2 Cloud Targeted Attacks
	2.1 Economic Denial of Sustainability (EDoS) Attack
	2.2 Side Channel Attacks
	2.3 Session Hijacking Using Cookie Poisoning
	2.4 Malware Injection Attacks
	2.5 Gray Cloud Attacks
	2.6 Memory Inspection Attacks
	2.7 Botcloud and Out-Cloud Attacks
	2.8 Miscellaneous Attacks

	3 Summary and Guidelines
	4 Conclusions
	References

	 Load Balancing Using Swarm Intelligence in Cloud Environment
	1 Introduction
	1.1 Cloud Computing
	1.2 Cloud Computing Services
	1.3 Virtualization

	2 Load Balancing
	2.1 Static and Dynamic Load Balancing

	3 Swarm Intelligence Based Techniques for Load Balancing
	3.1 Ant Colony Optimization
	3.2 Particle Swarm Optimization
	3.3 Genetic Algorithm
	3.4 BAT Algorithm
	3.5 Grey Wolf Optimization (GWO)
	3.6 Artificial Bee Colony (ABC)
	3.7 Whale Optimization Algorithm (WOA)
	3.8 Social Spider Optimization
	3.9 Dragonfly Algorithm
	3.10 Raven Roosting Optimization (RRO)

	4 Hybrid Algorithm
	4.1 Performance Matrices for Load Balancing

	5 Conclusion
	References

	 Interoperability and Portability in Big Data Analysis Based Cloud-Fog-Edge-Dew Computing
	1 Introduction
	2 Dew, Edge, Fog and Cloud Computing
	3 Interoperability in Cloud Computing for Big Data Analysis
	3.1 Interoperability in Fog/Edge/Dew Computing
	3.2 Strategies, Architecture, and Technologies

	4 Portability in Cloud Computing
	4.1 Cloud Portability at IaaS Level
	4.2 Cloud Portability at PaaS and SaaS Level
	4.3 Data Portability

	5 Management and Orchestration for Interoperability and Portability
	6 Working Groups and Standardization Bodies in Interoperability and Portability
	6.1 Cloud Standards Coordination (CSC)
	6.2 National Institute of Standards and Technology (NIST)
	6.3 The Open Grid Forum (OGF)
	6.4 Open Cloud Computing Interface (OCCI)
	6.5 IEEE SA
	6.6 Cloud Application Management for Platforms (CAMP)
	6.7 Topology and Orchestration Specification for Cloud Applications (TOSCA)
	6.8 Cloud Data Management Interface (CDMI)
	6.9 The Distributed Management Task Force (DMTF)
	6.10 IEEE Std 2301™

	7 Challenges and Future Direction
	References

	 Cyber Attack Victim Separation: New Dimensions to Minimize Attack Effects by Resource Management
	1 Introduction
	2 Victim Separation Methods: Classification
	2.1 Moving Target Defense (MTD)
	2.2 Resource Isolation
	2.3 Solutions to Co-residency Attack
	2.4 Victim Service Migration
	2.5 Demilitarized Zone (DMZ)

	3 Discussion and Future Directions
	4 Conclusions
	References

	 eBPF and XDP Technologies as Enablers for Ultra-Fast and Programmable Next-Gen Network Infrastructures
	1 Introduction
	2 Background: eeBPF and XDP Technical Description
	2.1 Main Characteristics
	2.2 eBPF Programs in the XDP: Advantages and Limitations

	3 Related Work: eeBPF-Based Networking Applications
	4 Use Case
	4.1 Functionality Overview
	4.2 Technical Details
	4.3 Testbench
	4.4 Results

	5 Conclusion
	References

	 Deep Reinforcement Learning (DRL)-Based Methods for Serverless Stream Processing Engines: A Vision, Architectural Elements, and Future Directions
	1 Introduction
	2 Significance and Innovation of Our Vision
	3 Architectural Framework
	4 Research Issues and Envisioned Approaches/Future Directions
	4.1 DRL-Based Resource Management Agents
	4.2 Exploration Aids
	4.3 Policies for Management of Rewards, States, and Enactment
	4.4 Automated Techniques for Metrics and Configuration Management

	5 A Case Study—Use Case Scenario: Multi-source Stream Video Analytics System
	5.1 Use Case Overview
	5.2 Use Case Implementation
	5.3 DRL-SSPE Implementation for Video Grayscale
	5.4 Results Discussion

	6 Conclusions and Final Remarks
	References

