
An API for Development of User Defined Scheduling

Algorithms in Aneka PaaS Cloud Software

Rajinder Sandhua,b, Adel Nadjaran Toosic, and Rajkumar Buyyaa

a CLOUDS Laboratory, School of Computing and Information Systems,

University of Melbourne, Australia.

b Department of Computer Science and Engineering, Jaypee University of

Information Technology, Waknaghat, India.

 c Faculty of Information Technology, Monash University, Australia.

Abstract:
Cloud computing has been developed as one of the prominent paradigm for providing on demand

resources to the end user based on signed service level agreement and pay as use model. Cloud

computing provides resources using multitenant architecture where infrastructure is generated from

multiple or single geographical distributed cloud datacenters. Scheduling of cloud application

requests to cloud infrastructure is one of the main research area in cloud computing. Researchers

have developed many scheduling applications for which they have used different simulators

available in the market such as CloudSim. Performance of any scheduling algorithm will be different

when applied to real time cloud environment as compared to simulation software. Aneka is one of

the prominent PaaS software which allows users to develop cloud application using various

programming models and underline infrastructure. In this chapter, a scheduling API is developed

over the Aneka software platform which can be easily integrated with the Aneka software. Users

can develop their own scheduling algorithms using this API and integrate it with Aneka software so

that they can test their scheduling algorithm in real cloud environment. The proposed API provides

all the required functionalities to integrate and schedule private, public or hybrid cloud with the

Aneka software.

Keyword: Aneka, Cloud Computing, Scheduling API, Hybrid Cloud.

1. Introduction
Cloud computing has proved to be the most revolutionary technology of the last decade which

resulted in many organizations moving toward cloud-based infrastructure [1]. From mobile

applications to large data intensive applications are using cloud-based infrastructure for fulfilling

their IT resource requirement. With more data generation, the need for cloud computing is increasing

day by day for many emerging IT technologies such as Internet of Things and Big Data [2]. Cloud

computing deployment models can be broadly classified into Public cloud, Private cloud and Hybrid

cloud. Among all these models, hybrid cloud is gaining popularity with its features like infinite

resources and cost benefits. Hybrid cloud utilizes public cloud resources if private cloud resources

cannot complete the task with given Quality of Service (QoS) parameters. This makes hybrid cloud

model a good candidate for many applications such as mobile devices, small industries, and other

smart environments [3].

As cloud computing contains a colossal number of IT resources whether it is a private cloud or

public cloud, it is difficult to test new algorithms for better and efficient scheduling. Many

researchers use simulation tools to test and deploy different scheduling algorithms for different kind

of applications in the cloud environment. A common used simulation tool is CloudSim [4] while

other tools such as iFogSim [5] and IoTSim [6] are also gaining popularity for testing IoT based

applications on cloud computing environments. But, results from even the most efficient simulation

software always differ from actual results because many other aspects such as network, bandwidth

also play an important role. Infrastructure as a Service (IaaS) provider such as Amazon EC2 [7], or

Microsoft Azure [8] give access to underlying IT resources to the user. But these IaaS providers do

not give rights to the end user for making any change in the scheduling policies for the application.

There are many options in the market for PaaS where the end user can create individual tasks and

submit them to the PaaS provider. Many PaaS providers do not provide access to underlying IT

infrastructure making it very difficult to change and test new scheduling policies [9]. Due to these

constraints, research in the development of new scheduling policies is taking a big hit for real cloud

computing environments.

Aneka [10] is a PaaS cloud provider developed in Microsoft .net for developing cloud computing

infrastructure and applications using various programming models and available infrastructure.

Aneka supports programming models such as Task, Thread and Map-Reduce while users can

develop their own model. In Aneka, infrastructure can be developed using a cluster of multicore

machines, private cloud and public cloud. Aneka contains inbuilt scheduling policies which are used

to schedule jobs on private cloud created using multicore machines or using private cloud software

such as OpenStack. Aneka provides dynamic provisioning feature which allows Aneka applications

to use public cloud such as Amazon EC2 and Microsoft Azure when desired QoS cannot be achieved

using the private cloud setup [11]. Aneka is one of its kind which gives the end user full freedom to

develop applications in many languages and deploy it on any infrastructure available with them. It

gives full access and right of underlying infrastructure to end user and well as full access to SDK

for development of applications [12]. Aneka has many features but it is difficult for the end user to

create their custom scheduling and provisioning policies.

In this chapter, we propose to develop an API for Aneka which allows end users to create and

integrate their custom scheduling algorithms with Aneka. The user can develop their own

applications in Aneka and then create a customized scheduling policy according to their application

needs. Aneka also provides user with inbuilt sample applications such as Mandelbrot, Image

Convolution or Blast to test their new scheduling algorithm. The proposed API bridges the gap

between access to scheduling algorithms and using real cloud setup to test and create them.

The rest of the chapter has been organized as follows. Section 2 provides the introduction about the

architecture of Aneka. Section 3 explains the proposed API with all classes. Section 4 provides

sample codes and related discussion. Finally, Section 5 concludes the chapter and provides future

directions.

Figure 1. Overview of Aneka Architecture [11]

2. Aneka
Aneka is a PaaS cloud software that facilities the development and deployment of applications with

underline support of .net framework. Figure 1 shows an overview of the architecture of Aneka. It

contains three layers which are infrastructure, middleware and application development which

allows the end user to change underline infrastructure and middleware to support rapid and

customized development of cloud applications. The infrastructure of Aneka can be multicore

machine, grid environment, cluster of machines, private cloud and public cloud. Public cloud is only

required when scheduler decides that desired QoS cannot be achieved from other available

resources. Middleware provides the support for programming models such as thread, task and Map-

Reduce. It also provides the billing, accounting, resource reservation, hardware profiling and other

services. These service in Aneka can be plugged and unplugged as and when required from the

Management console provided in the application development and management layer. Aneka also

contains many components which are discussed below:

 Aneka Master Container: Aneka master is mainly responsible for the scheduling and

monitoring of application tasks and resources in the Aneka. Aneka master also manages

the billing and reporting services of all the worker nodes attached with an Aneka master.

The end user’s application sends the task to Aneka master which based on the availability

of worker nodes further schedules these tasks. If any worker nodes fail without executing

the task, master reschedules the task o another available worker node.

 Aneka Worker Container: Aneka worker is the component which basically deals with

the execution of the tasks. It contains the executor for each type of programming models

available with the Aneka. After completing any assigned task, it sends the result back to

master for compiling and starts waiting for new tasks. Worker node is operating system

independent, it can be run on Linux or Windows machines.

 Aneka Daemon: Aneka daemons are the basic services which need to be installed in all

the machines before Aneka master and worker can be installed.

 Management Studio: Management studio is the interactive interface which end user uses

to create and manage cloud environments created inside the Aneka cloud. The end user can

easily add private and public cloud resources, manages all added resources, create bills,

monitor added resources, add file repositories, and check current statistics of the Aneka

cloud.

 Aneka SDK: Aneka also provides SDK for the development of applications which can be

directly deployed on the Aneka cloud created using management studio. These SDKs

contains programming language specific libraries and other tools.

3. Proposed API

Figure 2 shows the proposed API for Aneka cloud which acts as an independent interface which

user can use to change the scheduling policies of Aneka. The user level scheduler is the new or

proposed scheduler by the end user for its specific application or in general use. This user level

scheduler is integrated with Aneka using the proposed scheduling API. This section explains

different classes and interfaces used in the proposed API so that end user can easily write their own

scheduling policies.

Figure 2. Framework for Scheduling API with Aneka PaaS Software

Aneka.Scheduling is the main project of proposed API which directly interacts with Aneka.Runtime

project of Aneka to state which scheduling policy should be followed when any task arrives.

Aneka.Runtime consults Aneka.Scheduling and based on the selected algorithm at the time of

creation of Aneka master it schedules tasks on different worker nodes. Aneka.scheduling API

contains six sub-projects out of which Aneka.Scheduling.Service and Aneka.Scheduling.Utils

directly interacts with Aneka.Runtime project. These sub-projects are explained in details later in

this chapter.

Figure 3: Code Map of proposed Aneka.Scheduling project in Aneka code

Aneka.Scheduling implements two interfaces which are ISchedulerContext and

ISchedulerAlgorihtm as shown in Figure 4. Various events are associated with these interfaces

which are triggered when there is a state change for the application or a task. Table 1 shows different

event associated with Aneka.Scheduling.

Figure 4 Interfaces implemented by Aneka.Scheduling Project

Table 1. Different Events associated with Aneka.Scheduling

S. No. Event Description

1. SchedulerAlgorihtm
It selects the scheduling algorithm to use for scheduling

tasks on worker nodes.

2. ResourceDisconnected

Event when a resource is disconnected. For every task

assigned to this Resource the TaskFailed event will also

be fired.

3. ResourceReconnected Event when a resource is reconnected.

4. ResourceProvisionProcessed
Event when a resource provisioning request is

processed.

5. ResourceProvisionRequested Event when a resource provision request is triggered.

6. ResourceReleaseRequested Event when a resource release request is triggered.

7. ResourcePoolsQueryRequested

This event is triggered when end user generates any

resource pool related query. It is important event in case

there are multiple pool in dynamic provisioning of

Aneka cloud.

8. TaskFinished Event when a task is finished.

9. TaskFailed

Event when a task is failed due the task failure. It is

caused by something other than the resource

disconnection

10. TaskAborted Event when a task is aborted due to the user action.

11. TaskRequeued Event when a task is requeued due the the user action

3.1 Aneka.Scheduling.Runtime

It contains two classes and one interface as shown in the code map in Figure 5. This is responsible

for decision making during runtime of any scheduling algorithm such as timings, resources

available, task completed etc. SchedulerContextBase class registers all context-based activity

happening in the scheduler to their specific events. This class also generates the exception and

records it in the logger file so that end user can analyse the errors generated.

Figure 5 Classes and Interface of Aneka.Scheduling.Runtime

Major activities performed by this class are

 assign the value to the scheduling algorithm

 register the event handler for the forwarded assign work unit event from the scheduling

algorithm

 hook the event handler for provision resources request

 hook the event handler for release resources request

 hook the event handler for a query for resource pools request

 register the scheduler context to the scheduling algorithm

Class SchedulingData extends the Aneka reporting data class which can capture the information

about the scheduling data (mostly timing) of the specific task allocation. Various data collected by

Scheduling data class are:

 Queue Time: A value representing the total waiting time of the task in seconds. This time

is computed since the task is moved from queued to scheduled state.

 Execution Time: A value representing the total execution time of the task in seconds as

seen by the scheduler service.

 Task final State: It provides the final state of the task submitted to the scheduler.

If the end user wants to add any new data point to the scheduling algorithm matrices, it can be easily

added in this class. Interface ISchedulingHandler extends the IServiceNameAware interface of

Aneka and provides a set of methods for the SchedulerService to specialize the activities of the

scheduler. This interface allows separating all those management aspects that are common to several

programming models, which reside in the SchedulerService class, from the specific aspects related

to a given programming model, which reside in the component implementing this interface.

3.2 Aneka.Scheduling.Service

It contains two classes which are ScheulerService and IndependentSchedulingService as shown in

code map in Figure 6. This is responsible for major scheduling responsibilities based on the selected

algorithms.

Figure 6 Code Map of Aneka.Scheduling.Service

Class SchedulerService specializes the ContextBase class of Aneka and implements the IService

interface and IMembershipEventSink interface. It can be used as base application scheduler that

needs to be further customized for handling the specific type of application according to the given

programming model on which the application is based. The scheduled tasks directly performed by

this scheduler are the interaction with the IApplicationStore interface to control the state of the

application. It provides template methods that can be implemented by inherited classes to perform

the WorkUnit level scheduled tasks. The activity of this service is supported by an implementation

of ISchedulingHandler interface that deals directly with the programming model related

scheduledTasks at a WorkUnit level.

Class IndependentSchedulingService defines a scheduling service for scheduling independent work

units. Models featuring independent work units can use and specialize this scheduler policy in this

class. Various parameters used in this class are:

 List of resources is maintained in this class on which scheduling can be done.

 Reservation list is present in this class.

 Starts and stops the scheduling service. Activates the scheduling algorithm and registers

the resources with it.

 Fetches the list of WorkUnit instances that are in state Queued from the application store

and delegates them back to the SchedulerAlgorithm.

3.3 Aneka.Scheduling.Algorithm

It contains different algorithm currently available with Aneka, all available scheduling algorithms

extends AlgorihtmBase class for their proper execution as shown in Figure 7. This also contains one

NewUserDefined which end user will use to code their own scheduling policy. End users can even

extend or change already existing algorithms for more optimization. Class AlgorithmBase is the

implementation class for the ISchedulingAlgorithm interface. This class can be used as a template

for creating specialized algorithms because it provides the basic features for integrating scheduling

algorithms into the Aneka scheduling service. Different variables used in this class are listed in Table

2 and methods available with AlgorithmBase class are listed in Table 3.

Figure 7 Code map of available scheduling algorithms

Table 2: Different variables/objects used in AlgorithmBase class

S. No. Variable/Objects Parent Class Description

1. rescheduledJobTimer IDictionary
Dictionary mapping the each job reservationId

to the timer used to reschedule them.

2. bKeepRunning N.A.
While this variable is true the scheduling loop

will bKeep running.

3. canSchedule ManualResetEvent
Used to block the scheduling thread while

there are no scheduledTasks or free resources.

4. scheduler ISchedulerContext
Holds a reference to the context that the

scheduler is interacting with.

5. SupportsProvisioning N.A.
Whether the algorithm support dynamic

provisioning or not

6. canFireEvent AutoResetEvent
Used to block the event thread while there are

no events to fire.

Table 3: Methods Available in AlgorithmBase Class

S. No. Method Name Description

1. Start Start the scheduling loop for assigned tasks.

2. Stop Stop the scheduling thread.

3. Schedule This method is called repeatedly by the

AlgorithBase class for making scheduling

decisions.

4. AddTasks Used to add new task to the scheduling queue.

5. GetNextTask Used to get next task to schedule from the queue.

6. TaskFailed Method is called when any task fails. Reschedule

policy is checked in this method for the failed task.

7. TaskAborted Method is called when user abort the assigned task.

8. TaskFinished This is called when task is finished successfully and

should be reported to the user its output values.

9. TaskRequeued This method requeued the task if it is failed or

aborted.

10. SetScheduler This method hooks up the event handler for events

fired with the desired scheduler.

11. StartScheduleTask Start the process to schedule a given task to a given

resource.

12. AddFreeResource This method will be called when a resource has a

task removed and it is not free.

13. HaveFreeResources Return the value if there are free resource available

that can be used.

14. RemoveFreeResource Will be called when adding a task to the resource

fills the slot of that resource. Can be called if

resource get disconnected.

15. ResourceReconnected Hooks the event when resource get reconnected and

also updates the list of available resources.

16. ResourceDisconnected Called when the resource get disconnected and

updates the list of available resources.

Let’s take an example of FIFO strategy which is already implemented in the proposed API. It

extends the AlgorithmBase class and provides an implementation of the First-In First-Out

scheduling strategy. In this algorithm, the tasks are scheduled in their order of arrival. The Schedule

function is changed in this implementation which checks that there is a task in the queue and a

resource is also free. If both these conditions are true, then it schedules the first task in the queue to

the first resource in the resource list. Similarly, other algorithms are proposed in the API and these

algorithms are self-explained.

3.4 Aneka.Scheduling.Event

It provides all the events associated with the scheduling policies of Aneka. Proposed API provides

the flexibility to end user to use already available events or create their own specific event. These

events help scheduling policy designer to achieve desired performance and usability. These events

are related to different components of Aneka which are listed in Table 4.

Table 4. Different type of events created in Aneka.Scheduling.Event

S. No. Event Type Description

1. Task Events
These events are related to tasks such as task finished, task

aborted etc.

2. Scheduling Events
These events are related to scheduling such as algorithm selected

etc.

4.
Resource Pool Query

Events

These events are related adding, selecting and deleting specific

resource pools.

5. Resource Events
These events are related to resource addition, deletion and

selection.

Figure 8 Interface in Management Studio to Select NewUserDefined Scheduling Algorithm

3.5 Selection of NewUserDefined from Management Studio

In this section step by step method to integrate the newly proposed scheduling policy is discussed.

End user has to write new scheduling algorithm in NewUserDefined class of

Aneka.Scheduling.Algorihtm. When Aneka master is being installed NewUserDefined should be

chosen as shown in Figure 8. After this all the application running on Aneka if use dynamic

provisioning will follow the scheduling policy desired in the proposed scheduling algorithm.

4. Developing New Scheduling Algorithms

Scheduling algorithms in Aneka define the logic with which tasks are allocated to resources from

Aneka runtime. Developing new scheduling involves writing the code for the new algorithm and

plug it into the existing scheduling services with minimal knowledge of the internals of the Aneka

runtime. As we stated earlier this can be done by implementing methods of two interfaces ― namely

ISchedulerContext and ISchedulingAlgorithm ― that represent the interface with the Aneka runtime

and the scheduling algorithm respectively. These interfaces and bases classes are part of the

Aneka.Scheduling library.

using Aneka.Provisioning;

using Aneka.Scheduling.Entity;

using Aneka.Scheduling.Event;

namespace Aneka.Scheduling

{

 public interface ISchedulerContext

 {

 bool SupportsProvisioning { get; }

 event EventHandler<SchedulingEventArgs> AssignTask;

 event EventHandler<ProvisionResourcesArgs> ProvisionResources;

 event EventHandler<ReleaseResourcesArgs> ReleaseResources;

 void Start();

 void Stop();

 void AddTasks(params Task[] tasks);

 void AddResources(params Resource[] resources);

 void SetScheduler(ISchedulerContext scheduler);

 }

}

Figure 9 ISchedulingAlgorithm interface

Figure 9 shows the ISchedulingAlgorithm interface that each scheduling algorithm has to

implement. The algorithm provides a feedback to the Aneka runtime about its scheduling decisions

through the events exposed by the interface. SupportsProvisioning is a boolean value that is set to

true if the algorithm supports dynamic provisioning. AssignTask is trigred whenever a task is

allocated to a resource. and ReleaseResources are events which are triggered when the scheduling

algorithm issues a request for additional resources and reguest release of a provisioned resource,

respectively. Start and Stop methods are called when the scheduling begins and ends. To add new

tasks and new resources AddTasks and AddResources methods are called respectively. The

algorithm works with the Aneka runtime and interfaces by means of the ISchedulerContext interface

which is set in the SetScheduler method. Figure 10 shows ISchedulerContext interface.

using Aneka.Provisioning;

using Aneka.Scheduling.Entity;

using Aneka.Scheduling.Event;

using Aneka.Scheduling.Runtime;

namespace Aneka.Scheduling

{

 public interface ISchedulerContext

 {

 ISchedulingAlgorithm SchedulerAlgorithm { get; set; }

 ISchedulingHandler SchedulingHandler { get; set; }

 event EventHandler<ResourceEventArgs> ResourceDisconnected;

 event EventHandler<ResourceEventArgs> ResourceReConnected;

 event EventHandler<ProvisionEventArgs> ResourceProvisionProcessed;

 event EventHandler<ProvisionResourcesArgs> ResourceProvisionRequested;

 event EventHandler<ReleaseResourcesArgs> ResourceReleaseRequested;

 event EventHandler<TaskEventArgs> TaskFinished;

 event EventHandler<TaskEventArgs> TaskFailed;

 event EventHandler<TaskEventArgs> TaskAborted;

 event EventHandler<TaskEventArgs> TaskRequeued;

 }

}

Figure 9 ISchedulingContext interface

Only a subset of events and properties are of interest for the scheduling algorithm.

 ResourceDisconnected and ResourceReconnected: notify the scheduling algorithm that a

resource has disconnected or reconnected from a temporary disconnection.

 TaskAborted, TaskFinished, TaskFailed, and TaskRequeued: notify the scheduling

algorithm of the status of the tasks.

 ResourceProvisionProcessed: is the only event from dynamic provisioning infrastructure

that is of interest for the scheduling algorithm. This event provides information about the

outcome of a resource provisioning request made earlier by the scheduling algorithm.

4.1 Example 1: FIFO Scheduling Algorithm

As stated earlier. AlgorithmBase implements the ISchedulingAlgorithm interface and can be used as

a template for creating specialized algorithms. Figure 11 provides FIFOSchedulingAlgorithm Class

body to show by simply overriding a few methods of the AlgorithmBase Class First-In First-Out

scheduling strategy can be implemented where the tasks are scheduled in their order of arrival.

using Aneka.Scheduling.Entity;

using Aneka.Scheduling.Event;

using Aneka;

namespace Aneka.Scheduling.Algorithms.Independent

{

public class FIFOSchedulingAlgorithm : AlgorithmBase

 {

 private List<Resource> _freeList = new List<Resource>();

 protected override bool HaveFreeResources()

 {

 return _freeList.Count > 0;

 }

 protected override void AddFreeResource(Resource r)

 {

 lock (this.synchLock)

 {

 int track = DebugUtil.EnterLock();

 if (r.IsConnected && r.FreeSlots > 0)

 {

 _freeList.Remove(r);

 _freeList.Add(r);

 }

 DebugUtil.ExitLock(track);

 }

 }

 protected override void RemoveFreeResource(Resource r)

 {

 lock (this.synchLock)

 {

 int track = DebugUtil.EnterLock();

 _freeList.Remove(r);

 DebugUtil.ExitLock(track);

 }

 }

 protected override void Schedule()

 {

 lock (this.synchLock)

 {

 int track = DebugUtil.EnterLock();

 if (_freeList.Count > 0 && TasksInQueue > 0)

 {

 StartScheduleTask(_freeList.AsReadOnly(),GetNextTask());

 }

 else

 {

 canSchedule.Reset();

 }

 DebugUtil.ExitLock(track);

 }

 }

 }

}

Figure 11 FIFOSchedulingAlgorithm Class

_freeList maintains the list of the currently available resources for scheduling tasks.

HaveFreeResources() method returns a Boolean value indicating whether there are free resources

that can be used. AddFreeResource is called when a resource has a task removed. Since the recourse

might be already on the free list, we remove it first and we add it again to avoid duplicates.

RemoveFreeResource is called when adding a task to a resource fills all the slots or will be called

for other reasons e.g., a disconnected resource. Schedule() starts the scheduling algorithm. If there

is a task in the queue and a free resource in the _freeList it calls the StartScheduleTask method by

passing _freeList and the next task in the queue. Otherwise, it resets the canSchedule to block the

scheduling thread until the task can be scheduled again by any other resource.

4.2 Example 2: Deadline Priority Provisioning Algorithm

A new scheduling algorithm can be designed in a way that supports dynamic provisioning of virtual

resources by leveraging the resource provisioning service. These are all defined in the namespace

Aneka.Scheduling.Algorithm.Independent, which can be found in the Aneka library.

ProvisioningAlgorithmBase is this class provides an abstract base class for all dynamic provisioning

algorithms. The algorithm provides a basic management of the provisioning request that has been

issued. ApplicationAwareProvisioningAlgorithm is specialized for the scheduling a collection of

tasks as a whole in order to ensure that some specific QoS parameters that are defined for the

application are met. Developers can design their new scheduling algorithms and new strategies for

triggering resource provisioning by extending one of these two classes or specializing the previous

two algorithms.

For example, Figure 12 shows DeadlinePriorityProvisioningAlgorithm that extends

ApplicationAwareProvisionAlgorithmBase class and leverages dynamic provisioning in order to

schedule the execution of the tasks within the expected deadline. If the local resources are not enough

to execute all the tasks in time, a request for additional resources is issued. The class overrides two

main methods of the base class called ShrinkRequired and GrowRequired to request release or

adding of resources from the provisioner respectively. Both methods use the private method called

ExceedResourceCapacity to set a Boolean indicator called required.

namespace Aneka.Scheduling.Algorithms.Independent

{

 public class DeadlinePriorityProvisioningAlgorithm : ApplicationAwareProvisionAlgorithmBase

 {

 protected override bool ShrinkRequired(Aneka.Scheduling.Entity.Task task, QoS qos)

 {

 bool required = false;

 if (qos != null)

 {

 int currentResources = this.GetResourceCount(task.ApplicationId);

 if (qos.WorkRemaining<currentResources || qos.WorkCompleted==qos.TotalWork)

 {

 required = true;

 }

 else

 {

 required = this.ExceedResourceCapacity(qos, task.ApplicationId, false) == false &&

currentResources > 1;

 }

 }

 return required;

 }

 protected override bool GrowRequired(Aneka.Scheduling.Entity.Task task, QoS qos)

 {

 bool required = false;

 string applicationId = task.ApplicationId;

 if (qos != null)

 {

 required = this.ExceedResourceCapacity(qos, applicationId, true);

 }

 return required;

 }

}

Figure 12 DeadlinePriorityProvisioningAlgorithm Class

The ExceedResourceCapacity method checks whether the current allocation for the application is

compliant with the requirements set for the corresponding application. A Boolean value toGrow

indicates whether we need to check for additional resources to add when it is true or resources to

release when it is false. taskRemaining keeps the total number of remaining tasks that must be

executed. taskResourceRatio is then calculated based on the ratio of the number of remaining tasks

to the number of current resources. Finally based on the indicative values of

AverageTaskExecutionTime in the requiredTime is calculated and is compared to timeRemaining

which indicates the time remaining to the deadline. bRequired value is then set accordingly to true

when the required time is larger than the remaining time.

private bool ExceedResourceCapacity(QoS qos, string applicationId, bool toGrow)

 {

 bool bRequired = false;

 int currentResources = this.GetResourceCount(applicationId);

 if (currentResources > 0)

 {

 int taskRemaining = 0;

 if (toGrow == true)

 {

 taskRemaining = qos.TotalWork - qos.ScheduledTasks;

 }

 else

 {

 taskRemaining = qos.TotalWork - qos.WorkCompleted;

 }

 int taskResourceRatio = taskRemaining / currentResources;

 TimeSpan avgExecutionTimeForTask = qos.AverageTaskExecutionTime;

 TimeSpan timeRemaining = qos.TimeRemaining;

 double requiredTime = avgExecutionTimeForTask.TotalSeconds * taskResourceRatio;

 if (requiredTime > timeRemaining.TotalSeconds)

 {

 bRequired = true;

 }

 }

 else

 {

 bRequired = true;

 }

 return bRequired;

 }

Figure 12 ExceedResourceCapacity method

5. Conclusion
Aneka is one of the prominent PaaS cloud software available in the market which allows you to

change and manage the underline infrastructure as well as write applications in any programming

model. Aneka has many features the research community well demands the customization of Aneka

scheduling algorithm for dynamic provisioning. In this chapter, an API is proposed which provides

all necessary libraries to develop new Aneka scheduling algorithm. The new algorithm created from

this API can be easily integrated with Aneka interface using Management Studio. Proposed API will

help cloud computing researchers to develop their application in a real cloud and test them with their

custom scheduling algorithm. Future work will contain the addition of more features in this API and

creation of an interactive interface.

References

[1] R. Buyya, “Market-oriented cloud computing: Vision, hype, and reality of delivering

computing as the 5th utility,” in 2009 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, CCGRID 2009, 2009.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7,

pp. 1645–1660, Sep. 2013.

[3] W. J. Wang, Y. S. Chang, W. T. Lo, and Y. K. Lee, “Adaptive scheduling for parallel tasks

with QoS satisfaction for hybrid cloud environments,” J. Supercomput., vol. 66, no. 2, pp.

783–811, Feb. 2013.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim: A

toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms,” Softw. - Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[5] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments,” Softw. - Pract. Exp., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[6] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and R. Ranjan,

“IOTSim: A simulator for analysing IoT applications,” J. Syst. Archit., 2017.

[7] “AWS - Amazon EC2 Instance Types,” Amazon, 2014. [Online]. Available:

http://aws.amazon.com/ec2/instance-types/. [Accessed: 19-Jul-2015].

[8] Microsoft Azure, “Microsoft Azure Pricing calculator,” Microsoft, 2016. [Online].

Available: https://azure.microsoft.com/en-us/pricing/calculator/.

[9] T. Shon, J. Cho, K. Han, and H. Choi, “Toward advanced mobile cloud computing for the

internet of things: Current issues and future direction,” Mob. Networks Appl., vol. 19, no. 3,

pp. 404–413, Jun. 2014.

[10] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .NET-based cloud

computing,” High Speed Large Scale Sci. Comput., 2009.

[11] R. Buyya and D. Barreto, “Multi-cloud resource provisioning with Aneka: A unified and

integrated utilisation of microsoft azure and amazon EC2 instances,” in 2015 International

Conference on Computing and Network Communications, CoCoNet 2015, 2016.

[12] A. Nadjaran Toosi, R. O. Sinnott, and R. Buyya, “Resource provisioning for data-intensive

applications with deadline constraints on hybrid clouds using Aneka,” Futur. Gener.

Comput. Syst., 2018.

