Serverless Platforms on the Edge: A
Performance Analysis

Hamza Javed, Adel N. Toosil0000—0001-5655—-5337] '\[ohammad S.
Aslanpour[0000-0002-1816-6901)

Faculty of Information Technology
Monash University, Clayton, Australia
{hamza.javed, adel.n.toosi, mohammad.aslanpour}@monash.edu

Abstract. The exponential growth of Internet of Things (IoT) has given
rise to a new wave of edge computing due to the need to process data
on the edge, closer to where it is being produced and attempting to
move away from a cloud-centric architecture. This provides its own op-
portunity to decrease latency and address data privacy concerns along
with the ability to reduce public cloud costs. The serverless computing
model provides a potential solution with its event-driven architecture to
reduce the need for ever-running servers and convert the backend ser-
vices to an as-used model. This model is an attractive prospect in edge
computing environments with varying workloads and limited resources.
Furthermore, its setup on the edge of the network promises reduced la-
tency to the edge devices communicating with it and eliminates the need
to manage the underlying infrastructure. In this book chapter, first, we
introduce the novel concept of serverless edge computing, then, we ana-
lyze the performance of multiple serverless platforms, namely, OpenFaaS,
AWS Greengrass, Apache OpenWhisk, when set up on the single-board
computers (SBCs) on the edge and compare it with public cloud server-
less offerings, namely, AWS Lambda and Azure Functions, to deduce the
suitability of serverless architectures on the network edge. These server-
less platforms are set up on a cluster of Raspberry Pis and we evaluate
their performance by simulating different types of edge workloads. The
evaluation results show that OpenFaaS achieves the lowest response time
on the SBC edge computing infrastructure while serverless cloud offer-
ings are the most reliable with the highest success rate.

Keywords: IoT - OpenFaaS - Apache OpenWhisk - AWS Lambda -
Azure Functions - AWS Greengrass - Serverless - FaaS - Serverless Edge
Computing

1 Introduction

In recent years, we have seen a major increase in new developments in cloud
computing due the requirement of handling data at a massive scale. New tech-
nologies such as Internet of Things (IoT) and edge devices such as smartphones
have created a large influx of data and network traffic that has to be processed

https://orcid.org/0000-0001-5655-5337
https://orcid.org/0000-0002-1816-6901

at scale. [27][33]. This has given rise to new technologies and computational
architectures being introduced into cloud computing in order to maintain the
Quality of Service (QoS) of the applications providing these services. In the past
few years, deployment architectures have changed from monolithic [4] to mi-
croservice architectures that aid the developers to build large applications in a
scalable manner. Microservice architectures demanded the need of Container-as-
a-Service (CaaS) [I3] that provided always-on servers with the ability to scale
out easily. However, serverless computing provides a different approach to man-
aging servers in the form of Function-as-a-Service (FaaS) [7] that proposes the
elimination of always-on servers and transition of the services to an on-use basis.

Serverless architecture uses the approach of using ephemeral containers that
can be launched instantaneously on request and be stopped upon completion of
computation [22]. This requires the developers to break down their application
into multiple functions as the basic units of computation and these functions are
hosted in separate containers that are launched upon request and are destroyed
when the function execution is over. This architecture provides the opportunity
to reduce the resource usage of containers when they are idle and are not receiv-
ing requests and also reduces the cost of always-running servers [20] [24]. Instead,
the cost of the infrastructure is only accumulated for the time the function was
actually executed. The serverless computing model removes the need for infras-
tructure management and this provides a great advantage over monolithic and
microservice deployment models.

The serverless computing model provides a great opportunity for edge com-
puting, which consists of an event driven architecture and is subject to varying
workloads [3I] [25]. Processing data on the edge of the network provides a solu-
tion for limited network bandwidth and latency problems as well as data privacy
concerns by executing code closer to devices and end users [12]. This compute
model can provide support for latency-sensitive workloads [10] and help adhere
to compliance and privacy regulations. Serverless computing also offers relia-
bility and the ability to scale with no associated management overhead in an
edge environment. A serverless architecture for edge computing, what we call it
serverless edge computing, can provide the benefit of faster deployment, a smaller
footprint and increased performance [5].

This book chapter focuses on the performance evaluation of serverless plat-
forms of both public cloud and open source contributors in an attempt to analyse
the viability of serverless platforms in an edge environment. In order to emu-
late the edge environment, we aim to set up the serverless platforms on ARM
based single-board computers (SBCs), namely, Raspberry Pis and we evaluate
the performance of ARM architecture-compatible serverless platforms on these
devices. For small-scale infrastructures that are set up in edge environments, sin-
gle board computers are commonly used. By simulating a similar environment,
this study aims to provide insights on the performance of serverless platform
on resource constraint devices as this research does not exist in the present lit-
erature. The analysed open-source serverless platforms are OpenFaaSE Apache

! OpenFaas (2020), https://docs.openfaas.com

https://docs.openfaas.com

OpenWhiSkE AWS Greengrassﬂ We compare their performance with serverless
computing services of AWS Lambdsﬁ and Azure Functionsﬂ in an attempt to
research the suitability of a serverless architecture on the edge. We set up our
experiments by configuring these serverless platforms on a cluster of four Rasp-
berry Pis and subjected them to varying amounts of workloads and analysed
the differences in the performance metrics such as response time and success
rate for various types of workloads, e.g., CPU-intensive, memory-intensive, and
disk-intensive functions.

The organization of this book chapter is as follows: Section [2| provides a
background and motivation on the topic. Section [3]focuses on the related works
that have been carried out in this research area and describes serverless com-
puting platforms that we have selected for this study. Section 4| discusses our
performance evaluation methodology, experimental setup and the analysis of
the results. Section [5| presents the discussion on our findings. Finally, Section 77
provides a conclusion to our work and outlines future work.

2 Background

2.1 Motivation

Imagine a course-grained application with several dependencies between its ser-
vices which is deployed on the cloud. The incoming workload is naturally highly
dynamic, so the application requires varied amount of computing resources to
respond to the dynamism over the time, so called auto-scaling [2]. This scenario
applies to a great number of Web applications hosted in the cloud [3].

The first deployment solution appears resource over-provisioning: providing
resources, i.e. VMs, for the application as much as the required resources for
the maximum expected incoming workload. This solution will greatly guarantee
Quality of Service (QoS), but resource wastage is highly likely. Inefficiency also
appears more seriously when hypervisor-based machines, i.e., VMs, with large
footprint are intended to host the application.

Another solution for efficiently deploying monolithic applications is to adopt-
ing an auto-scaler to dynamically respond to the workload changes by adding
or removing replicas of the application, i.e. adding or removing VMs [3]. This
can narrow the gap, but auto-scaling large monolithic applications with several
interconnected services will not potentially be a sufficiently smart and quick ac-
tion. It is not smart, as potentially only certain parts of the application may need
auto-scaling, not the entire application. A monolithic application is composed
of several services tightly coupled with each other and cannot be scaled indi-
vidually easily. The solution is not quick also, as heavyweight hypervisor-based

2 Apache OpenWhisk (2020), https://openwhisk.apache.org/documentation.html

3 AWS Greengrass (2020), https://docs.aws.amazon.com/greengrass/

* AWS lambda (2020), https://docs.aws .amazon. com/lambda/index . html

® Microsoft Azure Functions (2020), https://docs.microsoft.com/en-us/azure/
azure-functions

https://openwhisk.apache.org/documentation.html
https://docs.aws.amazon.com/greengrass/
https://docs.aws.amazon.com/lambda/index.html
https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions

virtualization tends to suffer from long boot-up times for newly provisioned VMs,
sacrificing QoS. Add to auto-scaling challenges that considerable complexity for
deploying auto-scalers will not be practical for non-expert users.

Given the motivational scenario, this question is raised: “how we can re-
design cloud platforms to properly respond to the dynamic nature of the appli-
cation?” Recently, serverless computing has attracted great attention in dealing
with such challenges. In the following, a historical view of serverless computing
will be presented.

2.2 History of Serverless

In a nutshell, “serverless attended the reunion between technological advances
such as microservices, containerization, and the idea of effortless auto-scaling and
pure pay per use model [1].” From DevOps perspective, let’s fork the advances in
development, e.g., coding, and deployment, e.g., installation and maintenance,
sides for applications and merge them into a united idea as serverless.

Development advances: monolithic applications, despite easy deployment, are
not easily scaled. Hence, service-oriented architectures for applications appeared
and advanced towards today’s microservices that reshapes a monolithic applica-
tion into loosely coupled services that can scale individually. Furthermore, the
idea of fully decomposited application arose, that assumes each individual mi-
croservice can live by itself, under the name of a function. This led to Function-
as-a-Services (FaaS) [I] wherein only an individual service is developed for a
single unit of task. FaaS also decouples the application for them state and runs
stateless functions. Note that the if the state is still required for certain appli-
cations while staying in FaaS, the state can be preserved separately by storage
services. With this advance, the question is how to take advantage of FaaS in
deployment side? and how to bring them in reality?

Deployment advances: given the large footprint of VMs, the containeriza-
tion [I] came into the picture. This means, instead of abstracting the underlying
resource from a hypervisor in order for launching an isolated computing resource
as VM, one can employ the OS kernel to launch a semi-isolated container. This
idea came from small footprint requirements for computing resources to effi-
ciently provision resources for certain applications. With this in mind and the
advances in development side, it is obvious that containerization will definitely
suit FaaS, where single units of computation are intended to be provisioned and
scaled.

One step is left to serverless. Such advances helped decoupling monolithic
applications to fine-grained FaaS and help provisioning lightweight resources, i.e.,
containers instead of VMs for making FaaS a reality. However, the challenges of
auto-scaling and maintenance are still remained unsolved and poses the question
that how to benefit from such advances for efficient execution of applications?

That was a problem until Amazon introduced Lambda [I] for running func-
tions in terms of FaaS that run on ephemeral short-lived containers. The auto-
scaling and maintenance is left to the serverless platform. Precisely, serverless
platforms enable developers to write their applications in terms of functions

in any language of interest. Then, the platform is responsible for provisioning
resources, e.g., container, per each request (invocation) to the function. Sim-
plistically, once a request is made to the function, the serverless platform will
run a new container and after completing the task the container is terminated
or stays alive for a short period of time for reusability. Functions are intended
to run ephemerally and for short-running tasks. Note that the idea of FaaS and
serverless appeared under the same banner historically and occasionally are used
interchangeably. An added bonus with serverless offered by cloud providers is
also to realize a pure pay pay use pricing model wherein one just pays for the
actual execution time of tasks. In conventional cloud pricing models, customers
pay for the duration of time the resources are provisioned, regardless of being
actually used or not.

This provides a huge advantage over other infrastructures such as Platform-
as-a-Service (PaaS) or Container-as-a-Service (CaaS) as servers do not need to
be running constantly in the background accumulating costs. Functions start
within milliseconds and process individual requests. If there are several simul-
taneous requests for your function, then the system will create as many copies
of the function, that will be managed by the container orchestration system,
as needed to meet demand. When demand drops, the application automatically
scales down. Dynamic scaling is a benefit of FaaS, and is cost-efficient as well,
because providers only charge for the resources that are used, not idle time [21].
When running on premise, this dynamic nature can also increase platform den-
sity, allowing more workloads to run and optimize resource consumption. An
event-driven service that needs horizontal scaling can work well as a function,
as well as RESTful applications [8]. Figure [1| shows a schematic serverless archi-
tecture.

Given the emergence of AWS Lambda serverless in 2014 as the pioneer, sev-
eral companies and individual users employed this platform in practice. Other
IT companies such as Microsoft (Azure Functions), Google (Google Cloud Func-
tions) IBM (Open Whisk), etc. also attended the market and offered their own
serverless platforms. Open-source platforms also came to the picture such as
OpenFaaS, Kubeless, etc.

Function| |Function| |Function| | Function

A A A A

Client Request Function| | Function| | Function| | Function
Requests Gateway
A A A A

Container Orchestration Engine

Fig. 1: Serverless Architecture

2.3 Serverless at the Edge

Given the focus area of this research —serverless edge computing— this question
is raised that “Why will serverless be good practice for edge computing?”

Edge computing is intended to bring computation closer to data sources and
of the biggest stakeholders of edge will be ToT applications [I]. Let’s analyze how
IoT applications work. Typically, a group of sensors are located in a particular
area, e.g., street, farm, factory, body, etc., in order for collecting and sending
data to a computing node for execution. The occurrence of such events is highly
variable. The execution also would involve short-running tasks such as analyzing
if a body temperature is higher than a certain degree or if the moisture content of
the soil is at a certain level. Add to these characteristics of IoT applications that
they will potentially face energy preservation challenges of edge nodes as well.
An edge computing platform for several IoT use cases is deemed to perform on
low-power devices such as SBCs that demands certain considerations for energy
saving.

Obviously, IoT applications with event-driven nature and short-running tasks
characteristics will match with serverless platforms functionality. Serverless tends
to avoid always-on deployment of applications and instead tends provision con-
tainers per requests and to terminate after execution. Hence, this will be a huge
step towards energy saving on edge nodes as well.

Theoretically, serverless appears practical for adaptation in edge. This idea
has attracted cloud serverless providers to re-design their platform to support
edge specific requirements as well. AWS Lambda was once again of the dominant
in this move and AWS is now offering relative services such as Greengrass. In
academia, researchers also made effort to assess the feasibility of serverless at
the edge for different IoT use cases, which will be elaborated in the next section.

3 Related Works

Function-as-a-Service (FaaS) is an event-driven computing execution model that
runs in stateless containers and those functions manage server-side logic and
state through the use of services [29] [9]. It allows developers to develop, deploy,
and manage those application services as functions without having to maintain
their own infrastructure. FaaS provides developers with the flexibility to develop
event-driven applications without managing servers. Serverless infrastructure has
the ability to scale to zero, i.e. when there are no requests, the servers are
stopped and are only running when they are needed [I1]]. Serverless computing
is a relatively new area and has received a lot of attention in recent years [30] [16].
This is due to the potential the serverless computing architecture offers and the
need for being validated by research. The work of Van Eyk et al. [30] provides
a detailed description and explanation of the serverless computing architecture
along with the evolution of cloud computing that led to the rise of serverless
computing. Lee et al. [I6] performed a performance analysis and comparison
of the serverless computing services from major cloud providers such as AWS,

Azure, GCP and IBM Cloud and analysed the performance of these services in
a production environment.

The work done by Mohanty et al. [I8] researched multiple open source server-
less platforms and comprehensively compared the features and architecture of
each platform in order to identify the most suitable platform for production
environments. They further elaborated on their research by also comparing the
performance of these platforms when running on a Kubernetes cluster. Another
study done by Palade et al [23] is related to our work as they focus on the perfor-
mance of open source serverless computing platform at the edge. The serverless
platforms that were compared in that study are Kubeless, OpenFaaS, Knative
and Apache OpenWhisk. However, their study does not take into account the
computational limitations of edge devices as the platforms are setup on Desktop
grade machines and are used to compute the data that is being generated by
edge devices. Their study also evaluates qualitative features of these platforms,
such as programming language support, container orchestration engine support,
monitoring support and CLI interfaces, and the quantitative evaluation, which
measures response time, throughput and success rate, and does not include re-
source intensive tasks. This book chapter provides insights into how a serverless
architecture on the edge looks like when we use resource constrained devices
such as Raspberry Pis.

Baresi et al. [5] discuss the adoption of serverless architectures on the edge
and proposes a new serverless platform that can be suitable specifically for an
edge environment. Lloyd et al. [I7] discusses the performance of AWS Lambda
and Azure Functions and compares it across multiple metrics including latency
and the effect of warm and cold starts on serverless functions. Shillaker et al. [2§]
evaluates the performance of OpenWhisk and evaluates the response times at
varying levels of concurrency. However, none of the works analysed the perfor-
mance of AWS Lambda function running on the edge using AWS Greengrass and
none of the works explicitly compare the performance of both open source and
public cloud serverless platforms that is a significant deciding factor in the via-
bility of serverless platforms on the edge. Moreover, to the best of our knowledge,
this is the first work that evaluates the performance of open source serverless
platforms that are set up on resource constraint edge devices like Raspberry Pis.

In this book chapter, we compare the performance of AWS Lambda, AWS
Greengrass (running local lambda functions), Azure Functions, Apache Open-
Whisk, and OpenFaaS. In the following subsections, we briefly describe each of
these severless platforms. Table [I] also provides the qualitative evaluation of the
various serverless platforms that we analysed in this book chapter.

3.1 AWS Lambda

Amazon Web Services (AWS) offers their serverless computing service called
Lambda. AWS Lambda was the pioneer of public cloud serverless computing
services as AWS was the first major cloud computing provider to provide a
serverless compute service. AWS Lambda follows the FaaS architecture and al-
lows the developers to focus on their application and not worry about manag-

ing infrastructure [32]. AWS Lambda supports multiple programming languages
such as JAVA, Go, Python, Ruby. etc. and the cost model is based the compu-
tational expenses of the function execution i.e. the cost is only accumulated for
the amount of time that the function is executed. AWS Lambda also provides
its Lambda@Edge service which utilizes the AWS Edge Locations in an attempt
to reduce latency for its customers and the functions are executed closer to the
application which results in lower response times. AWS allows Lambda functions
to be run on local edge devices using AWS Greengrass service which is discussed
in the next section.

3.2 AWS Greengrass

AWS Greengrass is a service provided by AWS that allows its customers to run
local compute, messaging, and multiple AWS services on a local edge device.
AWS Greengrass allows the developer to set up a Greengrass core device that
acts as the primary point of connection between the edge setup and the cloud
servers. Other devices can either be added as worker nodes for computation or
as ‘Things’ that are devices that are able to communicate with the core device.
AWS Greengrass primarily uses MQTT [19] protocol to communicate between
the core devices and the IoT things that are registered in the AWS Console.
Greengrass is relevant to our study because AWS allows compute services such
as AWS Lambda to be run on edge devices in order for the computation to be
closer to the application and user. We use ARM devices to set up our serverless
platforms. Luckily, Greengrass natively supports ARM architecture and allows
the Greengrass Core to be set up on a Raspberry Pi along with providing the
ability to add multiple Raspberry Pi devices as worker nodes for the core device.

3.3 Azure Functions

Microsoft Azure provides Azure Functions as its serverless compute service and
follows the same paradigm of serverless computing as discussed previously. The
underlying infrastructure is managed by Azure Function providing the developer
to focus on their code and building their applications following the serverless
development paradigm [I5]. Azure Function use authentication to keep out un-
wanted entities from the system. Azure Functions is a relatively new service, so
there are fewer studies that have analysed its performance and compared it to
other public cloud serverless offerings.

3.4 Apache OpenWhisk

Apache OpenWhisk is an open-source serverless platform currently in incuba-
tion. IBM Cloud has built their IBM Cloud Functions on top of Apache Open-
Whisk utilizing the power of OpenWhisk’s services. OpenWhisk has multiple
components and relatively consumes more resources due to the added com-
ponents [26]. For the purposes of this research, we will be utilizing the Lean

OpenFaaS OpenWhisk AWS Lambda [AWS Green-|{Azure Func-
grass tions
Characteri- |Allows the|Writes func-|Lambda runs|Runs AWS|Easily develop
stics development tional logic|your code on|Lambda func-j{and run mas-
of serverless|called actions|high-availability [tions on the|sively parallel
functions in|which can be|compute infras-|device to re-|real-time ana-
multiple lan-|scheduled and|tructure and|spond quickly|lytics on multi-
guages and na-|triggered via|performs all the|to local events,|ple streams of
tively supports|HTTP. Highly|ladministration |interact with|data — including
Docker. Easy|scalable and|of the compute|local resources,|IoT — using
deployment. resilient. resources, in-|and process|Azure Stream
Auto-scaling cluding server|data to mini-|Analytics. With
according to de- and operating|mize the cost|no infrastruc-
mand. Portable system mainte-|of transmitting|ture to manage,
as it runs on nance. Capacity|data to the|process data on
existing hard- provisioning cloud. Support|demand, scale
ware and can and automatic|local pub-|instantly and
be deployed on scaling. Codel|lish/subscribe |only pay per
both public and and security |messaging job.
private cloud. patch deploy-|between com-
ment. Code|ponents. Highly
monitoring and |secure.
logging. Fault
Tolerance.
Programm-|Go, NodeJS|NodelJS, Go,|Java, Go, Pow-|Java, NodelS,|Java, Python,
ing Lan-|Python, Java,|Java, Scala,|erShell, NodeJS,|Python TypeScript,
guages Ruby, PHP, and|PHP, Python,|C#, Python, F#, C#, Pow-
Supported (C# Ruby, and Swift |and Ruby ershell, and
JavaScript
Intended Kubernetes, No orchestra-[NA Docker Com-|NA
Infrastruc- |Docker Swarm,|tor required, pose
ture extendable Kubernetes
to other or-|supported,
chestrators, Public Cloud
Public Cloud [supported.
supported
Virtualiz- |Docker Docker Micro- Micro- Docker
ation VM /firecracker |VM /firecracker
Triggers HTTP, faas-cli |HTTP, OW-CLI|S3, SNS,IMQTT Event,|Azure Event
DynamoDB, AWS Green-|Hub and Azure
CloudWatch, grass CLI Storage, Web
Config Rules, Triggering, trig-
API Gateway, ger types and
Greengrass. scheduled types.
Billing NA NA Price according|Monthly Price|Price according
to the mem-|per device.|to the mem-
ory allocation.|$0.16 per month|ory allocation.
$0.00001667 per $0.000016 per
GB-second. GB-second.
Limitations|Does not pro-|{Open Whisk|[Maximum func-|Lack of pro-{Maximum func-
vide authentica-|does not have|tion runtime|gramming lan-|tion runtime
tion many options|is 15 minutes,|guage support|is 10 minutes.
for trigger-|land the de-|currently. Steep|Memory usage
ing actions|fault timeout|learning curve.|limit is 1.5 GB.
since it is alis 3 seconds|Limited support|This memory is
bit difficult to|which makes it|for integration|shared among
integrate them.|unsuitable for|with other AWS|all Functions in
Also, there is|long-running services. the application.
a problem in|workloads. The
the execution of|payload for
the concurrent|each invocation
systems. of a Lambda
function is lim-
ited to 6MB,
and memory is
limited to just
under 3GB.
Communi- |Request/Reply |Request/Reply |[Request/Reply [Publish/Subscr- |Request/Reply
cation ibe and Re-
Pattern quest/Reply
State Stateless Stateless Stateless Stateless Stateless

Table 1: Qualitative Evaluation of Serverless platforms

OpenWhisk branch of the Apache OpenWhisk platform as it is less resource
intensive and more suitable for edge environments compared to its full version.
Lean OpenWhisk supports the same number of languages as its master branch
but is not natively compatible with the ARM architecture. OpenWhisk can be
run on Kubernetes or Docker compose [I4]. For the purposes of this study, we
will be setting up Lean OpenWhisk on Docker compose as it consumes less sys-
tem resources. In order for it to be compatible, custom Docker images of the
Lean OpenWhisk platform have to be created for the ARM architecture as it
currently only supports x64 and x86 architectures.

3.5 OpenFaaS

OpenFaaS is a lightweight open-source serverless platform that provides native
compatibility with the ARM architectures and is easy to set up and start running
production workloads. OpenFaaS is compatible with multiple system architec-
tures and can be run on top of Kubernetes and Docker Swarm. OpenFaaS follows
the same serverless compute paradigm as the other serverless platforms and pro-
vides services for resource and performance monitoring and supports multiple
programming such as Python, JavaScript, Ruby etc. Faasd is a variant of Open-
Faa$S that utilizes Containerd as the container orchestration system and is lighter
than OpenFaaS. However, faasd does not support setup on multiple Raspberry
Pi devices in a cluster which is why we use OpenFaaS in our experiments.

4 Performance Evaluation

We analyze the performance metrics including response times and success rate
for the requests measured for each of the aforementioned platforms for the sake
of comparison. The response times consists of the time it takes a request to
reach the server, the time to execute the function on the server, and the time
it takes the response to be delivered back to the client. Success rate measures
as the percentage of requests that were executed successfully. As displayed in
Figure [2| the local functions are run on a cluster of 4 Raspberry Pis, whereas
calls are made to OpenFaas, OpenWhisk and AWS Greengrass in our serverless
setup on the local network and also to the cloud functions in AWS Lambda and
Azure Functions from the same test machine. This allows us to compare the
performance of running local functions as compared to cloud functions which
will be a good deciding factor on the viability of running serverless workloads
on the edge or running the workloads on the cloud.

4.1 Experimental Setup

We run the experiments on a cluster of four Raspberry Pis, with our requests
being generated by a test machine running JMeter on the same local network.
For the purpose of accuracy, the experiments are run on an isolated network so
that there is no other network overhead that interferes with the network. These

Local Network

Y

‘Apache OpenWhisk

=

OPENFARS

Greengrass

‘ /|Meter” ‘

‘ Laptop

Device / \
Kubernetes / Docker Swarm / 0 “
|
\\‘ AWS Lambda Azure Functions
- F m
m o E - " k_—llm‘y W

Worker Worker Worker Master

L d \

Fig. 2: Deployment setup

tests have been carried in the city of Melbourne, Australia. The deployment of
each platform is done individually in order to make sure no other services are
consuming the system resources. This is especially important due to the limited
resources available on the edge devices and compute power plays an essential role
in our results. We use Raspberry Pi Model 3B+ devices running Raspberry Pi
OS which is a Linux distribution designed specifically for Raspberry Pi devices.

Testbed Setup Each Raspberry Pi has a 1.4GHz 64-bit quad-core ARM pro-
cessor and 1GB RAM. Unless stated otherwise, we used the default deployment
settings for each platform, for example, Docker Swarm as the container orches-
tration system for OpenFaas. EI We use Apache’s Lean OpenWhisk offering that
utilizes no Kafka, Zookeeper and no Invokers as separate entities which is suit-
able for the ARM architecture. The Lean OpenWhisk branch of the Apache
OpenWhisk project does not provide compatibility with the ARM architecture
of the Raspberry Pi. Each component of OpenWhisk runs as a Docker container
and these Docker images have been configured for the ARM architecture in this
docker repositorym We created the ARM compatible Docker images to set up
OpenWhisk on each Raspberry Pi in the cluster. This setup does not support
multiple Raspberry Pi devices in a cluster, so we use an NGINX Load Balancer
to distribute our HTTP requests to the Raspberry Pi cluster.

We use AWS Greengrass to set up our cluster which involves setting up a
Greengrass Group on the AWS Management Console and an AWS Greengrass
IoT Core on the master Raspberry Pi. The other Raspberry Pi devices are
registered as non-core devices and communicate with the core over localhost.
The region that the remote Lambda functions are running on Greengrass is set
as ap-southeast-2 i.e. Asia Pacific (Sydney) region. For our AWS Lambda setup,
the region is set as ap-southeast-2 i.e. Asia Pacific (Sydney, New South Wales)
region in order to maintain consistency and minimize network latency. For our

5 OpenFaas has switched to Kubernetes as the officially supported orchestration sys-
tem. This update was provided by OpenFaas after the experiments were conducted
in this book chapter.

" Docker (2020), https://docs.docker . com/

https://docs.docker.com/

Azure Functions setup, the region is set to Australia Fast which is also the New
South Wales region. Azure does offer the Australia South East region that is
the Victoria region, but for the purposes of comparison with AWS Lambda, the
Australia East region is selected. Table [2| shows the average ping results from
the test machine to the AWS and Azure servers in Sydney and also the ping
results to the raspberry pis on the local cluster. This provides us with the time
associated with network latency in our experiments.

Destination Ping
| [Ping]

Raspberry Pi Cluster (local network) [4ms
AWS Sydney Region (ap-southeast-2) [42ms
Azure Sydney Region (Australia East)|51ms

Table 2: Ping results from the test machine

We use Apache JMeter version 5.3 to generate HTTP requests that invoke
the functions deployed on each platform. We run JMeter on a Windows Machine
that has a quad-core Core i7 CPU and 8GB RAM. This machine is set up on the
same local network as the Raspberry Pi Cluster in order to minimize latency. The
JMeter tool is set up to send 1000 requests with different levels of concurrency (5,
10 and 15). These concurrent requests affect the number of simultaneous requests
received by each platform. These concurrency levels were decided based on the
compute power available to the platforms and each experiment is replicated 3
times in order to maintain statistical accuracy. Specifically for AWS Greengrass,
we use the JMeter MQTT plugin which extends the JMeter capability to send
MQTT requests instead of HTTP requests as AWS Greengrass requires the user
to send MQTT requests.

Test Functions The three types of functions that we use to test our server-
less platforms are CPU-intensive function, memory-intensive functions and disk-
intensive functions. We use JavaScript for our functions as it is supported by all
of our test platforms. The workloads designed for testing these platforms are
representative of the various types of workloads that are generated in an edge
environment. Due to the lack of research on serverless platforms’ performance on
resource-constrained devices, this workload has been designed to test how each
platform performs when subjected to an emulated workload. In order to simu-
late a CPU-Intensive function, we multiply two square matrices of 128 by 128
dimensions that has a complexity of O(n?). The execution time of this function
varies on the computational power available to the compiler. For the memory-
intensive function, we utilize the memoize() function of javascript that allows
us to store the expensive results of our functions in the cache and retrieve them
quickly from the cache if the same result occurs [6].

To simulate a disk-intensive workload, we created a function to unzip 10
zipped files of size 2.5MB onto the disk. This utilizes both read and write oper-
ations for the function. The disk-intensive function requires an extensive setup
especially for the cloud functions that we are executing using AWS Lambda and
Azure Functions. This is because these services are event-driven and make use

1,500 ! ! ! =] 1,500 ! ! ! =] 1,500

1,000 |- 1,000 -

] H jl

OF OW GG Lambda Azure OF OW GG Lambda Azure OF OW GG Lambda Azure
Serverless platform Serverless platform Serverless platform

1,000 -

S
3
T

500 -

Response Time (ms)
Response Time (ms)
Response Time (ms)

=)
o

o

(a) 5 concurrent users (b) 10 concurrent users (c) 15 concurrent users

Fig.3: Median response time with standard error bars on CPU-Intensive tasks for
OpenFaas (OF), OpenWhisk (OW), AWS Greengrass (GG), AWS Lambda (Lambda),
Azure Functions (Azure) with various number of concurrent users.

of ephemeral containers that are stateless and do not have access to file system
that can be shared across all other functions. While a temporary file system for
the individual function is included, this ephemeral storage is not intended for
durable storage which is why need to attach a shared file system for the functions
to access shared data. For AWS Lambda, we created an EFS File Systemon the
AWS Console and provided read/write permissions for Lambda. Then we added
the EF'S File System in the Lambda configuration to as Local Mount PathAzure
Functions follows a similar procedure to AWS Lambda. We used Azure Blob
Storage to provide file access to our Azure Function. For the other platforms,
we placed the zip files on each Raspberry Pi in the cluster as the devices do
not share a file system. In future work, we would like to test these platforms
on actual IoT application workload traces in order to gain better insight on the
performance of each serverless platform.

4.2 Results

In order to compare the performance of each platform, we measure the response
times of each request under different levels of load. The number of concurrent re-
quests directly affects the performance of platforms which alludes to the number
of function instances being created in order to handle the requests. The function
instances consume the system resources and we want to measure the effect of
this on the performance of each platform. Our main aim is to find out the per-
formance issues for each platform and how it handles different types of serverless
workloads i.e. CPU-intensive, memory-intensive and disk-intensive functions.

CPU-Intensive Functions Figure[3|shows the median response times for each
platform for the 1000 requests that we sent under different concurrency. These
response times include the time taken to send the request, the time taken to
execute the function and the time taken to receive the result to our test machine.
This is an asynchronous request so it waits for the function to be executed
and then receives the response. In each of the results, the lowest response time
recorded is for the OpenFaaS platform. We observe that the lowest response

1500 ‘ ‘ ‘ - 1500 ‘ ‘ ‘ - 1,500
& 1ooof © 1000} T Lo00]
& & =
: 2 £
2 500H 2 500t 2 500¢
8 8 8
A~ H = ~

0 OF OW GG Lambda Azure 0 OF OW GG Lambda Azure 0 OF OW GG Lambda Azure
Serverless platform Serverless platform Serverless platform
(a) 5 concurrent users (b) 10 concurrent users (c) 15 concurrent users

Fig. 4: Median response time with standard error bars on Memory-Intensive tasks for
OpenFaas (OF), OpenWhisk (OW), AWS Greengrass (GG), AWS Lambda (Lambda),
Azure Functions (Azure) with various number of concurrent users.

time is when we send 5 concurrent requests to OpenFaaS with values around
400ms. OpenWhisk performs fairly similarly with values around 450ms. These
response times increase as we increase the number of concurrent requests to
10 where OpenWhisk is impacted considerably more than OpenFaaS as the
response time increases to 750ms. OpenFaaS response time rises to 448ms when
dealing with 10 concurrent requests. The response times for OpenWhisk rise even
more when subject to 15 concurrent requests as the response time is 923ms. As
compared to OpenFaaS, the response time remain fairly stable when we increase
the concurrent requests.

l [OpenFaaS[OpenWhisk[AWS Greengrass[AWS Lambda[Azure Functionsl

CPU 100% 99.1% 100% 100% 100%
Memory| 99.5% 99.3% 100% 100% 100%
Disk 99.9% 99.6% 100% 100% 100%

Table 3: Request Success Rate for platforms under different workloads

As shown in Table [3] OpenWhisk records the worst success rate in our ex-
periments for CPU-intensive workloads. We recorded 8 failed requests out of
1000 as a result of an increase in the system’s resource consumption. OpenFaaS
records a perfect success rate with no failed requests deducing that it handles
CPU-intensive workloads very well under various loads. These results show that
performance of OpenWhisk decreases significantly as we increase the number
of concurrent requests and the reason for that is because OpenWhisk consumes
more compute power to run its components as compared to OpenFaaS which is
more lightweight. If we analyze the response times for AWS Greengrass, we can
compare the rise in latency is not that significant when we increase the number of
concurrent requests accordingly. However, AWS Greengrass records the highest
response times out of all the platforms, due to the time it takes for the request to
reach the AWS server to trigger the function on the core device. AWS Lambda
and Azure Functions performs very similarly for each level of concurrency and
show very slight changes in latency which is predictable as these platforms do
not have as limited resources as compared to the other platforms and provide
highest level of scalability. For our CPU-intensive functions, AWS Greengrass,

AWS Lambda and Azure Functions and OpenFaas do not have a single failed
request as compared to OpenWhisk.

Memory-Intensive Functions Figure 4| demonstrates the results for the per-
formance of each serverless platform for memory-intensive functions. The re-
sponse times were recorded for each platform until varying concurrent requests in
order to observe the effect it has on the performance. The lowest response times,
in each of the tests for memory-intensive functions, were for Apache OpenWhisk
that performed considerably better than the other platforms and the results were
quite stable with only a gradual increase in response time when we increased the
number of concurrent requests. The lowest median response time for OpenWhisk
is 416ms for 5 concurrent requests and it reaches a maximum of 621ms for 15
concurrent requests. OpenFaaS, however, demonstrated higher response times
than OpenWhisk for memory-intensive functions but the response time varied
less between different concurrent requests which proposes that this increase in
latency is less likely to be caused by OpenFaaS ability to scale and is more likely
attributed to memory management for function execution in the platform.

The highest response times were for AWS Greengrass that maintained its
values between 1400ms to 1500ms between varying concurrent requests. We ob-
served that AWS Greengrass took more time for memory-intensive functions
than CPU-intensive functions but is affected less by change in concurrent re-
sults. In fact, there is only a 13ms difference between the results we send 5
concurrent requests and 10 concurrent requests and Greengrass only witnesses a
slight increase in latency when we increase the concurrent requests to 15. Both
AWS Lambda and Azure Functions perform very similarly with little changes in
latency when we increase the number of concurrent requests. Both of the plat-
forms provided similar results to our CPU-intensive tasks. This is attributed to
both of the cloud serverless offerings’ ability to scale indefinitely and also due
to the higher computational power available to the functions. However, as the
functions are not being executed locally and need to communicate with the cloud
servers, the latency is much higher as compared to the platforms that are set up
locally.

Disk-Intensive Functions Figure [5| shows the results for the evaluation of
each platform for disk-intensive functions. The lowest response times for this ex-
periment are recorded by OpenFaaS and the platform scaling very well when we
increased the number of concurrent requests. The response time only increased
by 50ms between 10 and 15 concurrent requests which demonstrates the new
functional replicas were able to handle the increased load easily. However, we
noticed that OpenWhisk recorded higher response times as compared to Open-
FaaS and when we increased the load from 10 to 15 concurrent requests, it
caused an increase in response time of 200ms. The success rates for OpenFaaS
and OpenWhisk were also very acceptable as we recorded very few failed re-
quests as compared to the other function types. AWS Greengrass showed similar
trends to OpenWhisk as the response times for 5 and 10 concurrent requests

1,500 ! ! ! =] 1,500 ! ! ! =] 1,500

1,000 |- 1,000 |- 1,000 -

H 500 - ﬂ 500 - H

OF OW GG Lambda Azure OF OW GG Lambda Azure OF OW GG Lambda Azure
Serverless platform Serverless platform Serverless platform

500

Response Time (ms)
Response Time (ms)
Response Time (ms)

=)
o

o

(a) 5 concurrent users (b) 10 concurrent users (c) 15 concurrent users

Fig. 5: Median response time with standard error bars on Disk-Intensive tasks for Open-
Faas (OF), OpenWhisk (OW), AWS Greengrass (GG), AWS Lambda (Lambda), Azure
Functions (Azure) with various number of concurrent users.

are very similar but an increase in load to 15 requests caused the latency to
increase by 220ms. This can be attributed to the creation of new function repli-
cas in both cases of OpenWhisk and AWS Greengrass. AWS Lambda and Azure
Functions both displayed similar results for this experiment, as we did not notice
any changes in latency caused due to an increase in load or the function type.
The file storages for both platforms were configured on the same server as the
functions, which shows us that there is minimum latency for disk read and write
operations. The results for the success rates for AWS Greengrass, AWS Lambda
and Azure Functions were the same as the previous experiments as they recorded
perfect success rates with no failed requests.

5 Discussion

Our experimental results show that OpenFaaS performs considerably better on
the edge than the other platforms. We can attribute this to the lean architecture
of the platform which suits very favorably to edge devices and consumes fewer
resources which is very suitable for edge devices. Along with that, it provides
native support for the ARM architecture, along with the ability to scale easily
by adding more raspberry pi devices. However, the results vary for high loads
especially for CPU-intensive and memory-intensive workloads. We found out that
the performance of Apache OpenWhisk is inferior to OpenFaaS in our setup
as OpenWhisk does not provide full support for the ARM architecture and
the lean version restricts its performance when handling increased workloads.
This performance bottleneck may be attributed the high memory usage of the
platform that leads to resource starvation for new containers. Furthermore, the
ability to add more worker nodes with ease is an integral part of edge computing
setup, which OpenWhisk does not support natively.

AWS Greengrass performed very consistently across our experiments, but
the increased response times are a considerable factor when making the decision
to deploy this platform on the edge. The cause of these increased response times
is the added latency of the requested being routed to the AWS cloud servers.
The increased latency for CPU-intensive tasks also suggests that the functions
take longer to compute due to resource starvation. AWS Greengrass seamlessly

extends AWS to edge devices so they can act locally on the data they generate,
while still using the cloud for management, analytics, and durable storage. It
enables the connected devices to run AWS Lambda functions, keep device data
in sync, and communicate with other devices securely. AWS Greengrass provides
support for ARM architecture and provides the ability to scale out by adding
more worker devices. AWS Greengrass provides an opportunity for further re-
search to be conducted by testing its performance in an isolated edge without
connectivity to the cloud.

If we want consistent performance regardless of the amount of workload,
the cloud serverless offerings of AWS Lambda and Azure Functions provide a
stable service and can scale according to the increased load. This demonstrates
that for workloads that require increased computational capacity, along with
the ability to handles a workloads at an increased scale, the cloud serverless
offerings are very suitable. However, the overall latency to cloud is higher than
the edge devices as experiments show and running serverless platforms such
as OpenFaaS on the edge provides promising prospects to meet the stringent
latency requirements of emerging real-time applications such as autonomous
vehicles. Nevertheless, our work provides the groundwork for comprehensively
benchmarking the performance of serverless platforms on the edge, specifically
on devices with ARM architecture.

6 Conclusions and Future Work

Performing serverless computations on the edge proposes numerous advantages
in an event-driven architecture, allowing us to generate more data on the edge
without having to worry about managing its applications. This book chapter
analysed the performance of serverless platforms on the edge, specifically on
ARM architecture edge devices such as Raspberry Pis. We performed compre-
hensive performance tests on the compatible serverless platforms of OpenFaaS,
Apache OpenWhisk and AWS Lambda functions running locally in the AWS
Greengrass platform on edge devices, and compared their performance to cloud
serverless offerings of AWS Lambda and Azure Functions to research the via-
bility of setting up a serverless architecture in an edge environment. Based on
that, the results demonstrated that OpenFaaS is the most suitable platform for
an edge setup as it provides a lightweight architecture with support for simple
and rapid scaling. We used the metrics of response time and success rate for
each platform to compare the performance on how each platform would cope
in an edge setup. AWS Greengrass provides a promising opportunity in this en-
vironment for further research due to its native support for ARM architecture
and its development support from AWS. For future research, we aim to analyse
other suitable serverless platforms and develop ARM architecture support and
further research the viability of serverless architecture on the edge.

1]

Bibliography

Aslanpour, M.S.; Toosi, A.N., Cicconetti, C., Javadi, B., Sbarski, P., Taibi,
D., Assuncao, M., Gill, S.S., Gaire, R., Dustdar, S.: Serverless edge com-
puting: Vision and challenges. In: 2021 Australasian Computer Science
Week Multiconference. ACSW 21, Association for Computing Machin-
ery, New York, NY, USA (2021). |https://doi.org/10.1145/3437378.3444367,
https://doi.org/10.1145/3437378.3444367

Aslanpour, M.S., Toosi, A.N., Gaire, R., Cheema, M.A.: Auto-scaling of
web applications in clouds: A tail latency evaluation. In: 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). pp.
186-195 (2020). https://doi.org/10.1109/UCC48980.2020.00037
Aslanpour, M.S., Toosi, A.N., Taheri, J., Gaire, R.: AutoScaleSim:
A simulation toolkit for auto-scaling Web applications in clouds.
Simulation Modelling Practice and Theory 108, 102245 (apr 2021).
https://doi.org/10.1016/j.simpat.2020.102245, https://linkinghub.
elsevier.com/retrieve/pii/S1569190X20301738

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R., Slominski, A., et al.: Serverless comput-
ing: Current trends and open problems. In: Research Advances in Cloud
Computing, pp. 1-20. Springer (2017)

Baresi, L., Mendonga, D.F.: Towards a serverless platform for edge comput-
ing. In: 2019 TEEE International Conference on Fog Computing (ICFC). pp.
1-10. IEEE (2019)

Berube, D.: Speeding up function calls with memoize. Practical Ruby Gems
pp. 215-220 (2007)

Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: Serverless program-
ming (function as a service). In: 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). pp. 2658-2659. IEEE (2017)
Chard, R., Skluzacek, T.J., Li, Z., Babuji, Y., Woodard, A., Blaiszik, B.,
Tuecke, S., Foster, 1., Chard, K.: Serverless supercomputing: High perfor-
mance function as a service for science. arXiv preprint arXiv:1908.04907
(2019)

Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J.,
Herbst, N., Abad, C., Iosup, A.: Serverless applications: Why, when,
and how? IEEE Software (2020). https://doi.org/10.1109/ms.2020.3023302,
http://dx.doi.org/10.1109/MS.2020.3023302

Glikson, A., Nastic, S., Dustdar, S.: Deviceless edge computing: extending
serverless computing to the edge of the network. In: Proceedings of the 10th
ACM International Systems and Storage Conference. pp. 1-1 (2017)

Hall, A., Ramachandran, U.: An execution model for serverless functions
at the edge. In: Proceedings of the International Conference on Internet of
Things Design and Implementation. pp. 225-236 (2019)

https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1145/3437378.3444367
https://doi.org/10.1109/UCC48980.2020.00037
https://doi.org/10.1016/j.simpat.2020.102245
https://linkinghub.elsevier.com/retrieve/pii/S1569190X20301738
https://linkinghub.elsevier.com/retrieve/pii/S1569190X20301738
https://doi.org/10.1109/ms.2020.3023302
http://dx.doi.org/10.1109/MS.2020.3023302

[12]

[13]

[18]

[19]

[20]

[25]

[26]

Hellerstein, J.M., Faleiro, J., Gonzalez, J.E., Schleier-Smith, J., Sreekanti,
V., Tumanov, A., Wu, C.: Serverless computing: One step forward, two
steps back. arXiv preprint arXiv:1812.03651 (2018)

Hussein, M.K., Mousa, M.H., Alqarni, M.A.: A placement architecture for
a container as a service (caas) in a cloud environment. Journal of Cloud
Computing 8(1), 7 (2019)

Kuntsevich, A., Nasirifard, P., Jacobsen, H.A.: A distributed analysis and
benchmarking framework for apache openwhisk serverless platform. In: Pro-
ceedings of the 19th International Middleware Conference (Posters). pp. 3—4
(2018)

Kurniawan, A., Lau, W.: Introduction to azure functions. In: Practical
Azure Functions, pp. 1-21. Springer (2019)

Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless comput-
ing environments. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). pp. 442-450. IEEE (2018)

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Server-
less computing: An investigation of factors influencing microservice per-
formance. In: 2018 IEEE International Conference on Cloud Engineering
(IC2E). pp. 159-169. IEEE (2018)

Mohanty, S.K., Premsankar, G., Di Francesco, M., et al.: An evaluation of
open source serverless computing frameworks. In: CloudCom. pp. 115-120
(2018)

MQTT: Mqtt protocol docs (2020), http://docs.oasis-open.org/mqtt/
mgtt/v3.1.1/0s/mqtt-v3.1.1-0s.html

Nastic, S., Rausch, T., Scekic, O., Dustdar, S., Gusev, M., Koteska, B.,
Kostoska, M., Jakimovski, B., Ristov, S., Prodan, R.: A serverless real-
time data analytics platform for edge computing. IEEE Internet Computing
21(4), 64-71 (2017)

Nguyen, H.D., Zhang, C., Xiao, Z., Chien, A.A.: Real-time serverless: En-
abling application performance guarantees. In: Proceedings of the 5th In-
ternational Workshop on Serverless Computing. pp. 1-6 (2019)

Nupponen, J., Taibi, D.: Serverless: What it is, what to do and what not
to do. In: 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C). pp. 49-50. IEEE (2020)

Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source serverless
computing frameworks support at the edge. In: 2019 IEEE World Congress
on Services (SERVICES). vol. 2642, pp. 206-211. IEEE (2019)

Pinto, D., Dias, J.P., Ferreira, H.S.: Dynamic allocation of serverless func-
tions in iot environments. In: 2018 IEEE 16th International Conference on
Embedded and Ubiquitous Computing (EUC). pp. 1-8. IEEE (2018)
Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the inter-
net of things: A case study. IEEE Internet of Things Journal 5(2), 1275-1284
(2018)

Quevedo, S., Merchan, F., Rivadeneira, R., Dominguez, F.X.: Evaluating
apache openwhisk-faas. In: 2019 IEEE Fourth Ecuador Technical Chapters
Meeting (ETCM). pp. 1-5. IEEE (2019)

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[27]
(28]

[29]

[33]

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and
challenges. IEEE internet of things journal 3(5), 637-646 (2016)

Shillaker, S.: A provider-friendly serverless framework for latency-critical
applications. In: 12th Eurosys Doctoral Workshop. p. 71 (2018)

Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.: Patterns for serverless func-
tions (function-as-a-service): A multivocal literature review. In: Ferguson,
D., Helfert, M., Pahl, C. (eds.) CLOSER 2020 - Proceedings of the 10th In-
ternational Conference on Cloud Computing and Services Science. vol. 1, pp.
181-192. SCITEPRESS (2020). https://doi.org/10.5220,/0009578501810192
Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uta, A., Iosup, A.: Server-
less is more: From paas to present cloud computing. IEEE Internet Com-
puting 22(5), 8-17 (2018)

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.:
Challenges and opportunities in edge computing. In: 2016 IEEE Interna-
tional Conference on Smart Cloud (SmartCloud). pp. 20-26. IEEE (2016)
Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano,
M., Casallas, R., Gil, S., Valencia, C., Zambrano, A., et al.: Infrastructure
cost comparison of running web applications in the cloud using aws lambda
and monolithic and microservice architectures. In: 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
pp. 179-182. IEEE (2016)

Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., Yang, X.: A
survey on the edge computing for the internet of things. IEEE access 6,
6900-6919 (2017)

https://doi.org/10.5220/0009578501810192

	Serverless Platforms on the Edge: A Performance Analysis

