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Abstract The emerging latency-sensitive applications and Internet of Things tech-
nology have resulted in the development of Edge computing. Therefore, improving 
Quality-of-Service (QoS) requirements such as response time is a fundamental goal 
in Edge environments. However, as edge devices are heterogeneous and resource-
constrained, placing replicas of software containers in these environments is not a 
trivial task. Yet, the scheduler of well-known container orchestration tools such as 
Kubernetes places pods in nodes by only considering available resources (CPU, mem-
ory, etc.). Our study aims to minimize application latency by optimizing resource 
allocation through efficient scheduling. We customize the Kubernetes scheduler to 
assign pods to nodes with the least response time and integrate it with a customized 
autoscaler to scale up/down replicas. We evaluate our algorithm on a small-scale 
cluster with two types of deployments (web and object detection services), and eval-
uation results show better response time and throughput than the default scheduler. 

Keywords Edge computing · Latency · Kubernetes · Scheduling · Replicas 

1 Introduction 

The term “containerization” refers to a method of developing software in which a 
single “container image” contains an application or service, all its required dependen-
cies, and its configuration (represented abstractedly in deployment manifest files). 
The containerized software may then be individually tested and deployed to the host 
OS as an instance of the container image. Containers are a standard unit of software 
deployment that may include varied code and dependencies, like shipping containers 
that enable items to be delivered by ship, rail, or truck independent of the contents 
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within. Programmers and system administrators may efficiently distribute applica-
tions to other platforms with few changes by packaging applications in containers. 
In the same way, containers partition applications running on the same OS. Con-
tainerized applications are deployed to and executed by a container host, which is 
deployed to and managed by the operating system (Linux or Windows). This means 
that container images need far less space than VM images [ 3]. 

Kubernetes becomes a de facto tool to orchestrate containers in scale clusters. 
Famous companies and organizations adopt Kubernetes to manage and maintain 
their services, such as Amazon, Alibaba, and IBM. This is because it is open source 
and compatible with large clusters which consist of hundreds or thousands of devices. 
Kubernetes scheduler is responsible for assigning coming workloads to the ideal node 
among other nodes in a group. The default scheduler considers consistently placing a 
pod to a node with the most available resources (CPU and memory). Kubernetes was 
invented for cloud computing, and many works have been created to optimize it for 
edge and fog computing. The main goal of these works is customizing the scheduler 
to be aligned with their purposes. 

At the same time, the tremendous rise and increased computational capability of 
IoT devices have resulted in previously unheard-of data quantities. Also, volumes of 
data will keep rising as the number of mobile devices linked to 5G networks increases. 
At the same time, the promise of cloud and AI was to automate and accelerate innova-
tion by generating actionable insights from data. However, the extraordinary volume 
and complexity of data generated by connected devices have exceeded network and 
infrastructure capacities. By 2025, [ 17] predicts that 75% of all data will be handled 
outside the conventional data centre or on the cloud. Bandwidth and latency prob-
lems emerge when all this data is sent from disparate devices to a single location in 
a data centre or the cloud. Data can be processed and analysed much more quickly 
since it is done much closer to the creation site using edge computing. There is far 
less delay when processing data locally than sending it over the network to a cloud or 
data centre. Edge computing makes faster and more thorough data analysis possible, 
especially mobile edge computing on 5G networks, which may lead to more sig-
nificant insights, quicker reaction times, and enhanced consumer experiences. Edge 
computing is defined by [ 17] as technologies that enable data processing at or near the 
source of data production. In the context of the Internet of Things (IoT), for example, 
the origins of data creation are often things with sensors or embedded devices. Edge 
computing is a decentralized extension of campus networks, cell phone networks, 
data centre networks, and cloud computing. 

As one of the reasons the demand for releasing edge computing is latency, so 
Kubernetes scheduler has been adjusted to achieve that. Many works attempt to 
improve response time by placing pod to node, considering the delay between nodes. 
However, the variety of devices in edge computing can result in different perfor-
mances. In other words, resource scheduling in heterogeneous edge computing has 
not received adequate studies, so it must be investigated further. Our goals are cus-
tomizing the Kubernetes scheduler to improve response time and optimize resource 
utilization in the heterogenous edge computing environment. We propose a schedul-
ing algorithm that considers the delay between nodes and the execution time of
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nodes in a heterogenous edge cluster for placing replicas and integrating Kubernetes 
Event-Driven Autoscaler (KEDA) tool to scale up/down replicas when the number 
of requests increases/decreases. 

The proposed scheduler algorithm enables the clients to state the response time 
constraint. Then, the nodes are filtered based on the latency threshold by comparing 
the response time of each node with these constraints. First, our algorithm calculates 
the delay between nodes and the execution time of the service in worker nodes. After 
that, it excludes the nodes with a response time that violates the threshold latency. 
Next, we sort nodes based on the latency value of nodes, then place the first replica 
to a node with a minimum value. In addition, when replicas increase, the scheduler 
places them in different nodes unless all the nodes become busy, then places a pod 
in the same node with the first replica. In contrast, the pods that have lately been 
created are terminated when replicas decrease. 

We evaluate our scheduler in a small cluster and compare it with the default 
scheduler. We utilize Kind to emulate a small real cluster which consists of one 
master node and four worker nodes. The configuration of nodes has been customized 
to mimic the heterogeneity of edge devices. Furthermore, we create Locust files to 
stress the workloads and simulate multiple clients sending requests. 

The key contributions of this paper are summarized as 

• We provide a review of recent works on Kubernetes schedulers in edge computing 
and discuss the gap in the knowledge. 

• We design and implement our proposed scheduler to improve response time along-
side integrating it with an autoscaler to maximize resource utilization. 

• We perform experiments to evaluate our proposed algorithm in an emulated setup 
and compare it with Kubernetes default scheduler. 

The rest of this paper is organized as follows: Sect. 2 introduces Kubernetes and 
container autoscaling along with other related studies. Next, the system design and 
proposed algorithm are presented in Sect. 3. After describing the evaluation environ-
ment in Sect. 4, the results are analysed in Sect. 5. Section 6 discusses the findings 
and the work’s limitations. Finally, we conclude the work and suggest future works 
in Sect. 7. 

2 Background and Related Works 

2.1 Kubernetes 

Kubernetes is a sophisticated open-source technology created by Google that is used 
to orchestrate containerized applications in a clustered environment. It strives to 
improve the management of connected dispersed components and services across 
various infrastructures. At its core, Kubernetes groups separate physical or virtual 
computers into a cluster that communicates through a shared network. This cluster
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serves as the physical substrate for all Kubernetes components, capabilities, and 
workloads. 

Each node in the cluster is assigned a role in the Kubernetes ecosystem. The master 
(control plane) node is one node (or a small group in highly available installations). 
This node serves as the cluster’s gateway and brain, presenting an API to users and 
clients, assessing the health of other nodes, choosing how to break up and allocate 
work (known as “scheduling”), and organizing communication between different 
components. The master node is the principal point of contact with the cluster and 
is in charge of the majority of the centralized logic provided by Kubernetes. The 
other workstations in the cluster are known as workers: nodes that accept and per-
form tasks utilizing local and external resources. Kubernetes runs applications and 
services in containers to help with isolation, administration, and flexibility. Hence 
each node must be equipped with a container runtime (like Docker). The node gets 
work instructions from the master node and builds or destroys containers as needed, 
modifying networking rules as needed to route and forward traffic [ 15]. 

Kubernetes’s control plane includes the Kube-scheduler, which is the platform’s 
default scheduler. The Kube-scheduler framework was created so that you may 
replace it with your custom scheduling mechanism if necessary. Kube-scheduler 
picks a node for the pod in a two-step operation: Filtering and Scoring. As a result 
of the filtering process, a list of nodes where it is possible to schedule the pod is 
identified. For instance, the Pod Fits Resources filter determines whether a potential 
node has enough resources to fulfil a pod’s requirements. As a result of this process, 
the node list will include all relevant Nodes; in most cases, this will be more than one. 
If there are no pods on the list, they cannot be scheduled at this time. In the scoring 
stage, the scheduler rates the remaining nodes to find the optimal pod placement. The 
nodes that made it through the scheduler’s filtering process are given scores based 
on the currently applied scoring criteria. At last, the Kube-scheduler places the pod 
on the best rated node. If there are many equally scored nodes, the Kube-scheduler 
will choose one at random [ 14]. 

A pod is a single instance of a Kubernetes-running application. Containerized 
applications are the workloads that you run on Kubernetes. Containers cannot be run 
directly on Kubernetes as they can in a Docker environment. Instead, the container 
is packaged into a Kubernetes object known as a pod. A pod is the smallest item 
that Kubernetes can produce. A single pod may house a collection of one or more 
containers. On the other hand, a pod does not often include numerous instances of 
the same application. A pod contains information on shared network and storage 
setup, as well as instructions for running its bundled containers. Pod templates are 
used to describe information about the pods that run in a cluster. To handle pod 
deployments, pod templates are YAML-coded files that can be reused and embedded 
in other objects. 

A replication controller employs pod templates and specifies the number of pods 
that must execute. The controller makes it possible to run numerous instances of the 
same pod and guarantees that pods are constantly operating on one or more cluster 
nodes. If running pods fail, are removed, or are terminated, the controller replaces 
them with fresh pods in this manner [ 15].
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2.2 Autoscaling 

To automatically scale a workload in Kubernetes to meet demand, a Horizontal Pod 
Autoscaler can change a workload resource (such as Deployment or StatefulSet). 
With horizontal scalability, additional pods are added to handle the extra work as 
demand rises. In contrast, when scaling vertically with Kubernetes, developers would 
add other resources (such as memory or CPU) to the pods currently operating for 
the task. Horizontal Pod Autoscaler directs the workload resource (the Deployment, 
StatefulSet, or similar resource) to de-scale if the demand reduces and the number 
of pods exceeds the defined minimum [ 13]. 

Kubernetes Event-Driven Autoscaling (KEDA) is a piece of software that helps 
automate the scaling of applications. The KEDA’s event count may control any 
Kubernetes container’s scalability. KEDA is a minimal, single-function component 
that can be integrated into any existing Kubernetes environment. It is compatible with 
the default Kubernetes components, such as the Horizontal Pod Autoscaler, and may 
add new features without replacing or duplicating existing ones. In addition, KEDA 
allows developers to selectively define which applications benefit from event-driven 
scaling while leaving others unaffected. This ensures that KEDA can safely coexist 
with any Kubernetes framework or application [ 10]. 

2.3 Related Works 

Numerous Kubernetes-based studies have been performed to build optimized con-
tainer schedulers for various use case scenarios [ 1, 2, 4– 6, 8, 9, 16, 18, 20– 24, 26, 
27]. Many of these require either the introduction of a custom scheduler or modifica-
tions to the existing scheduler. In this section, we review the literature on customizing 
the Kubernetes scheduler and classify them based on some categories, as depicted in 
Table 1. Various studies have focussed on reducing power consumption, optimizing 
resource utilization, or improving quality of service, using different strategies such 
as leveraging application states, resource metrics or network states. As a result, there 
is no single optimal scheduler that can fulfill all use cases and circumstances. For 
example, some papers place emphasis on reducing power consumption [ 16, 18, 22], 
while many others aim to optimize resource utilization [ 1, 8, 9, 20, 21, 27]. Besides, 
Kubernetes’ scheduler has been the subject of several QoS optimization research. 
Many of these methods aim to satisfy the user’s need for fast response while main-
taining a reasonable latency. This is because fog and edge computing came into 
existence due to recent years’ substantial breakthroughs and the widespread distri-
bution of apps and devices. Therefore, in this section, we will describe the related 
work that emphasizes delay. 

Network-aware scheduling (NAS) addition for Kubernetes is being proposed by 
[ 23]. This extension offers up-to-date information on the latest characteristic of the 
network infrastructure (bandwidth and latency). The paper proposes a network-aware
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Table 1 Summary of related literature on scheduling strategies 
Paper Objective Evaluation Heterogeneity Autoscaling Target 

environment 

[ 22] E Testbed Size & H No Cloud 

[ 16] E Emulation Size No Cloud 

[ 18] E Simulation No No Edge 

[ 27] R Testbed Size No Edge 

[ 20] R Testbed Size No Edge 

[ 1] R Testbed No No Fog 

[ 9] R Testbed No No Fog 

[ 21] R Testbed Size & 
CPU-GPU 

No Edge 

[ 8] R Testbed Size & H No Fog 

[ 23] QoS Testbed Size No Fog 

[ 4] QoS Testbed H No Fog 

[ 2] QoS Testbed No No Edge 

[ 6] QoS Testbed No No Edge 

[ 26] QoS Testbed No No Edge 

[ 24] QoS Testbed No No Cloud & Edge 

[ 5] QoS Simulation & 
Testbed 

No Yes Fog 

E: Energy Consumption, R: Resource utilization, QoS: Quality of Service, H: Hardware architecture 

scheduling method for Smart City container-based apps, which makes resource allo-
cation choices based on the actual state of the network. First, the suggested NAS 
analyses the pod configuration file to determine the optimal deployment site for a 
service, taking into account the Round-Trip Time (RTT) labels set at key nodes. After 
the filtering process is complete, the node selection is made based on the minimiza-
tion of the RTT depending on the service’s intended destination. In addition, NAS 
uses the service’s bandwidth requirement label to determine whether the best can-
didate node has sufficient bandwidth to handle the service. Yet, this work is specific 
for placing one pod, and it fails to consider the variety of edge nodes. 

Eidenbenz et al. [ 4] present a fog layer architecture to handle the computation and 
deployment of latency-aware industrial applications on top of Kubernetes. Conse-
quently, the fog layer automatically optimizes the allocation of resources and delivers 
containerized applications across the networks of automation systems. Moreover, it 
does so without actively altering Kubernetes, making it ideal for environments where 
such changes would be undesirable. It is also superior to a vendor-specific solu-
tion since it is not limited by infrastructure and proprietary protocols. This article 
describes a case study in which a generic latency-aware resource allocation method 
was modified to be Kubernetes-compatible. To that purpose, they created K8S-GBA, 
based on the Greedy Border Allocation (GBA) heuristic. However, this paper makes 
no attempts to address autoscaling and the heterogeneity of fog nodes.
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To dynamically orchestrate Industrial IoT (IIoT) applications, [ 2] suggest consid-
ering environmental, functional, and network aspects in addition to software states. 
They develop a method that gives the custom scheduler more responsiveness to exter-
nal factors and programmatic alterations. With 5G radio and connection installed 
close to the IoT devices, a fully functional 5G and Edge computing network was 
constructed. Following the notion of Edge Computing, all the LTE virtualized func-
tions are located on the same server rack as the Kubernetes cluster. They demonstrate 
that the system can optimize workload distribution among nodes, taking into account 
memory and CPU utilization and a wide range of network and infrastructure factors. 
The approach speeds up application launches and cuts down on scheduling times 
without sacrificing quality. The authors do not consider the diversity edge nodes and 
their work is particular to deploying a single replica. 

A topology-aware Kubernetes is required to enhance its popular feature set con-
cerning network latency since most delay-sensitive applications are to be deployed 
on edge. Thus, Haja et al. [ 6] take the initiative to mould Kubernetes into a tool that 
can be used with edge infrastructure. Furthermore, self-healing capabilities need 
more attention than in the default Kubernetes since edge infrastructure is vulnera-
ble to failures and is thought to be costly to create and maintain. Considering the 
need to meet both application delay restrictions and edge resilience, they developed 
a customized Kubernetes scheduler. Their product is an add-on to Kubernetes that 
monitors latency between individual nodes. Each node will release a measurement 
pod, ping each other at regular intervals, and keep track of the round-trip timings. 
The scheduler takes the collected data and creates a delay matrix, using the matrix to 
assign node labels. Whereas this study aims to improve latency, it does not consider 
optimization of resource utilization. Also, they do not consider the heterogeneity of 
edge nodes. 

To schedule pods in Kubernetes using the latest network measurements, [ 26] 
create and deploy a tool called NetMARKS. This scheduler extender makes use of 
data gathered by Service Mesh. In particular, they noted that there was room for 
development in pod collocation. Findings showed that application response times 
might be cut by as much as 30%, even for a modest pipeline consisting of just a few 
services. Using Istio Service Mesh, they showed a new way to inform the Kubernetes 
scheduler of dependencies between pods. The experimental findings demonstrate 
that the Service Mesh may enhance pod placement by utilizing the data it collects, 
leading to a decrease in application response time and conservation of inter-node 
bandwidth. In contrast, this work is designed only for minimizing response time, yet 
it is important to make the best use of resources. This is because edge devices are 
limited in resources, and it is important to examine the heterogeneity of edge nodes. 

A novel distributed system and orchestration called Geolocate is implemented for 
hybrid Cloud and Edge computing in [ 24]. To achieve this, the scheduler must be 
able to determine, for a particular data-processing task, which node is best suited 
to handle the data coming from a specific data-producing system situated in a spec-
ified geographic region. In addition to enhancing network latency, data-processing 
delay, and service response time, the chosen nodes should reduce the physical dis-
tance between data producers and consumers. Computational times, service response
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times, and network performance all improve with Geolocate, and bandwidth uti-
lization is diminished, leading to higher throughput for applications under typical 
cluster settings. Response times for all services is cut by up to 62% with Geolocate’s 
algorithm which help simply by minimizing the lag time between the services that 
generate and analyse data. Nevertheless, the paper does not study the variety of edge 
environments and placing a set of replicas as well. 

According to [ 5], Hona is a replica scheduler for applications that consider tail 
latency, which is proposed as an addition to the Kubernetes container orchestration 
platform. Hona relies on Kubernetes to keep a watch on the state of the system’s 
resources, Vivaldi to calculate the ping times between nodes, and Proxymity to 
check up on where the traffic is coming from and where it is going. After placing 
the first duplicate, Hona employs several heuristics to effectively filter through all 
the available choices for where to put the next one. Last but not least, it performs 
proactive replacement tasks automatically when end-user demands are incredibly 
different. However, the paper does not consider the execution time, which might 
vary between the heterogenous cluster nodes, and it is designed for fog computing. 
Also, the authors do not take into account the elastic provision resources. 

3 System Design 

This study aims to significantly minimize user-experienced latency by dynamically 
selecting the location of edge application replicas in a heterogeneous edge computing 
architecture. Also, we aim to optimize resource utilization by integrating Kubernetes 
Event-Driven Autoscaling (KEDA) tool within our proposed scheduler. As Fig. 1 
shows, developers or system managers submit the deployment file to the proposed 
scheduler, where it is placed in the master node. Then, the scheduler assigns the 
first pod to a node with the least response time. The following section explains in 
detail how the proposed scheduler calculates the response time and places the initial 
replica. After deploying the application, the system managers expose the deployment 
to be accessed externally by configuring the Kubernetes service (Node Port). After 
that, the number of maximum replicas, the number of target requests, and the service 
name are specified in KEDA’s file. When the clients send requests to the system, 
KEDA intercepts them for scale-up/down replicas based on the configuration file. 
If KEDA increased replicas, our schedulers placed pods in different nodes without 
violating threshold latency. However, when no request comes to the service, KEDA 
decreases the replicas to the minimum number. Thus, the proposed scheduler deletes 
the last pods created and keeps only the first pod live.
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Fig. 1 System’s Architecture Design 

3.1 Replica Placement 

Our scheduling method considers the latency between the nodes and execution time 
to improve the response time and meet the user requirements. When deploying an 
application, the scheduler ensures placing it in a node with the least response time. 
Algorithm 1 presents that there are three inputs to the scheduler. Nodes: Kubernetes 
manages everything about them, from the pods and their resources to the node they 
run. Kubernetes’s etcd service allows us to access node’s data easily. Response time 
threshold: The client provides the threshold latency for an application that needs to be 
met when deploying the application. Profiling: The execution time of an application 
for all the nodes in the cluster should be provided to the scheduler. This is because 
the execution time of a service varies between nodes as the nodes are different in 
their abilities. 

The scheduler goes over all the nodes that have been provided as inputs and 
measures the distance between the node and the master node where the scheduler 
is placed. This happened by pinging the node and getting the value, and then the 
scheduler calculates the predicted response time for that node by summing the dis-
tance value with execution time. In addition, our algorithm filters nodes that meet 
the delay constraints and excludes nodes when the response time prediction does not 
meet the latency threshold. After that, we label the nodes with key-value pairs of 
the prediction response time that has been calculated. Before placing the first pod 
of replicas, the scheduler sorts all the nodes based on the label and then binds the
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pod to the node with the lowest predicted response time value. When the scheduler 
receives the first pod, it assigns it to a node with a negligible response time value. 

3.2 Autoscaling Replicas 

We use KEDA to optimize resource utilization, which sometimes means when there 
is no traffic coming to the service, there is no need to have multiple replicas. Thus, it 
enables the cluster to have more available resources and can be utilized from another 
deployment. KEDA works based on the events as it collects metrics from the database 
and intercepts them, then scales the application when it reaches the target event. We 
utilize KEDA to scale the replicas based on the number of HTTP requests. Therefore, 
the KEDA uses Prometheus to monitor the Traffic and then scale-up or scale-down 
the replicas. When the target number of requests is reached, our algorithm increases 
the number of pods. When KEDA notifies the proposed scheduler to increase the 
number of replicas, it places the pod in a node that is close to the first pod. This 
is because we ensure a balance between nodes in the cluster and, simultaneously, 
do not violate the response time constraints as Algorithm 1 depicts. As the number 
of replicas increases, the scheduler assigns the pods to nodes in our cluster until 
all the nodes have replicas (first round). Then goes again over the nodes and places 
pods in the nodes that have available space (second round). The maximum number 
of replicas should not exceed the number of nodes. This is to ensure our algorithm 
works probably. When the target events decline, the autoscaler decreases the number 
of replicas. As Algorithm 1 shows, our scheduler investigates the nodes and tries to 
find a node with a pod with a minimum value of time creation. Then it unbinds that 
pod which also has the maximum response time value, and the scheduler behaves like 
this every time when KEDA scales down the replicas. When no requests are coming 
to the service, KEDA scales the number of replicas down to a minimum of one replica 
in our system’s design. This is because when putting the minimum number of replicas 
to zero, the service would provide some latency to the first incoming requests due 
to the starting-up time of the first pod [ 19]. Therefore, our scheduler terminates the 
pods created lately and keeps only the first pod with the least response time. 

4 Evaluation Environment and Experimental Setup 

4.1 Testbed Configuration 

We utilize Kind to build our Kubernetes cluster, because it enables us to run Kuber-
netes cluster on a local machine without needing a large infrastructure. Consequently, 
we can emulate real cluster environment. According to [ 12], using Docker containers 
as “nodes”, Kind facilitates the operation of local Kubernetes clusters. The primary
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Algorithm 1 Pseudo code for proposed scheduler 
Require: nodes, responsetimethreshold, prof iling 
1: for each node in nodes do 
2: distance[nodes] =  ping(node) 
3: predictionresponse[node] =  distance[node] +  prof iling[node] 
4: if prediction response [node] ≤ response time threshold then 
5: group1 = add(node : predictionresponse[node]) 
6: end if 
7: end for 
8: if place 1st pod then 
9: Function bind initial pod(group1): 
10: score = min(group1) 
11: Return score 
12: else if increase replicas then 
13: Function bind replicas(group1): 
14: if all nodes in group1 contain same pod then 
15: score = min(group1) 
16: else 
17: score = min(group1 − ignorenodesthathavesamepod) 
18: end if 
19: Return score 
20: else if decrease replicas then 
21: Function unbind replicas(group1): 
22: remove = terminateslastpodwascreated 
23: Return remove 
24: end if 

intent of kind is to test Kubernetes, although it may also be used for local develop-
ment and continuous integration. We build our configuration in Kind to create five 
nodes: one master node and four worker nodes with their capacity, as Fig. 2 depicts. 
The heterogeneous edge devices have been emulated in our setup regarding the size 
of the CPU, memory [ 11]. We emulate the latency between nodes and the nodes 
distributed over different places by using the control traffic tool (tc) [ 25]. We use 
MacBook Pro laptop with 8 GB memory and 8 CPUs as our local machine and install 
Docker Desktop v4.12.0 as well as kind v0.14.0. 

4.2 Benchmark Applications and Workloads 

We test our scheduler over two types of workloads to ensure that our proposed 
algorithm is not workload specific and works perfectly with any service. The requests 
are sent using Locust to stress the services. Locust is an open-source tool for load 
testing [ 7]. The first workload is web service, and we used Nginx image as an open 
source. The Locust file of the web service was written to send five parallel requests to 
the target service for each user. We ran various tests and changed the number of users 
every time to invoke the autoscaler for scaling up/down replicas, as Fig. 3 shows. As
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Fig. 2 Experimental setup diagram 

Fig. 3 Test workload for web service 

the target event of autoscaling is 50 requests, we set ten users for first step. Then, we 
increase the number of users to 20 to invoke the autoscaler and have two replicas. 
Likewise for step 3 and step 4, we add ten users per step incrementally. After that, 
the number of users is decreased by ten users for each step in decremental. 

Moreover, we created an object detection service written in Python language 
and using Flask as a web application framework. OpenCV (Open-Source Computer 
Vision Library) is used to execute necessary image operations/transformations, and
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Fig. 4 Test workload for Object Detection service 

the YOLO (you only look once) library is used since it is a cutting-edge real-time 
object recognition system. The YOLO and OpenCV libraries are open-source and 
popular computer vision and machine learning technologies written in Python. The 
function of this application is to return detected objects and a box around them in 
a JSON format when the client posts an image to the service. We created a Locust 
file to invoke the object detection application and simulate that every user post ten 
images, and the size of each image is 201 KB. We run the test and change the work-
load for object detection service same as web service workload manner (increment, 
decrement) as Fig. 4 depicts. However, since the target event for autoscaling is 20 
requests, we initially set the number of users to two each sending 10 parallel requests 
in order to trigger the autoscaler. Similarly, for steps 2, 3, and 4, we incrementally 
added two users per step. Subsequently, we decreased the number of users by two 
for each decremental step. 

4.3 Metrics 

We evaluate our work using response time and throughput to demonstrate the effec-
tiveness of the proposed method. Response time is the total elapsed time from when a 
request is made to when it is completed, and the client receives the response. Response 
time is automatically provided by Locust results when sending requests. We report 
the average and standard deviation of response time for all requests submitted in each 
step. In addition, throughput is the number of requests processed successfully per 
second. To ensure our evaluation results are more reliable, we run each experiment 
five times and report the average of collected results and add these values as error 
bar in figures.
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Fig. 5 Response time of Web service deployment 

5 Results and Analysis 

5.1 Web Service Results 

We evaluate our scheduler’s algorithm and compare it with the Kubernetes default 
scheduler using web service deployment. Firstly, our scheduler places the first replica 
in a node considering response time. Therefore, as Fig. 5 presents that it improves 
the response time significantly. On the other hand, the default scheduler assigns 
the initial replica to a node with the most available resources (CPU, memory) and 
does not consider the latency between nodes. Thus, it violates the response time 
constraints and results in a significant delay. After that, we increase the workloads 
to invoke the system to scale up the replicas. Then, the proposed scheduler increases 
the pods and places them in nodes in the cluster except the nodes whose response 
time would reduce the excess of the threshold. As a result, the response time rises 
while the replicas increase. However, the default scheduler declines the response 
time when scaling up the replicas. This is because it spreads the replicas over all the 
nodes, so the probability of getting the nodes with higher latency goes up. There is 
more similarity of response time and throughputs between our scheduler and default 
scheduler when the system has the maximum number of replicas, whereas step 4 in 
Fig. 5 shows that. 

Moreover, we decrease the workloads to scale down the number of replicas. The 
pattern of response time when decreasing the workload is the same as increasing. 
This is because the default scheduler deletes the pod in a node that has the least 
available resources. In contrast, our scheduler terminates the pod in a node with a 
high response time. Regarding the throughput, our scheduler has better results while 
increasing the replicas until it has three pods; then, we have stable throughputs. 
This is because placing more than one replica in the same node would result in 
traffic bottlenecks. Nevertheless, the default scheduler has identical throughput to
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Fig. 6 Throughput of Web service deployment 

the proposed scheduler in step 4 in Fig. 6. This is because it places the pods in 
different nodes. 

5.2 Object Detection Service Results 

In this section, we explore the results of object detection service deployment and 
analyse the comparison between the default scheduler and our proposed scheduler. 
The experiment demonstrates that our scheduler substantially enhances the response 
time when placing the initial replica. However, after the workloads are increased, the 
default scheduler reduces the latency and the response time between both schedulers 
becomes slightly different. Yet, the service delay in our scheduler shows better results 
when it reaches the maximum number of replicas, as Fig. 7 in step 4 depicts. This 
is because of assigning the pod to the same node as the first replica. However, the 
default scheduler tries to place the replicas on different nodes as there are available 
resources. 

Regarding the throughput, the proposed scheduler has higher results than the 
default one. However, the throughputs of both schedulers have the same outputs 
when the service has three replicas. This is because default improves the throughputs 
by placing the pods to different nodes, which increases the opportunity of finding 
the nodes that can process a request quickly. After that, our scheduler has better 
throughputs in step 4, as Fig. 8 shows, because it assigns the replica to the node with 
the initial replica. Moreover, we decrease the workloads to let the system scale down 
the number of replicas. Thus, the results demonstrate that our scheduler has provided 
better throughput compared to the default scheduler.
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Fig. 7 Response time of Object Detection service deployment 

Fig. 8 Throughput of Object Detection service deployment 

6 Discussions and Limitations 

It is essential to consider the delay between nodes and the execution time of services 
in nodes to improve the response time in the heterogeneous edge computing envi-
ronment. Also, maximizing resource utilization can be achieved by activating the 
autoscaler in the system for scale-up and scale-down replicas. The findings support 
that our proposed scheduler algorithm is able to minimize the latency and have better 
throughput than the default scheduler when placing initial replicas. Whereas using 
KEDA to scale down the replicas shows excellent performance regarding resource 
utilization, scaling up presents similar results for both schedulers. We evaluated our 
proposed method in a small cluster which consists of four nodes as we used real 
emulator that could be ran over a single machine. We set the maximum number of 
replicas to four as the number of nodes, the default scheduler using spread policy
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when placing replicas. Therefore, the possibility of getting the nodes with less delay 
is high. It is worth testing the proposed scheduler in a larger cluster and comparing 
it with the default scheduler, which might affect the response time results. 

7 Conclusions and Future Work 

The rise of edge computing has created a demand for optimizing Kubernetes sched-
ulers. Therefore, many studies have addressed latency by considering delays between 
nodes, and they evaluate their work using a homogeneous cluster. Yet, the nature of 
edge nodes is diverse in capacity (CPU and memory), and heterogeneity is an insepa-
rable part of every edge domain. Thus, we proposed a scheduler to consider improv-
ing the quality of service and optimizing resource utilization in heterogeneous edge 
computing environments. We addressed these objectives by considering the delay 
between nodes, the execution time of different nodes, and adapting an autoscaler 
such as KEDA and resource schedulers. Our algorithm tries to prioritize the place-
ment of replicas on nodes with the least response time to maintain latency constraints. 
When decreasing replicas, the proposed scheduler terminates in the reverse order of 
creation and placement. Moreover, we utilize Kind to emulate heterogeneous clusters 
for evaluation purposes. The results demonstrate that the proposed scheduler signif-
icantly reduces response time and has better throughputs for placing initial replicas. 
However, scaling up the replicas increases latency slightly and shrinks the differ-
ence between the default scheduler and our scheduler. In future, we will evaluate our 
proposed scheduler in a larger cluster and write a scheduler plugin for filtering and 
sorting steps. 
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