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Abstract—Efficient utilization of renewable energy when powering Cloud Data Centers is a challenging problem due to the variable
and intermittent nature of both workload demand and renewable energy supply. This work aims to develop an innovative dynamic
resource management algorithm to provide energy flexibility to data center operators for shaping their energy demand to match
renewable energy supply. We present a novel framework, called Elastic Power Utilization (EPU), to serve this purpose. EPU utilizes
energy source information to dynamically manage data center resources for matching the renewable energy supply with the energy
demand to serve the workload. We propose a resource management algorithm that exploits overbooking, consolidation and migration
of virtual machines (VMs) to implement the power elasticity required by the EPU framework. We compare our approach to a
state-of-the-art algorithm and baseline approaches with three different workloads. The results from extensive simulations show that our
proposed algorithm outperforms the state-of-the-art approach in saving brown energy by 23.1%, 21.3%, and 27.0% for Google,

Wikipedia, and Nectar workloads, respectively.

Index Terms—Green computing, renewable energy, cloud computing, data centers, overbooking, VM consolidation.

1 INTRODUCTION

TILITY computing, exemplified by Cloud Computing
Utechnology, continues to displace traditional methods
of deploying centralized computing services. This reflects
the elasticity properties inherent in clouds that can flexibly
and transparently accommodate large transient variations
in workload. As with all technologies, benefits usually incur
costs, and for Cloud Data Centers (CDCs), this cost is in
power consumption. In this work, we introduce a gener-
alized model for Elastic Power Utilization (EPU), which we
define as the ability to elastically scale power consumption
by managing CDC resource usage.

Globally, CDCs are estimated to consume 8000 TWh of
electrical energy by 2030 [1] and account for 3.2% of the
total worldwide carbon emission by 2025 [2]]. Thus, energy-
efficient resource management in CDCs and the replacement
of brown energy sources with clean energy represent a
promising approach to decrease recurring operating expen-
ditures and environmental impacts.

Power management in data centers has been a high
priority research topic over the last decade, in areas such
as managing cooling systems [3] [4] and servers [5] [6]
[7]. One of the primary causes of poor power efficiency in
CDCs is the sizing of infrastructure resources like servers
and switches, as these are typically provisioned for peak
workloads and, hence, remain under-utilized at other times.
In addition, clients also request more resources than needed
leading to server utilization being as low as 10-30%, re-
ported by many data centers globally [8] [9]. This results in
significant wasted power. While different techniques such
as VM migration and consolidation have been applied to
improve power efficiency in servers, these were not devised

o T. Chakraborty, A. N. Toosi and C. Kopp are with the Faculty of
Information Technology, Monash University, VIC, Australia.
E-mail: tuhin.chakraborty@monash.edu

Manuscript received April dd, 202x; revised Month dd, 202x.

for mixed sources of power (i.e., renewable and grid) and
seldom produced convincing results [10], [11].

Powering data centers with energy derived from clean
(renewable) sources to reduce carbon footprint has been
the subject of many research studies. Since the technol-
ogy for generating renewable electric power continues to
improve and rapidly growing, many IT service providers
have shifted to using clean energy sources, often using on-
site renewable power generation [12]. However, the time-
variant and intermittent nature of both workload demand
and renewable energy supply make the use of renewable
energy sources challenging [12] [13] [14]. CDC operators
can try to minimize their utilization of brown energy by
maximizing the usage of renewable energy when available.

This work promotes on-site renewable generation with-
out local energy storage in CDCs to accelerate decarboniza-
tion and greener services [15]. Deploying such an on-site
renewable setup better fits small-scale (micro) data centers
(#CDCs) at the edge locations. So, in particular, we focus on
1CDCs at edge locations with on-site renewable generation
without local energy storage (e.g., battery storage). The use
of such storage incurs non-recurring initial and recurring
cost overheads. While battery backup uninterruptible power
supplies are widely employed, the cost of expanding such
an installation to support many hours of CDC operation
can be significant and will scale with the size of the CDC.
So the option of using less environmentally friendly non-
renewable sources is an economic choice intended to min-
imise CDC installation non-recurring and recurring costs.
Note that, research by Karimi et al. [14] and Goiri et al. [16]
specifically avoided battery usage due to its high cost and
potential for adverse impacts on the environment which
brings new sustainability challenges. Thus, we avoided
batteries in this investigation and as the renewable en-
ergy supply is variable and intermittent, we considered
purchasing power from the grid (brown energy) with a



flexible rate (peak, off-peak) as a backup support when not
enough renewable energy is available. We consider inverters
to mitigate the challenges of combining different energy
sources. These inverters can supply the power generated
from renewable sources, send back the excess power to the
grid when production exceeds the requirement, and utilize
grid power when renewable energy is not enough to handle
load.

To adapt to the variable nature of renewable energy sup-
ply, we apply EPU to favor renewable over non-renewable
power sources. This differs from many existing meth-
ods [7] [10] [9], which solely focus on reducing the overall
power consumption without taking into account the source
of the power. To implement EPU, we propose a resource
management scheme that shapes workload power demand
by dynamically adapting the overbooking level to match
the available clean energy supply. EPU increases the over-
booking level, the ratio of overcommitting resources when
renewable energy is scarce, and minimizes overbooking
when renewable energy is abundant.

Overbooking is defined as the capability to accommo-
date more virtual machines on a physical server, where the
total capacity of the physical server is below the sum of
the requested resources by hosted VMs. Overbooking is a
common practice in the CDC domain. Recently, VMWare,
one of the giants of virtualization technology, reported that
considerable levels of CPU over-commitment is possible
without significantly impacting VM performance [17]. For
instance, a general guide for performance sizing as per best
practice recommendations permits allocation up to three
times of the total available CPU resources in a host (200%
overbooking) [18]. Following industry practice, we focus
on overbooking of CPU resources since processors are the
main power consumers in a server [19]. We also assume that
enough memory and storage are available for the targeted
overbooking level.

To achieve our objectives, we exploit overbooking to
favor green energy, where CDC operators and CDC clients
maximize their individual and collaborative gain. In other
words, CDC clients can receive incentives (e.g., discount,
or carbon tax benefits) when they are exposed to over-
booking, and CDC operators can exploit overbooking and
consolidation techniques to favor renewable power and
reduce brown energy use. When power from renewable
sources is scarce, clients will be allocated more VMs per
single physical server (share fewer resources than the actual
demand), which might affect their Quality of Service (QoS),
impacting end users. The compromised QoS due to over-
booking is acceptable as part of their Green Service Level
Agreements (SLA). A Green SLA can be considered as a
joint agreement between CDC clients and CDC operators to
accept overbooking (lower QoS) while the data center uses
energy from brown sources. Accepting incentives such as
discounts for a lower QoS is acceptable for many use cases,
like when they are probable to remain underutilized or for
applications that can tolerate some delay or performance
loss. For example, stateless web servers, big data analyt-
ics applications, rendering workloads, and other flexible
workloads can use discounted spot instances of AWS that
are terminated anytime, i.e., a lower QoS compared to on-
demand instances [20]].
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To further clarify, the key impact of this research is to
favor green energy through an efficient resource manage-
ment scheme by exploiting overbooking. To achieve our

objectives, the main contributions are summarized thus:
e An energy-source-aware architecture for CDC re-

source management, based on the concept of EPU.

e Innovative dynamic resource management and over-
booking algorithms to provide energy flexibility to
#CDCs which shape energy demand to match re-
newable energy supply.

o Evaluation of the proposed algorithms through sim-
ulations using real-world renewable energy and
workload traces.

e Analysis of the efficiencies of the proposed algo-
rithms, in terms of reducing carbon footprint, and
demonstration of their superiority over several base-
line and state-of-the-art approaches.

The remainder of the paper is organized thus: we ex-
plain the background for the green-energy-aware resource
management of sustainable CDCs with a typical example
scenario and system architecture in Section [} Section
presents the energy models employed and the formalization
of the problem, followed by the proposed algorithm and the
baselines in Section 4] The results are presented in Section [5}
followed by conclusions and future directions in Section [6]

2 RELATED WORK AND MOTIVATION

Many different approaches have been investigated to ad-
dress the problems inherent in the utilization of renewables
in CDCs [21] [16]. However, the primary challenge when
using renewable energy remains - it is by its nature a
time variant power source. Some previous studies target
load redirection among multiple data centers [22] [23] to
address this challenge. Although significant attention has
been paid to the energy efficiency of data center [24] and
Power Usage Effectiveness (PUE) of 1.21 has been reported
by Google [25], little attention has been given to elastically
shaping the data center load to align it with renewable
energy availability. In recent years, significant attention
has been given to the development of VM placement and
consolidation strategies to reduce CDC power consumption
[31] [9]. VM consolidation effectively improves resource uti-
lization and energy efficiency by gathering virtual machines
into a minimal subset of physical hosts. Moreover, powering
off physical host machines that would be otherwise idle will
also save cooling power.

Most power consumption in a CDC network fabric arises
from switching components when powered on [32]. Power-
ing off only unused ports saves very little energy, at best 1-2
Watts per port [32]]. The concept of ElasticTree [32] is based
on this idea, but this concept did not consider hypervisors
and VMs and did not power off edge switches as we do
in this work. Hence, it still suffers from some unnecessary
power consumption in both its computing and network
stacks.

Liu et al. [22] explored geographic load balancing and
storing the energy from renewable sources to minimize
brown energy consumption. Lin et al. [33] extended this
work to achieve a net-zero brown energy system by com-
bining brown and green energy sources. Aiming to solve the
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same problem, Toosi and Buyya [34] proposed a load balanc-
ing algorithm based on fuzzy logic that does not require a
priori knowledge. These works are based on routing incom-
ing loads as per their power state when receiving job re-
quests. However, none of these works exploited renewable-
energy-aware VM management within CDCs based on over-
booking techniques.

Khosravi et al. [13] considered migration of VMs between
CDC sites based on the limited and intermittent nature of
renewable energy aiming for better utilization. However,
their work does not consider opportunities to apply VM
or workload management inside individual CDCs. Some
earlier work [10], [31], and more recent work [9], [28]
mainly focused on reducing the number of active physical
machines to improve system power efficiency. Farahnakian
et al. [28] considered future resource demands and applied
VM consolidation based on a utilization prediction model.
Though these works can save energy by better managing
active physical machines, aside from Son et al. [9], none have
considered network energy and overbooking resources as a
management technique.

Son et al. [9] did not consider cooling power as a part
of their management technique. Energy supply and source
awareness were not a part of their resource management
framework, so release overbooking was not considered
when it does not affect carbon emission. Notable all omitted
awareness of green energy sources as a part of energy
efficiency.

Another approach is to defer power-hungry workloads to
align them with renewable energy availability. Goiri et
al. [16] presented a prototype of a small-scale green CDC
and proposed GreenSwitch to explore the ability to delay
MapReduce jobs when the workload can be deferred. Hasan
et al. [30] proposed green energy awareness for interactive
cloud applications by compromising non-core and inde-
pendent features of the services that can be isolated to be
activated or deactivated. These works primarily focus on
tuning the application level of the given services but do not
consider green awareness as a core component of the system
framework. On the other hand, our EPU method performs
resource management in accordance with energy supply
from green sources. Table 1| gives a brief comparison of our
proposed work with existing schemes in the literature.

A common limitation of the schemes reported above
includes not explicitly managing access to renewable or
non-renewable power sources to manage CDCs. None of
these works exploited VM management using awareness of
energy sources within CDCs based on overbooking tech-
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Fig. 1: Renewable-energy-aware Resource Allocation

niques. We overcome this limitation by allowing more effi-
cient use of renewable power if available, focusing on uCDC
with on-site renewable generation. This paper presents a
sustainable system architecture that focuses on dynamic
overbooking techniques and consolidation of VMs within
the uCDC to provide Elastic Power Utilization. Hence, we
present a system architecture able to elastically shape work-
loads to best match available power from green sources.

2.1 System Overview

In our proposed Elastic Power Utilization shown in Fig.
we present a management system to align uCDC power
consumption to match renewable energy availability. We
employ dynamic VM consolidation and computing resource
overbooking that accounts for green power sources. The
primary idea of this architecture is to utilize the informa-
tion provided by resource utilization monitor to manage
resources in yCDC. Based on this information, the required
energy consumption of the uCDC to serve the workload is
calculated and accordingly a resource management scheme
is applied to match power consumption with available
green power generation. As stated earlier, favoring green
sources, we assume CDC clients will accept resources to be
overbooked to some level based on the Green SLA when the



energy supply from green sources is inadequate.

CDC Clients/Service providers request VMs to be executed
in the CDC as the host for their applications. Controller
receives these requests, and with the help of monitored
data, initially places VMs, applies overbooking, releases
overbooking, and performs VM migration dynamically if
required. This way it matches the power consumption of the
#CDC with power availability from green sources, which
are variable and intermittent. The VM placement component
checks the current status of the hosts and decides where
to launch a new VM when a request initially arrives into
the system. The VM migration component and overbooking
component decides upon the migration and overbooking of
VMs when required, the selection of source and destination
hosts, and the maintenance of the VM-to-host mapping lists
for the framework. It also refers to a migrations list that is
created based on the monitored data.

The Resource Utilization Monitor is in charge of monitoring
the resource utilization and the associated energy consump-
tion levels. It receives all the relevant data for monitoring
purposes and runs all the resource utilization and power
consumption models to keep track of the resources. The
resource utilization data are analyzed along with the energy
available from the clean sources to decide when to perform
overbooking, release overbooking, and migration methods
for matching the energy requirement with the supply of
clean energy sources.

In a typical CDC scenario, CDC clients are service providers
who deliver applications to end-users, and they subscribe
resources from CDC operators to run and manage end-
users applications. We propose an agreement between CDC
clients and CDC operators; we call it Green SLA, as noted
earlier. This agreement can influence both parties to adapt
greener services knowingly and mutually. On one hand,
accepting this agreement, the service providers agree to
endure some levels of overbooking from the CDC operator.
In return, CDC clients can receive incentives (e.g., discount,
or carbon tax benefits) when they are exposed to overbook-
ing. For many services commonly remains underutilized, or
applications that can handle occasional overbooking, Green
SLA provides a suitable scope. It is worth mentioning that
overbooking may result in QoS degradation (e.g., delayed
response time) for end users of CDC service providers.
However, it is up to CDC clients to make sure if Green SLA is
right for them and manage their resources accordingly. On
the other hand, the CDC operators exploit these opportu-
nities for their overbooking technique to save energy, when
grid power is required to run their workload. Note that, the
common practice is that the CDC operators apply overbook-
ing without informing clients and allow considerable levels
of CPU over-commitment without significantly impacting
VM performance [17]. For example, VMWare permits up-to
three-fold overbooking as a general guide for performance
sizing as per best practice recommendations [18]. So, the
proposed Green SLA motivates both parties participating
in a transparent process to accelerate decarbonization and
greener services.

2.2 Motivational Example

This subsection presents our objective by providing a mo-
tivational example. On the left part of Fig. [2 we have a
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Fig. 2: Example of consolidation with overbooking. The blue
part areas in VMs denote how much overbooking is allowed
compared to the base requested amount of resource for the
VMs.

group of VMs hosted by the corresponding physical servers
(hosts). We assume CDC clients are willing to accept some
level of overbooking when possible, as shown by the blue
area in the figure. As stated earlier, the client’s motivations
for accepting overbooking can be various incentives such
as discounts from cloud operators, being environmentally
friendly, or carbon tax benefits. Accordingly, clients provide
the level of overbooking to which they are willing to ac-
cept a compromised ratio of resource demands when green
energy is inadequate, i.e., in the form of an upper bound
for overbooking level. The way CDC clients set acceptable
overbooking level, and design of incentive mechanisms fall
out of the scope of this work.

Energy components like hosts and switches consume
considerable power even when serving a minimum work-
load as well. This happens because of the base idle power
consumption, which is a constant factor consumed by the
host no matter how much load it serves [9]. This work
aims to save this energy as much as possible. The idea is
to minimize the number of active components as much as
possible by exploiting overbooking (allowing more VMs to
be packed in a host) and switching off unused components
to save power when green energy is insufficient. On the
right part of Fig. [2} we show that the joint application of
overbooking and consolidation can lead to lower resource
usage and save power consumption. Section [3| formulates
this objective.

3 PROBLEM FORMULATION

This section presents energy models for the different compo-
nents of a CDC, followed by the formulation of the primary
objective addressed in this work.

3.1 Energy Model
3.1.1 Compute Energy Model

The amount of power consumed by a server is often varied
linearly with the CPU utilization level, in addition to the
base idle power consumption. To model CPU power usage,
we adopt the popular power model from [19] [35]. This
power model is also being adopted by other recent works
such as [9] [36] [37] [28]. Thus, the power consumption of
host i is modeled as:

P(h) = { OPidle + (Poeak — Pate) ~w;  if a; >0

ifa; =0 )



TABLE 2: Notations used for problem formulation

Symbols Description
hi The i"" host in the CDC
H The set of all hosts in the CDC, Vi, h; € H
|H| The total number of hosts in the data center
S; The it switch in the CDC
S The set of all network switches in the CDC, Vi, s; € S
|S| The total number of network switches in the data center
P (h;) Power consumption of host i
P;gie Idle power consumption of host
Ppeak Peak power consumption of host
u; CPU utilization percentage of host i
o The number of VMs placed in host i
P (s;) Power consumption of switch i
[V M| The total number of VMs in the CDC at any given
point of time

where P,gi. and Py are the power consumption of a host
in its idle and peak states, which are constant factors, u; is
the dynamic power consumption of host, which is linearly
related to the CPU utilization percentage, and «; is the
number of VMs placed in host i.

The compute subsystem of a CDC comprises a set of
hosts. Its energy consumption during time slots 0 to 7' is
determined by the equation

T |H|

Po=Y (6> P(h) @
=1

t=0

where | H| is the total number of hosts and §; is the duration
of the respective time slot.

3.1.2 Network Energy Model

Network power consumption is mainly determined by its
switching components when they are active [38] [32] [39];
going from zero to full traffic increases power consumption
by only less than 8% [32]. So, turning off a switch can give
the most benefits, while an unused port only can save 1-
2 Watts. Also, Network subsystem power consumption in a
CDC is relatively low compared to the compute subsystem
and typically comprises ~ 5% of the total power consump-
tion [19] of a data center. Hence, we ignore the power
variation due to traffic as it can contribute only up to a
negligible fraction. Thus, we adopt the power consumed by
the network is predominantly determined by the number of
active (On) switches. The power consumption of any switch
s:, P(s;), is modeled as:

Pis)={ o

where P;,, is the power consumption of the switch.

Hence network, using Equation 3} we compute the net-
work subsystem energy consumption over time period 0 to
T by the given Eq. 4

if s;is ON
if 5, is OF F @)

T S|

Ps=3% (0D P(si) “)
t=0 i=1
3.1.3 CRAC Model

The thermal management of a CDC is performed by the
Computer Room Air Conditioning (CRAC) subsystem. We
assume the only cooling system facility available in the data
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center is the CRAC unit. We adopt the widely used model
from [40] to estimate CRAC subsystem power consumption,
also employed in other recent work [41]. According to this
model, the efficiency of a CRAC subsystem is measured
by the Coefficient of Performance (CoP) metric, that is a
function of cold air supply temperature T,. CoP is defined
as the ratio of the total power dissipated by the compute
subsystem to the total power consumed by the CRAC sys-
tem to extract the dissipated heat.

Pcrac = Pc/CoP (1) ©)
where Pc and Porac represent compute and cooling sys-
tem power. Cooling system power can be reduced by de-
creasing the compute load or increasing the cold air supply
temperature. We adopt the following regression model from
[40] to estimate CoP:

CoP (Ty) = oT? + BT, + 7. (6)
where o = 0.0068, 5 = 0.0008, and ~y = 0.458. Equationsand
E] indicate that the increasing value of T leads to reduce
the cooling power when compute system power remains
the same. Thus, the energy consumed by the cooling system
over the time slots 0 to 7' is determined as a function of
cold air supply temperature 7T and the amount of power
consumption P¢ by the compute system and can be written
as equation:

Yo (5t : Ziﬂp(hi))

Perac (Ts, Po) = CoP (11 ?)
Thus, the total energy consumption by the compute, net-
work and CRAC system of data center over the time slots 0

to T can be formulated as:
Pr = Ps+ Pc + Pcrac (Ts, Pc) (8)

That is:

T S| 2
alz+ BTy +v+1
A= (b r e |+ (e
t=0 i=1 s s

)

|H|

T
: 8- P (h)
=0 i=1

t

3.2 Problem Formulation

We employ a resource management scheme that aims to
minimize the utilization of grid power from brown sources
when the supply from green sources is inadequate over the
time slots 0 to 7". This is done by exploiting overbooking and
releasing overbooking according to the power availability
from green sources. The primary objective can be formu-
lated as:

1
minimize: Oy - P)|+(1+ =—r—rrs
3 (0 % r) (1 op)
D6 D P

teT h,€H

(10)

subject to constraints: |4/
> =|VM|
i=1

where T' can persist for as long as we employ the scheme.
Our proposed solution relies on joint VM consolidation

and overbooking in accordance with Green SLA require-

ments. We solve as a resource management problem,

(11)



with dynamic overbooking of resources to maintain energy
efficiency throughout the process. In the next, we propose
our algorithm along with a few baselines experimental
comprehensiveness.

4 OVERBOOKING AND VM CONSOLIDATION EX-
PLOITING RENEWABLES

Our approach focuses on green-aware shaping of work-
load and managing the resources dynamically to match
the renewable energy supply. This work jointly exploits the
overbooking and consolidation of VMs together to shape
the workload. Our workload shaping can make the sys-
tem more power elastic. As we exploit overbooking, this
mechanism allows CDC operators to accommodate more
virtual machines on a physical server (host) than in actual or
non-overbooked states. When we implement overbooking,
a host’s capacity is increased as per the overbooking ratio
described in the following equation.

Réopr (hi) = (1+GOBR) x R(hy) — (12)
where R (h;) is the available resource of host h; in its
non-overbooked state, RA, g (hi) is the capacity of host
h; when overbooking is applied, and GOBR is the green
energy aware overbooking ratio. We named it Green Over-
booking Ratio (GOBR) as we implement overbooking to
reduce the demand for brown energy when the clean energy
supply is inadequate. Now, we explain our algorithm as
follows.

4.1 Renewable Energy-Aware Overbooking & VM con-
solidation

This renewable-energy-aware resource management algo-
rithm implements our proposed concept of EPU. It exploits
overbooking (OB), VM migration (Mig), along with the
launching of VMs on the most loaded host with enough
remaining capacity following a best fit (BF) policy. We
named this algorithm as BFOBMig. In Algorithm [1} we
first gather the required initial information and initialize
state variables (Inputs & Steps [I}2). These are monitor-
ing information used throughout the algorithm, such as
the number of hosts in the uCDC, a list that tracks the
number of VMs in all hosts, etc. There are K number of
pods in an order K DCN topology; each pod consists of
K /2 edge switches, each connected with K /2 hosts. So,
the total number of hosts is K x K/2 x K/2 = K3/4.
We initiate the required counters to keep track of event
times, like launching and termination of VMs, placements,
and power status (Steps Blf6). Our algorithm continuously
checks if any new request for launching or termination of
a VM has arrived or if the duration for the current time
slot has expired. This algorithm manages two main parts
while continuously checking system state. One part (Steps8}
18) is responsible for managing launch and termination
requests of VM instances in the yCDC. When receiving a
NewRequestReceived event, it detects the request type,
and whether a launch or termination is requested. New
VM launch requests are executed as per the current status
of the hosts (Stepg9{f12). The VM termination requests are
managed as per Steps NewRequestReceived event
iterates over all hosts to manage resources and has time
complexity of O(|H|). The second part (StepgI9|21) calls
Algorithm 2]
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Algorithm [2 manages the implementation of overbook-
ing and VM consolidation. This algorithm initiates with
updated global variables, lists and counters from Algo-
rithm [I} At the end of each time slot, it recalculates the
total energy consumption (Steps 1-2) as per the models
explained in Section Notably, VM migrations consti-
tute additional energy use, which can be estimated by
considering the VM to be active on two hosts during the
migration process. This amount of energy is also fed into
the model. After calculating the total energy consumption
of the slot, it checks the renewable energy supply; if supply
is insufficient, it executes migration with overbooking (if
that has not already been done) and performs the required
update for the resource capacity to the set of hosts (Steps
3-11). If supply is sufficient to serve the workload, the
system releases the overbooking and performs the required
resource capacity update to the set of hosts (Steps 12-21). All
the updated global variables, lists, and counters are returned
to Algorithm 1} To manage resources, this algorithm iterates
over all hosts, and has time complexity of O(|H|). As stated
earlier, Algorithm [I| and [2| perform resource allocation by
jointly exploiting overbooking and VM consolidation as per
renewable energy availability.

4.2 Baseline Algorithms with Modifications

In the following, we introduce a few baseline and state-of-
the-art algorithms, later used for comparison with BFOBMig
and show the impact of renewable-energy-aware joint over-
booking and VM consolidation.

LB Algorithm: This naive algorithm tries to distribute
VMs evenly among the available hosts—keep the Load
Balanced (LB)—and selects the least loaded host to ac-
commodate a newly requested VM. It does not consider
VM migration after the initial placement of VMs, and we
consider this widely used policy as a baseline algorithm.

BF Algorithm: This algorithm places VMs into the most
loaded host, which still has the capacity to accommodate
more VMs following the best fit (BF) policy. This is a well-
known energy-efficient technique that, similar to LB, does
not consider VM migration and is widely used to compare
with any modified strategies with add-on constraints. We
also consider this policy as a baseline algorithm in this
paper.

BFMig Algorithm: Similar to BF, this algorithm initially
launches VMs on the most loaded host. Then, it performs
VM migration to reduce brown energy use when the avail-
able renewable energy is less than required to serve the
workload. However, it does not perform overbooking. It cal-
culates the total power consumption at the end of each pre-
fix time slot and implements the VM migration if required
as per available supply of renewable energy. A modified
version of this policy is also considered for comparison
by a recent work [28]. We adopt this policy and modified
it as a renewable-energy-aware and brown energy-saving
technique by exploiting VM consolidation.

BFOBAIMig Algorithm: This algorithm also launches
VMs on the most loaded host following the best fit (BF)
policy. It overbooks (OBAI) resources all the time and
considers VM migration (Mig) at the end of each pre-
fixed time slot, regardless of renewable-energy generation
status. We name it BFOBAIMig, and it is identical to
BFMig algorithm, other than incorporating overbooking.



Algorithm 1 Renewable-energy-aware resource allocation

Input: H: The set of all hosts in the DC; K: The order of the

DCN topology; Iy pr: Temp. queue for new VM requests

(Launch or Termination); RE;: Renewable energy

availability in time-slot t

Output: Distribution of the workload with the timeline

1: h+ (K3)/4 b The total number of hosts in the CDC

2: Ly, Trs, Prs < 0 > List of the VMs
under each host, timestamps when event (IN or OUT of
VMs) occurs, energy consumption rates by hosts at all
time stamps, all initiated to NULL

3: currState < NonOB,C < Cyonop > Initial state is
set to non-overbooked state, host capacity C

4: Count_In < numO f(Iy pr.LaunchReqs), Count_Out +

numO f(Iyy.TermRegqs) 1> Keeping track of newly
coming requests, Count_Out=0 initially
5. Trs.Append(Start_Time)
6: Prg.Append(Pow(Ly))
initial workload

> Energy consumption for

7: while completing a slot OR NewRequestReceived do
8: if NewRequestReceived then

9: if IN request then

10: H;, « Select most filled and still has
capacity host

11: Ly [H;y].push(newLaunchReq) in currState

12: end if

13: if OUT request then

14: fetch VMID, HostID of OUT request

15: Ly[HostID].pop(VMID)

16: end if

17: Update all counters

18: end if

19: if end of a slot then

20: do follow Algorithm 2

21: end if

22: end while

Algorithm 2 Dynamic overbooking of hosts and VM Consolidation

Input: Last updated Lists and Variables from Algorithm 1
Output: Distribution of the workload with the timeline
1: while completing of each time-slot t do
2: TotalPowrs, = Powflg + Powly + Pow§g +
PowM > over uneven time partitioning TS of slot
t total Power consumption by Hosts, Network, Cooling,
Migrations are Powjlfst, PowITV Sy Powg Sy Pow™ at the
currState (overbooked or non-overbooked)
if RE;, < TotalPowrg, then
if currState is NonOB then
currState < OB
C=Cop
LEB < Update containing capacity of Ly
end if
P = [sum(allLen(LYB(i))/C))]
10: OBMig_List(Source# LYB[0..P] +—

Dest# LYP [P + 2..len(LYB))

11: Ly + L9B

12: else

13: if currState is OB then

14: currState < NonOB

15: C= CvNonOB

16: LhNO"OB < Update containing capacity of Ly,

17: end if

18: P = [sum(allLen(LY°"9B (7)) /C))]

19: OBMig_List(Source# LYB[0..P] —
Dest# LYP [P + 2..len(LYB))

20: Ly, + LYonOB

21: end if

22: end while
23: return All updated global variables, counters, lists to
Algol.

BFOBAIMig overbooks resources all the time, even when
sufficient renewable energy is available. Therefore it violates
Green SLA though it minimizes the brown-energy use. We
proposed this algorithm as a lower bound baseline.

5 PERFORMANCE EVALUATION

We implemented all the methods as described in the pre-
vious section, to evaluate and compare their relative perfor-
mance in minimizing brown energy consumption and Green
SLA violations. We discuss the details of the experiments
and analysis of the results.

5.1 Experimental Setup

In order to evaluate our approach, we implement the algo-
rithms in a simulation environment described in [37]. We
added monitoring components to handle variable renew-
able energy availability, energy consumption for cooling,
and dynamic overbooking methods. The data center sim-
ulated for our experiment comprises 128 hosts each using
260W on-peak, connected by a fat-tree network where the
switch uses 60W of power, topology of order 8 with 16 hosts
in each pod and cold air supply temperature is set to 25°C

for the cooling system. The total energy consumption by the
hosts, CRAC component, and switches are computed based
on the power models explained in Section Different
compute sets can comprise non-uniform server types in
large CDCs, but these physical servers are usually of the
same type in a single rack or cluster. In the current work, we
assume physical servers and VMs are homogeneous. Each
physical server can host up to 34 VMs without overbooking
at the peak load. We exploit 30% overbooking level for
the experiments and then we vary overbooking level to
analyze its impact. We ran all simulations on Intel Core i7-
8850H 2.6GHz x 12 CPU, 64-bit computer with 32 GB RAM,
running Ubuntu 18.04.3. For experiments with migration
policy, the time window to run migration is set to 30 minutes
(identical to [9]]), so migration is attempted if required as per
the availability of renewable energy every 30 minutes.

Our experimental setup variables are considered to build
a realistic data center environment. Additionally, all ex-
periments are performed on the same setup for equitable
evaluation. We employed common and widely used energy
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Fig. 3: Workload and renewable energy traces for 10 days

models to measure the estimated energy consumption. Re-
cent works, such as [36] [37] [9] [41], also adopted these
models for similar purposes. The validation of these energy
models can be found in the original papers. Please note that
it is not our goal to propose accurate energy consumption
models of a data center in this paper. In addition, our work
focuses more on the components that can directly vary
with the computational load, so we discarded other load-
invariant components, such as lighting and power control
systems, contributing to less than ~9% of total power in a
typical data center [19]. Therefore, the results indicate the
estimated values based on the adopted models, and the
reported study eliminates all possible explanations other
than the relative performance of the compared schemes.

5.2 Workload

We employed Google Cluster, Wikipedia, and Nectar Cloud,
traces as representative workloads. All of these are real-
world workload traces. Google Cluster and Wikipedia widely
used in the literature and are publicly available [42], [43].
The Google Cluster trace includes job requests submitted to
a cluster over a period of one month. Google workload
represents activities in a cluster of approximately 12,500
compute cells managed by the cluster management software
of Google, known as Borg. The trace describes every job sub-
mission, scheduling decision, and resource usage data for
the jobs that ran in that cluster. We mapped these job request
traces to generate VM requests similar to [34]. The trace
contains nearly 480,000 requests over about one month, and
we use the first ten days of data for the experiment. Fig.
shows the normalized workload of VM requests generated
based on the scheduling algorithm in [12] [34]. We use
4231 number of VMs for the peak and scale the workload
accordingly, following works in [12] [34].

Similarly, we depict the shape of the Wikipedia trace in
Fig. This trace contains 10% of all http requests issued
to Wikipedia (in all languages) available at [43] [44]. The
workload follows a diurnal pattern with clear periods of
different workload intensity. We used the requests over ten
days (dated Oct 02-11, 2007; about 2119.6M requests) and
mapped these request traces to generate VM requests simi-
lar to [34]. We normalized the Wikipedia workload shape to
the peak and then matched its peak to the peak of the Google
workload to standardise the experimental environment.

Nectar [45] is an Australia’s national research cloud,
providing cloud computing services and tools to Australian
researchers. The traces for the Nectar Cloud are extracted
from the real usage of resources For the Nectar workload,
we used the trace over ten days (dated Dec 22-31, 2017), nor-
malized the workload shape to the peak, and then matched
its peak to the peak of the Google workload to standardize
the experimental environment. The Nectar cloud is often
used for research projects running scientific batch jobs over

long-running VMs. So its workload pattern is consistent
throughout the year as shown in Fig.

5.3 Renewable Energy Traces

To capture renewable energy availability, we adopt the solar
irradiation and wind energy near to the University Campus;
we use meteorological data traces by Weather Underground
[46] with half-hour granularity between April 08-17, 2021.

We presume the data center uses a small scale in-house
wind turbine set to generate wind power. To estimate the
average wind power production per half-hour, we adopt
the model in [47] [48] where the wind speed, air pressure,
cut-in, and cut-out speed are fed into the model. Similarly,
the Global Horizontal Irradiance (GHI) in the same location
is used to calculate solar photovoltaic (PV) output power. To
estimate the average solar power production per half-hour,
we adopt the model in [49] [12] where GHI data, tilt angle
of 45°for the panels, calendar dates for the angle of the solar
radiation, PV cell efficiency of 30%, and location latitude
38°South are fed into the model. We depict the shape of the
renewable power trace in Fig.

5.4 Results and Analysis

This section presents our experimental results. We experi-
mented with the simulation setup described in the previous
section (Section with ten-day VM request traces of
three workloads (Section with renewable energy traces
described in Section[5.3l

5.4.1 Impact on Brown Energy Consumption

Figld Figle| and Figg| show the total power consumption
throughout ten days for different algorithms compared to
renewable power generation. BFMig, BFOBMig, and
BFOBAIMig which are renewable-energy aware, con-
sumed less power to serve workloads than the baseline
algorithms LB and BF. We assumed that the operator
buys the grid electricity, presumably brown energy, when
insufficient renewable energy is available. In all three figures
(Figld, Figlel and Figl8), RE represents the supply from
renewable sources, and the power consumption amounts
that are non-overlapped with RE are supplied from the
grid (brown source). We set 30% overbooking to present the
results of BFOBMig in Figures The impact of varying
overbooking level is presented in section The energy
demands to serve the workload vary over time due to the
policies employed in different algorithms. Unlike the naive
LB and the other baseline BF algorithms, the BFMig and
BFOBMig algorithms vary to match the renewable energy
supply. The energy consumption in EPU based BFOBMig
algorithm varies more, over the other algorithms. BFOB-
Mig matched power demand and renewable power sup-
ply more than the other algorithms and reduced power
requirement to the lowest when power was taken from
brown sources. It happened as it applied both VM migration
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and dynamic overbooking, whereas BFMig only implements
VM migration, and BFOBAIMig implements overbooking
always. Power consumption is always correlated with the
workload, and our reactive resource management algorithm
tries to reduce the consumption when not enough renew-
able energy is available, no matter the workload’s pattern.
We deliberately selected various workloads with different
patterns to show how they affect the performance of our
proposed algorithm.

Fig.[Bb} Fig.[7b} and Fig.[b|show a comparative measure
of energy consumption in all three workloads. The green-
energy-aware BF Mig, BFOBMig, and BFOBAIMzig al-
gorithms consumed about 39.5%, 55.6%, 56.5% less brown
energy compared to the naive LB algorithm, and 13.1%,
36.2%, and 37.6% less brown energy compare to the base-

line BF, respectively, to serve the Google Cluster workload
(see Fig. [pb). In the Wikipedia workload, the green-energy-
aware BF Mig, BFOBMig, and BFOBAIMig algorithms
consumed 32.4%, 51.0%, 52.3% and 22.3% 43.6%, 45.1%
less energy from brown sources than the LB, and BF,
respectively (see Fig. [/b). Similarly, in the Nectar work-
load, the green-energy-aware BFMig, BFOBMig, and
BFOBAIMig algorithms consumed 2.8%, 29.4%, 30.5%
and 1.5% 28.5%, 29.6% less energy from brown sources than
the LB, and BF, respectively (see Fig.[Pb). So our proposed
BFOBMig algorithm can save a similar amount of brown
energy for all three workload types without implementing
the overbooking continuously (BFOBAIMig).

The naive LB algorithm draws the highest amount
of brown energy across all time slots compared to all
other algorithms. At the same time, the green-energy-aware
and overbooking capable BFOBMig and BFOBAIMig al-
gorithms, consume less brown energy. The other green-
energy-aware BFMig algorithm consumes less brown energy
than the baselines but consumes more than BFOBMig and
BFOBAIMig because it only applies VM migration, whereas
BFOBMig and BFOBAIMig apply both VM migration and
overbooking jointly and can consume less brown energy.
The gain is significantly lower when only VM migration
(without overbooking) based, green-energy-aware BF' Mg
algorithm is applied to the nearly flat Nectar workload.
Our proposed green-energy-aware EPU based BFOBMig
algorithm consumed about 36.2% (Google workload), 43.6%
(Wikipedia workload), and 28.5% (Nectar workload) less
brown energy than the baseline BF algorithm. These im-
provements are 23.1% (Google workload), 21.3% (Wikipedia
workload), and 27.0% (Nectar workload) better (see the
differences in brown energy savings of BFMig and BFOBMig
when both measured compare to BF in Fig[5b} Fig[/b} and
FigPb) than in BFMig, the renewable-energy-aware state-of-
the-art algorithm that applied VM migration. Improvement
reflected for all ten days for all the workloads. BFOB-
Mig saved nearly similar amount of brown energy like
BFOBAIMig (compare to naive LB, just 0.9%, 1.3%, and 1.1
difference for Google, Wikipedia, and Nectar workloads, re-
spectively), but it violates Green SLA around 32.1%, 32.9%,
and 21.7% less than BFOBAIMig for Google, Wikipedia, and
Nectar workloads, respectively (see the difference in Fig[10a]
and Fig[10b). Hence, without continuously overbooking the
system, our proposed EPU based BFOBMig algorithm pro-
vided a similar gain as it adapted power saving strategies
dynamically with the availability of renewable energy.
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As we exploit overbooking in favor of clean energy, the SLA
violation is quantified as the ratio of total instance-time that
system remains overbooked while there is enough renew-
able energy available to the total instance-time. Instance-
time measures the duration of time that an instance remains
in a particular state. For Green SLA violations, BFOBMig is
measured to have around 4.6%, 4.8%, and 5.0% violation in
comparison to around 36.7%, 37.7%, and 26.7% of always
overbooked system BFOBAIMig for Google, Wikipedia, and
Nectar workloads, respectively (Fig[l0a). This results reflect
that BFOBMig algorithm saves relatively similar brown en-
ergy to the always overbooked algorithm BFOBAIMig, while
keeps the Green SLA violation significantly lower.

It is worth mentioning that overbooking may result
in QoS degradation (e.g., delayed response time) for end
users. In general, QoS degradation increases by the increase
of overbooking levels, but depending on the application
type or utilization levels, the impact might be different.
Experiments carried out in [50] to measure the effect of
overbooking level on average response time, in which one
of the services has shown nearly 2.5 times (from ~31ms.
to ~79ms.) increment from no overbooking state to 75%
overbooking state. The other service has shown nearly two
times (from ~22ms. to ~47ms.) increment from no over-
booking state to 75% overbooking state. In general, CDC
operators are unaware of type and current state applications
hosted inside VMs; thus they cannot measure the impact of
overbooking on QoS for end-users. As explained earlier, this
is up to cloud clients (service providers) to manage QoS for
their end users, determine the accepting level of overbook-
ing, and if the Green SLA is right to them at all. Therefore, in
this work, we do not report the QoS degradation in essence.

Impact on SLA Violations

5.4.3 Carbon Footprint, Cost and Green Energy Usage

The overall performance of the proposed BFOBMig algo-
rithm that implements the EPU concept through dynamic
overbooking and VM migration-based resource manage-
ment, compared to all other algorithms, can be determined
by carbon emissions, cost of energy from the grid, and the
fraction of clean energy usage.

We derive the carbon footprint as 1.2134 tCOze/MWh
(tonnes of carbon dioxide equivalent per megawatt-hour)
for the off-site grid electrical power, which is the weighted
average of the carbon emission from the fossil fuel power
stations [51]] [52] in Victoria, Australia. We derive the cost
of the electricity as per the rate in the area we gathered the
energy source data. The electricity price of 26.95 ¢/kWh,
16.50 c¢/kWh for the peak and off-peak (11pm-7am) hours
have been chosen to calculate a grid electricity price similar
to the pricing for small industries in the Melbourne area [53].

We compared all the algorithms and measured their
relative performance. To depict the relative improvement,
we measured the performance of all other algorithms with
respect to the naive LB algorithm for carbon emission, cost
of energy required to buy from the grid, and the proportion
of clean energy usage. The results in Fig. show that
BFOBMig and BFOBAIMig reduce the carbon footprint to
serve the Google workload by about 55.6% and 56.5%, than
the naive LB, which is around 25.3%, 26.2% and 16.1%, 17%
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better than the baselines BF and BFMig algorithms. This im-
provement for BFOBMig and BFOBAIMig are around 38.0%,
39.3% and 18.6%, 19.9% than the baseline BF, and BFMig
algorithm for the Wikipedia workload (see the difference
in Fig. For the Nectar workload, this improvement for
BFOBMig and BFOBAIMig are around 28.1%, 29.2% and
26.6%, 27.7% than the baseline BF, and BFMig algorithm,
respectively(see the difference in Fig. So, without over-
booking the system continuously, our proposed EPU based
BFOBMig algorithm provided a similar gain.

The cost of buying power from the grid to serve the
Google workload is around 25.2%, 26.3% and 16.1%, 17.2%
lower in BFOBMig and BFOBAIMig, respectively, than the
baseline BF, and renewable-energy-aware BFMig algorithms
(see the difference in Cost in Fig[sd). This improvement is
around 37.4%, 39.0% and 19.2%, 20.8% for the Wikipedia
workload and 28.6%, 29.9% and 27.1%, 28.4% for the Nectar,
respectively (see the difference in Cost in Fig[9d and Fig[9d).
These improvements reflect BFOBMig saved nearly simi-
lar cost to the always overbooked BFOBAIMig algorithm.
Hence, BFOBMig provided a similar gain in cost savings
without overbooking the system continuously, as it adapted
power-saving strategies dynamically based on EPU.

5.4.4 Impact of Overbooking Level
The trend lines in Fig[lTa] show how power consumption
from brown sources changes with varying overbooking
levels with the BFOBMig algorithm. Results show that the
more the overbooking level, the less the brown power
consumption. Trend lines for all three workloads show that
the performance gain becomes less significant with higher
overbooking levels. This is because the rate of the number
of hosts we can put in the idle state is reduced with the
increase in overbooking level, while the workload remains
the same. Therefore, increasing the overbooking level has a
less significant impact on the brown energy consumption.
Fig[1Tb| shows the Green SLA violation with varying
levels of overbookings for all three types of workloads for
BFOBMig. SLA violations occur due to the transition from
the overbooked to non-overbooked states when renewable
energy becomes sufficiently available. The amount of vi-
olation increases with the higher overbooking levels as it
counts for more instance-time remained overbooked during
the transition. Compared to the other two workloads, the vi-
olation rate increases a bit faster in Wikipedia workload since
this workload follows a similar pattern as the renewable
with a higher amount of workload at the transition.

5.5 Limitations

Our proposed solution is a reactive algorithm that works
based on the source of energy information. A general lim-
itation of the reactive approach is that decisions are made
based on the system’s current status. Forecasting variability
is not explored here and prediction-based approaches are
left as the future work.

Even though large-scale data centers may consist of
heterogeneous devices with different batches of servers and
switches, devices are mostly homogeneous within a single
rack, cluster, and in small-scale data centers. Therefore, for
the sake of simplicity, we focused on the homogeneous con-
figuration of the problem and developed our strategies ac-
cordingly. However, without losing the general construction



of the problem, the heterogeneous scenario can be modeled
as a finite set of homogeneous subsets. Investigations on this
variability are not explored here and are left as future work.

We carried out experiments with ten days of renew-
able energy data with real-world workloads. We varied
the strategies keeping the environment same for experi-
ments, achieved promising results in our strategy over the
others for all days with all the workloads, strengthening
validity [54]. The performance gain may vary if other days
or price values are selected. However, the overall trends
remains consistent over other various data. We considered
a particular but realistic computing environment including
devices, power consumption, and costs for our experimental
setup as described, and hence, the results are specific to
this setting. All setting values are adopted from relevant
domain experimental setup of highly cited publications and
common practice as described. Our investigation intended
to compare the behaviors of load components that directly
vary with computational load, allowing us to neglect load-
invariant components, such as lighting and power control
systems. As per Pelley et al. [19], these load-invariant power
consumption components can contribute less than 9% of to-
tal power in a typical data center. Our results were produced
to determine the relative performance of the respective
schemes under comparison, not to produce an exact model
of a specific data center, noting that energy results and load-
invariant components will vary with the design of a data
center.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents the concept of EPU in sustainable CDCs,
a resource management framework for resource allocation
for systems using on-site renewable energy that accounts
for the type of energy source, renewable or non-renewable.
We proposed an algorithm based on the EPU concept to
allocate resources in a way that dynamically adopts an
overbooking policy to shape electrical energy demands for
serving workload to match the available clean energy sup-
ply. Our proposed method can reduce brown energy usage
by exploiting VM consolidation and overbooking conditions
when the supply of renewable energy is inadequate and
lifting the overbooking when enough renewable energy
supply is available. We demonstrated that our proposed
EPU approach could effectively improve green energy uti-
lization, and reduce brown energy usage.

In the future, we will investigate forecasting variability
of workload and renewable energy and related prediction
based approaches. We will extend our methodology by
using Markov Decision Processes and Reinforcement Learn-
ing to dynamically set optimal overbooking ratios, and to
explore prediction-based probabilistic decision approaches.
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