
1

faasHouse: Sustainable Serverless Edge
Computing through Energy-aware Resource

Scheduling
Mohammad Sadegh Aslanpour, Student Member, IEEE, Adel N. Toosi, Member, IEEE,

Muhammad Aamir Cheema, Senior Member, IEEE, Mohan Baruwal Chhetri, Member, IEEE

Abstract—Serverless edge computing is a specialized system design tailored for Internet of Things (IoT) applications. It leverages
serverless computing to minimize operational management and enhance resource efficiency, and utilizes the concept of edge computing
to allow code execution near the data sources. However, edge devices powered by renewable energy face challenges due to energy input
variability, resulting in imbalances in their operational availability. As a result, high-powered nodes may waste excess energy, while low-
powered nodes may frequently experience unavailability, impacting system sustainability. Addressing this issue requires energy-aware
resource schedulers, but existing cloud-native serverless frameworks are energy-agnostic. To overcome this, we propose an energy-
aware scheduler for sustainable serverless edge systems. We introduce a reference architecture for such systems and formally model
energy-aware resource scheduling, treating the function-to-node assignment as an imbalanced energy-minimizing assignment problem.
We then design an optimal offline algorithm and propose faasHouse, an online energy-aware scheduling algorithm that utilizes resource
sharing through computation offloading. Lastly, we evaluate faasHouse against benchmark algorithms using real-world renewable energy
traces and a practical cluster of single-board computers managed by Kubernetes. Our experimental results demonstrate significant
improvements in balanced operational availability (by 46%) and throughput (by 44%) compared to the Kubernetes scheduler.

Index Terms—edge computing, serverless, function-as-a-service, energy awareness, scheduling, sustainability

✦

1 INTRODUCTION

12

S ERVERLESS edge computing [10], [11] is an emerging3

technological innovation that combines the flexibility4

and scalability of serverless computing with the proximity5

and low latency of edge devices. This approach has the6

potential to revolutionize edge computing and drive real-7

time Internet of Things (IoT) applications. By distributing8

computational workloads to the edge of the network,9

serverless edge computing enables real-time processing,10

reduces data transfer costs, and enhances user experience.11

It effectively bridges the gap between cloud computing and12

localized processing, empowering developers to leverage13

the advantages of both.14

15

Serverless computing, implemented through Function-16

as-a-Service (FaaS), is a paradigm initially designed for17

cloud computing to relieve developers from the burdens18

of managing resources and backend components [9].19

Similarly, serverless at the edge extends this concept to20

IoT software development, allowing developers to focus21

on the core business logic of their applications instead of22

complex operational practices [6]. By leveraging serverless23

at the edge, developers can write independent stateless24

functions using high-level programming languages.25

• Mohammad Sadegh Aslanpour is with Monash University and CSIRO’s
DATA61, Email: mohammad.aslanpour@monash.edu

• Adel N. Toosi and Muhammad Aamir Cheema are with Monash Univer-
sity

• Mohan Baruwal Chhetri is with CSIRO’s DATA61

The scalability and portability offered by serverless 26

computing enable applications to dynamically scale 27

functions based on real-time demand [9]. This flexibility 28

optimizes resource utilization and efficiently accommodates 29

varying workloads. The statelessness and lightweight 30

virtualization used to deploy serverless functions enable 31

efficient execution, making it conceivable to have an 32

application running with as little as 5 MB of memory. 33

Extreme edge computing refers to the practice of performing 34

computing tasks and data processing at the extreme edge 35

of a network often directly on the devices or sensors 36

themselves. Extreme edge network configuration is 37

characterized by a cluster of small-scale computers called 38

edge nodes, interconnected with a central, more powerful 39

computer functioning as the gateway at the network’s 40

edge [1]. Extreme edge computing finds applications in 41

various fields, particularly in remote/inaccessible areas 42

such as smart farming, smart forestry, and the Oil & 43

Gas Industry’s Industrial IoT [10]. While efforts have 44

been made to adopt the serverless computing model in 45

edge environments to leverage the advantages of reduced 46

operational complexity and latency [5], [13], [32]–[34], 47

its adoption in extreme edge computing poses unique 48

challenges. 49

One of the significant obstacles in adopting serverless 50

computing models for extreme edge computing lies in 51

the reliance on energy harvesting methods and battery- 52

powered edge devices, such as a cluster of single board 53

computers (SBCs) powered by solar panels [2]. The use 54

of renewable energy sources such as solar introduces 55

energy supply variability due to factors such as instability, 56

intermittency, and unpredictability [2]–[4]. For instance,57

the availability of solar irradiation for edge nodes varies58

based on factors such as the location of the edge node in59

the field and the time of day. Consequently, this creates an60

imbalance in operational availability, leading to resource61

unavailability, node failure, and degradation of Quality of62

Service (QoS) [3].63

The situation becomes even more complex due to the64

highly variable workload generated by IoT applications65

on the edge nodes. This variability further exacerbates66

the challenges, as the edge system strives to maintain67

operational availability, throughput, and reliability, thereby68

reducing the frequency of node failures and improving69

overall performance.70

Such consequences pose challenges to the sustainability71

of edge computing, as they undermine key aspects72

such as efficient utilization of renewable energy inputs,73

uniform operational availability, reduced failure rates, and74

uninterrupted operation over extended periods of time.75

While several well-established serverless frameworks76

such as OpenFaaS, KubeEdge, AWS Lambda@Edge, and77

Azure Functions on IoT Edge are designed to meet the78

demands of edge computing and address its unique79

challenges, it is worth noting that these frameworks80

are primarily designed to be energy-agnostic. They are81

focused on leveraging the advantages of the serverless edge82

computing paradigm without specifically addressing the83

energy-related considerations. To address this challenge,84

we propose faasHouse, a dynamic resource scheduling85

algorithm designed specifically to tackle the energy and86

load variability issues in serverless edge computing. In this87

paper, we make the following key contributions:88

89

• We propose a reference architecture based on the90

serverless model for battery- and renewable energy-91

operated edge computing environments.92

• We propose faasHouse, a dynamic, extensible, and93

energy-aware function scheduling algorithm that ex-94

ploits computation offloading to address the imbal-95

anced energy availability and the system’s through-96

put challenges. faasHouse—inspired by Kubernetes97

design—follows a rigorous scoring scheme to rank edge98

nodes for function placements and then incorporates an99

assignment algorithm modeled as a House Allocation100

problem to decide on the placements.101

• We provide a practical implementation of faasHouse102

using a real testbed and prototype, extending PiA-103

gent [12]. We empirically evaluate faasHouse’s perfor-104

mance where experimental results demonstrate that105

faasHouse significantly improves the balanced opera-106

tional availability (by 46%) and throughput (by 44%)107

of edge nodes.108

2 SUSTAINABLE SERVERLESS EDGE COMPUTING109

2.1 System Overview110

Fig. 1 depicts an overall system overview in which the111

edge nodes are wirelessly connected to each other and to112

a controller node, forming a cluster. Power is unevenly113

supplied to the edge nodes by renewable energy sources114

Edge Node 1

Edge Node 2

Edge Node 3

Scheduler

Func 3

Func 1

Func 2

Gateway

Controller

Fig. 1: An overview of the system

and rechargeable storage devices (e.g., batteries). Unique to 115

the extreme edge, a node is both a task generator—directly 116

connected to IoT sensors, generating data at variable and 117

irregular rates—and a computation resource to execute tasks. 118

A controller plays the role of the gateway and scheduler 119

simultaneously. As a gateway, it distributes tasks/requests 120

to their corresponding functions for execution. The sched- 121

uler monitors the edge nodes’ State of Charge (SoC), which 122

is the battery level of charge relative to its capacity, and 123

utilizes offloading opportunities to migrate/place functions 124

of low-powered nodes to well-powered nodes. Our earlier 125

research shows that computation offloading allows a node 126

to save a considerable amount of energy without imposing 127

significant performance overhead [2]. 128

The challenge in this system is that while low-powered 129

and/or overloaded nodes are prone to run out of energy and 130

become operationally unavailable, well-powered and/or 131

underutilized nodes are likely to waste their excess energy. 132

The scheduler is responsible for handling this imbalance to 133

achieve a more balanced energy distribution and improved 134

throughput. A node is deemed operationally available if it 135

has enough battery charge; otherwise, it is unavailable and 136

unable to run functions and generate requests. 137

2.1.1 A motivational exemplary application 138

We consider Smart Farming as a motivational example for 139

this research. Assume a farming field enabled with edge 140

computing for crop monitoring and precision agriculture 141

to improve crop productivity, as demonstrated in [3], [16]. 142

Edge nodes, like SBCs [16], are positioned across the farm 143

and are connected through WiFi or LoraWAN. Sensors such 144

as camera, temperature, and humidity are attached to each 145

node, so that each node can collect data from the surround- 146

ing area, e.g., estimating the bee population. Edge nodes are 147

equipped with actuators to enable automated actions such 148

as pest deterrence or water disconnection. 149

In use cases like these, edge devices are meant to 150

run without or with limited internet connection and are 151

powered by solar panels and batteries in remote and vast 152

farming areas [3]. Such constraints give rise to particular 153

challenges. For instance, an edge node may have to per- 154

form recurring computations for object detection due to 155

the high presence of pest birds, leading to the draining of 156

the node’s energy. Alternatively, a node may be positioned 157

in a shaded area, resulting in inadequate energy input 158

from its connected solar panel. Conversely, a node may 159

perform minimal computations and thus waste its excess 160

input energy. All of these events have the potential to result 161

in a severe energy imbalance among the edge nodes, lead- 162

ing to operational unavailability. In such scenarios, some 163

2

nodes may be forced to turn off due to overloading/under-164

powering, while others may remain up but idle due to165

under-loading. This situation is particularly undesirable for166

farmers as it leaves certain areas unprotected from pests,167

posing a significant risk of crop damage.168

2.2 System Architecture169

Fig. 2 depicts the software architecture of our proposed170

sustainable serverless edge computing platform as well as171

the application workflow. A cluster of edge devices consti-172

tuted of SBCs are enabled with container virtualization such173

as Docker or containerd for resource efficiency and portabil-174

ity [14]. An orchestrator tool such as Kubernetes resides on175

edge nodes to enable container deployment, container/node176

failure handling, high availability, etc [14]. Orchestration177

tools generally operate in a centralized master/worker ar-178

chitecture, where the controller node within the cluster is179

assumes the master role and resides on the master node.180

Edge nodes responsible for executing serverless functions181

act as worker nodes.182

The controller hosts three main components:183

(a) database, (b) serverless platform, and (c) scheduler.184

A key-value database such as Redis serves data and state185

persistence so that services freely migrate and scale. A186

serverless platform is deployed on the controller to enable187

FaaS executions. That is, serverless functions are deployed188

and requests to the functions are admitted by a serverless189

gateway that uses a queue component for asynchronous190

executions. A load-balancing component distributes the191

requests between the function’s replicas. A replica means an192

identical copy of a function. A function may have multiple193

replicas which are launched and scaled automatically by194

the auto-scaler in response to the demand. The queue195

holds exclusive lines per function. A scheduler—designed196

based on the IBM MAPE-K loop [17]—dynamically decides197

on the placement of functions. The MAPE-K loop will be198

explained later. The placement decisions are interpreted into199

the orchestrator language using an integration component.200

On the workers’ side, each node hosts a number of func-201

tions (i.e., services), depending on the scheduler’s decision.202

Nodes are equipped with sensors to communicate with the203

IoT environment. Once the node receives sensor data from204

the environment, it triggers an event. The trigger calls the205

API related to a function through the serverless gateway206

for function invocation. The function performs processing207

and the output can be either an action or data to store in208

database/storage.209

2.3 System Model and Problem Formulation210

2.3.1 System Model211

We discretize the time into equal timeslots denoted by T =212

{t | t ∈ [0, T], (t+ 1)− t = ∆t seconds}. The scheduler re-213

arranges the placements at the beginning of each timeslot.214

A summary of the table of notations is in Appendix A.215

Edge Nodes: A set D = {di | i ∈ [1, n]} defines wirelessly216

connected edge nodes in a cluster in a star-like network. A217

controller, excluded from D, performs the dynamic schedul-218

ing primarily based on the SoC and resource (CPU) capacity219

of each di. The SoC shows the battery charge of nodes at220

Controller

Edge Devices (e.g., Single-board Computers)

Container Virtualization (e.g., Docker or containerd)

Container Orchestration (e.g., Kubernetes)

Resource Scheduler

Monitoring

Planning Analyzing

Execution

Serverless Platform (e.g., OpenFaaS)

Gateway

Queue

App 1 Queue

App n Queue

...

Internet of Things field (environment)

Forest

Oil & Gas

Satelites

Farm

Load
Balancing

Worker

Function n

Container

App n

...
Monitor

Trigger

Function 1

Container

App 1

Sensor 1

Sensor n

...

Database

Integration

Fig. 2: Architectural view of the system

each timeslot and is defined by S = {sit | i ∈ [1, n], t ∈ 221

T, 0 ≤ sit ≤ ϑ}, where ϑ denotes the maximum battery 222

charge. The SoC is determined by energy input and energy 223

consumption. Let R = {rit | i ∈ [1, n], t ∈ T, rit ≥ 0} 224

denote the renewable energy input to nodes over t. Also, 225

let E = {eit | i ∈ [1, n], t ∈ T, eit ∈ [0, ϑ]} denote the energy 226

consumed on nodes over t, which depends on the node’s 227

base energy usage, i.e., bi where B = {bi | i ∈ [1, n], t ∈ 228

T, b ∈ [0, ϑ]}, and executed workload. eit is capped at the 229

battery capacity so that the excess will be wasted. 230

Let nodes’ available resource capacity at time t be de- 231

noted in Million Instruction Per Second (MIPS), as C = {cit | 232

i ∈ [1, n], t ∈ T, cit ∈ [0, ω]} where ω denotes the maximum 233

capacity. ω is determined by the number of CPU cores 234

and adopted CPU governor of a node. The latter in Linux 235

systems can be powersave, conservative, ondemand 236

(default governor), performance, etc.1 While CPU fre- 237

quency can vary between a minimum and maximum value, 238

powersave always keeps it at a minimum; conservative varies 239

the value slowly according to the demand; ondemand does 240

the same as conservative, but more aggressively; and perfor- 241

mance always keeps the frequency at a maximum. Modeling 242

resource capacity allows heterogeneity considerations. Note 243

that for a GPU-operated node, cit can be considered as the 244

GPU capacity where ω denotes the maximum GPU capacity. 245

In this work, we focus on CPU-only devices, and GPU and 246

heterogeneity aspects thereof are left as future work. Note 247

that S, R, E, and C represent values per di at timeslot t ∈ T. 248

249

Application & Workload: An IoT application normally 250

includes multiple microservices. A set of microservices is 251

denoted by A = {aj | j ∈ [1,m]}. An edge node owns, 252

hosts, and runs a full set of microservices in A that are iden- 253

tical across all nodes. The rate at which workload (sensor 254

data) is generated for microservices at different nodes at 255

different timeslots is modeled as Λ = {λi,jt | i ∈ [1, n], j ∈ 256

1. https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

3

[1,m], t ∈ T, λi,jt ∈ [0, ϖi,j]}, where ϖi,j ∈ π = {ϖi,j | i ∈257

[1, n], j ∈ [1,m], ϖ > 0} represents the node’s bandwidth258

capacity in terms of the number of tasks per microservice259

it can push to the network at t. The amount of processing260

required for a task in Million Instructions (MI) is defined261

as M = {µj | j ∈ [1,m], 0 ≤ µj∈R}. The workload262

modeling is employed later to determine the number of263

required function replicas.264

Serverless Functions: The unit of resource scheduling is a265

function in serverless [9]. Let F = {f i,j | i ∈ [1, n], j ∈266

[1,m]} denote a set of functions, where function f i,j exe-267

cutes tasks of microservice aj owned by node di. Function268

f i,j requires a certain amount of resources to be provisioned269

on a node, defined as V = {vj | j ∈ [1,m], vj ∈ [0, ω]},270

where vj is capped at the node’s maximum capacity ω.271

Function Replicas (instances): For the sake of horizontal272

scaling of functions (i.e., adjusting the number of function273

replicas) in serverless, f i,j may have a varied number274

of function replicas at t, capped at ℵ, depending on the275

incoming workload. Hence, set Γ = {γi,jt | i ∈ [1, n], j ∈276

[1,m], t ∈ T, γi,jt ∈ [0,ℵ]} defines the required number277

of replicas per function by determining the associated mi-278

croservice’s workload over the computation capacity. The279

number of replicas of aj on di at t is measured as γi,jt =280

min
(
ℵ,

⌈λi,j
t ×µj

vj

⌉)
that is between 0–ℵ depending on the281

workload. In an optimal offline model with future knowl-282

edge, Γ is assumed to be known. If node di is down at t, then283

γi,jt = 0 replicas are deployed in the cluster. In serverless,284

zero replicas, or so-called scaled-to-zero functions, consume285

zero capacity.286

For replica-level modeling, we upgrade F to include287

replica indexes, denoted by F = {f i,j,kt | i ∈ [1, n], j ∈288

[1,m], t ∈ T, k ∈ [1, γi,jt]} where k indicates the k-th replica.289

Function Placement: A function’s replica is either placed290

on its local node, or offloaded to peers, by the sched-291

uler decision [8]. Considering SoC sit on di at timeslot292

t, the scheduler determines local and offloaded function293

placements per node. Let Ψ = {ψi,j
t | i ∈ [1, n], j ∈294

[1,m], t ∈ T, ψi,j
t ≥ 0} denote local placements and295

Θ = {θi,jt | i ∈ [1, n], j ∈ [1,m], t ∈ T, θi,jt ≥ 0} denote296

offloaded placements. This clarification is particularly es-297

sential, as communication overheads are involved, in the298

case of offloading functions, for both sender and receiver.299

That is, if f i,j,kt is offloaded to dq , a send data energy cost300

for di and a receive data energy cost for dq are involved.301

A cost rate per microservice for either one is defined as302

O =
{
oj,h | j ∈ [1,m], h ∈ {send, recv}, oj,h ∈ [0, 1]

}
,303

where oj,h, h = send or h = recv, specify the overhead en-304

ergy cost imposed by offloading function f i,j,kt and hosting305

peers function f i,j,kt , respectively. The determination of O306

depends on the function’s replica, which itself is determined307

by the workload it has to execute. Hence, the communica-308

tion cost incorporates the data volume to transfer over the309

network, uniformly for requests of a function [2]. This cost310

is mutated into energy usage. Note that local placement ψi,j
t311

of replicas of a function is bound to γi,jt , so the constraint312

ψi,j
t ≤ γ

i,j
t must be maintained by the scheduler.313

Node Availability (Up or Down): Nodes generate requests
and run functions at the same time only if they are up, i.e.,
if they satisfy low energy threshold sit ≥ φ. Otherwise, they

are excluded from hosting any local or offloaded function.
Node availability (status) is denoted by X =

{
xit | i ∈

[1, n], t ∈ T, xit ∈ {0, 1}
}

where x = 0 means the node
is unavailable, or down, during timeslot t, and vice versa.
Given that, the nodes’ binary status xit at t are as follows:

∀di ∈ D : xit =

{
1 if sit ≥ φ
0 else

, (1)

where a node’s SoC sit is determined by the SoC at the
previous timeslot sit−1, renewable energy input rit, and
consumed energy eit at timeslot t.

∀di ∈ D : sit = min
(
ϑ,max(0, sit−1 + rit − eit)

)
, (2)

where SoC can vary between 0 and ϑ. Assuming renewable
input is known, the energy consumed eit depends on the
hosted functions and is computed for all di ∈ D as follows:

eit =

(
bi +

(cit
ω
× ρ

)
+

(m∑
j=1

(
oj,send × (γi,jt − ψ

i,j
t)
)

+
m∑
j=1

(oj,recv × θi,jt)

))
×∆t (3)

where eit ≤ sit−1 + rit and eit takes into account: (a) base 314

usage, (b) direct usage and (c) offloading overhead. For the base 315

usage, the bi determines a static rate of energy use for the 316

node’s hardware and OS to operate. For the direct usage, 317

occupied resources are measured by cit
ω and multiplied by 318

a power consumption rate ρ. The occupied resources of a 319

node, as a key element in eit measurements, is obtained by 320

cit =
∑m

j=1

(
(ψi,j

t + θi,jt) × vi
)
. For the offloading overhead, 321

energy consumption is calculated by the send (oj,send) and 322

receive (oj,recv) overhead multiplied by the offloaded func- 323

tions (γi,jt − ψ
i,j
t) and by the received offloaded functions 324

(θi,jt), respectively. This measurement is made for every 325

microservice j. The power consumed by (a), (b), and (c) is 326

multiplied by the length of the timeslot, ∆t, to obtain energy. 327

2.3.2 Problem Formulation 328

We aim to optimize the placement of functions across the
cluster by dynamically adjusting it to minimize availability
variance among nodes and enhance system performance.
This adjustment is demanded due to the skew in power and
load distribution resulting in uneven operational availabil-
ity, i.e., up-time, of different nodes which hinders seamless
serviceability across the entire cluster [7]. More importantly,
this adjustment aims to satisfy sustainability requirements
such as minimizing nodes’ failure and renewable energy
input wastage. Here we focus on an Imbalanced Energy
Minimizing Assignment Problem, and the objective function
aims at maximizing the availability of the least available
nodes, by technically relying on well-powered nodes for
improving low-powered ones, as in (4):

max min
i∈[1,n]

T∑
t=0

xit︸ ︷︷ ︸
T,D,X,S,R,E,B,A,Λ,M,F,Γ,V,Ψ,Θ,O,C

(4)

329

4

subject to:(n∑
i=1

ψi,j
t + θi,jt

)
=
(n∑

i=1

γi,j
t

)
∀t ∈ T,∀aj ∈ A (5)

γi,j
t = xit ×min

(
ℵ,
⌈λi,j

t × µj

vj

⌉)
∀t ∈ T, ∀di ∈ D,∀aj ∈ A (6)(

ci =

m∑
j=1

(
(ψi,j

t + θi,jt)× vj
))

≤ (xit × ω)∀t ∈ T, ∀di ∈ D (7)

At any given t, constraint (5) specifies that the scheduler330

must not leave any function replica unscheduled; constraint331

(6) defines that if a node is down, scheduling of its microser-332

vices is not considered, i.e., scale to zero; this also implies333

that if a node is down, its generated tasks are discarded,334

i.e., λi,jt = 0; constraint (7) defines that the sum of the335

capacity required for placed functions must not exceed the336

node maximum capacity ω, either local or offloaded, and337

inclusion of xit forces no placement on down nodes.338

The optimal algorithm is used as a baseline offline algo-339

rithm. It requires the renewable energy input and incoming340

workload at each t ∈ T to be known to the scheduler in341

advance, which is difficult to achieve in practice. It is also342

computationally unaffordable for constrained devices to343

use. In the following section, we propose an online energy-344

aware scheduler, named faasHouse that does not require such345

knowledge and presents acceptable computational complex-346

ity.347

3 FAASHOUSE: RESOURCE SCHEDULING348

In this section, we introduce faasHouse, a scheduling algo-349

rithm for the sustainable serverless edge.350

Remark: In serverless edge computing, effectively managing351

IoT application functions, that dynamically scale up or352

down through the backend auto-scaler, requires a dynamic353

solution with reasonable computational complexity.354

Therefore, the design principle of faasHouse is to dynam-355

ically operate in every timeslot, according to IBM MAPE356

loop [17]—Monitoring, Analysis, Planning, and Execution—357

to address the imbalance in nodes’ availability. Algorithm 1358

shows faasHouse design which is discussed in the following:359

Monitoring: In each timeslot, the latest SoC of nodes is read360

through HTTP-based communication (Lines 2–3).361

Analysis: The SoC value of each node can undergo a rigor-362

ous analysis. Here, we simply use the actual observation of363

the SoC of a node. Predictive analysis is out of the scope of364

this work, but it can expand this phase further.365

Planning: As the decision-making phase in the context of366

serverless edge computing for IoT applications, it requires367

special considerations such as practicality and extensibility.368

We have developed a novel planner inspired by the princi-369

ples of the Kubernetes scheduler, the first-class scheduling370

model in containerized edge computing environments [2],371

[5], [12]–[14]. Our scheduler follows a two-step process con-372

sisting of a scoring phase followed by an assignment phase.373

The detailed design of the scoring and assignment phases374

(Lines 6–8) is explained in the subsequent subsections.375

Execution: It applies the action of function placement by376

Kubernetes so that functions are scheduled on the assigned377

nodes according to the planned assignments.378

Algorithm 1: faasHouse Scheduler
Data: edge nodes and serverless functions
Result: energy-aware function placement

1 while t ≤ T do
/* monitor: get latest SoC of nodes */

2 do in parallel
3 foreach di|di ∈ D do sit ← getSoC(di)

/* analyze: improve the monitored data */

4 do in parallel
5 foreach di|di ∈ D do zit ← Instant(di)

/* plan: make placement decisions */

6 do in parallel
7 for f i,j,kt |f i,j,kt ∈ F do

S← Scoring(f i,j,kt , D, P) // Algorithm 2

8 F ← Assignment(D,F,S, C, V) // Algorithm 3

/* execute: make assignments effective */

9 Execute(F)
10 Sleep(∆t)

Algorithm 2: Scoring

Data: f i,j,kt , D, P
Result: S, updated preferences of given functions

1 foreach q, q|dq ∈ D, in [1, n] do si,j,kq ← 0
/* calculate nodes’ scores per plugins */

2 for q, q|dq ∈ D, in [1, n] do
3 for p|p ∈ P, p← (plugin,weight) do
4 si,j,kq += Plugin(p, f i,j,kt , q)

5 return S

3.1 Scoring 379

The scoring algorithm, Algorithm 2, is invoked per func- 380

tion’s replica to determine its preference for nodes. The 381

preference is quantified using scores, where a higher score 382

indicates a stronger preference. Algorithm 2 first initializes 383

the score si,j,kq of the function f i,j,kt for each node dq to 384

zero (Line 1). Then, it determines the desirability of placing 385

the function on each node (Lines 2–4) according to con- 386

straints. Without the loss of generality, this determination 387

is made extensible by designing a Plugin module that 388

allows scoring using customized requirements. A Plugin 389

gets an implemented plugin p name and its weight as a tuple 390

(< name >,< weight >), a function, and a candidate node. 391

Next, it fetches the corresponding plugin and determines 392

the node’s score for the given function. 393

Remark: Extensibility is essential for a scheduler as it allows 394

the inclusion of non-energy factors such as soft QoS con- 395

straints like data locality and customization to meet diverse 396

IoT application requirements. 397

In this work, we have implemented the following plug- 398

ins: energy, locality, and stickiness. The energy plugin, defined 399

as p(energy, weight) | p ∈ P , weight ≥ 0, determines the 400

function’s preference on nodes based on the energy benefit 401

as: 402

(zqt − zit)× weight× x
q
tx

i
t, (8)

5

where the desirability of a candidate node zqt | q ∈ [1, n]403

than the function’s local node zit is measured and weighted.404

Measuring the difference instead of using actual zqt not405

only sets higher preferences for better-powered nodes but406

judiciously deters lower-powered nodes. Multiplying by xqt407

and xit excludes down nodes and functions of down nodes408

from scoring as they are not meant for placements.409

The locality plugin, defined as p(locally, weight)|p ∈
P,weight ≥ 0, is measured by (9).{

zit × weight× xit if dq = di

0 else
, (9)

where the desirability of placing a function on its local410

node, if operationally available, is measured and weighted411

proportional to that of the node’s zit . This is important412

to avoid excess offloading and to preserve QoS by letting413

functions stay closer to the data source.414

The third plugin is named stickiness, defined as
p(sticky, weight) | p ∈ P,weight ≥ 0, to prevent recurring
replacements of a function that deteriorate QoS [12]. The
stickiness plugin determines a weighted preference for a
function on a node hosted the function in the previous
scheduling round as:{

weight× xqtxit if f i,j,kt ̸= di ∧ f i,j,kt = dq

0 else
, (10)

where the stickiness plugin favors the previous location of a415

function indicated by f i,j,kt , only if both the function’s local416

and remote nodes are still operationally available.417

The implemented plugins are highly relevant to the418

system under test. However, it is important to note that419

other systems and use cases may require support for other420

QoS requirements such as latency (nodes proposing lower421

latency), bandwidth (nodes requiring lower bandwidth con-422

sumption), privacy (nodes providing a higher level of pri-423

vacy satisfaction), etc.424

3.2 Assignment425

The assignment problem is a generalized assignment prob-
lems (GAP) [19], such that it attempts to find an optimal
assignment of tasks (functions) to agents (nodes), subject
to the agent’s capacity and task size constraints. A linear
programming model of the problem is as follows.

max
n∑

i=1

m∑
j=1

γi,j
t∑

k=1

[n∑
q=1

si,j,kq × yi,j,kq × xit × x
q
t

]
(11)

subject to:
n∑

q=1

yi,j,kq × xqt = 1× xit ∀i ∈ [1, n], j ∈ [1,m], k ∈ [1, λi,j
t]

(12)

n∑
i=1

m∑
j=1

λ
i,j
t∑

k=1

vj × yi,j,kq ≤ cqt ∀di ∈ [1, n] (13)

yi,j,kq ∈ {0, 1} (14)

where yi,j,kq is an integer decision variable that returns 1 if426

function f i,j,kt is assigned to dq ; otherwise returns 0. Objec-427

tive (11) is to maximize the total score of assigning functions428

to nodes. The assignment is subject to the following con- 429

straints. All functions are required to be assigned and each 430

to only one node, as in (12), excluding down nodes and their 431

functions from each side. Nodes’ capacity constraints are 432

enforced by (13), where vj , yi,j,kq , and cqt , denote the function 433

size, function assignment, and node capacity, respectively. 434

Given integral constraints, the problem can be solved using 435

Integer Programming techniques which are not scalable for 436

large systems. 437

Solution: To address that, we incorporate an assignment 438

algorithm that is inspired by the House Allocation Prob- 439

lem [18], a practical model in economics and computer 440

science. House allocation is the problem of assigning houses 441

(nodes) to people (functions) considering people’s prefer- 442

ences. Examples of this problem are school allocation for 443

Boston school [20] and office allocation for Harvard Uni- 444

versity professors [18]. The mechanism to solve the House 445

Allocation problem is that all functions request their most 446

preferred nodes and the allocation occurs, if no conflict ex- 447

ists. Conflicts are resolved by a supplementary mechanism. 448

A challenge in solving the assignment at hand is the need 449

to prioritize the local functions of a node over offloading 450

functions. This is to avoid situations where a function of 451

a node hosting other nodes’ functions will be left with- 452

out a host. This also helps reduce the offloading effects. 453

Thus we employ the special case of House Allocation with 454

Existing Tenants, which accepts such challenges out of the 455

box. That is, nodes are considered to own their functions 456

whereas, upon receiving remote functions for placements, 457

local functions are prioritized over the newcomers. This 458

solution mechanism is called “You Request My House, I Get 459

Your Turn” [18]. 460

The assignment procedure is demonstrated in Algo- 461

rithm 3, as follows. Firstly, functions and their preferences 462

for nodes are given. The functions’ list is reconstructed and 463

functions are considered unassigned (Line 1). 464

Remark: The list reconstruction process allows the inclu- 465

sion of newly scaled-up functions and recognition of the 466

scaled-down functions performed by the serverless plat- 467

form. 468

A cycle list is used to resolve conflicts (Line 2). Func- 469

tions are sorted in descending order, based on the sum of 470

scores they have given to nodes. This brings functions with 471

higher preferences to the front of the queue (Line 3). The 472

assignment procedure continues until there exists no unas- 473

signed function (Lines 4–14). A function from the front of the 474

queue is selected (Line 5). Note that if the function’s most 475

preferred node (with sufficient capacity) is requested by 476

another function, a conflict occurs and the function in hand 477

joins the cycle list. This list holds functions and preferences 478

until a function appears for the second time which triggers 479

a cycle clearance. This means the assignment accepts all 480

requests and every function receives the requested node. 481

Hence, a cycle clearance verification is always conducted 482

before searching nodes for a function (Line 6). If the function 483

is not involved in the cycle list, the assignment proceeds 484

(Line 8–14); otherwise, the cycle clearance is triggered that 485

performs as mentioned earlier (Line 7). To assign (Line 8– 486

14), the maximum scored node of the function is selected 487

(Line 9). Priority Mechanism verifies if the selected node 488

owns any unassigned function (Line 10). If not, the assign- 489

6

Algorithm 3: Assignment
Data: D,F,S, C, V
Result: F , updated functions’ assignment

1 foreach f i,j,kt |f i,j,kt ∈ F do f i,j,kt ← ∅
2 cycle← ∅
/* sort funcs. by scores descendingly */

3 sort(S)

4 while ∃f i,j,kt ∈ F |f i,j,kt = null do
/* get highest scored unassigned func. */

5 f i,j,kt ← S.peek()
/* verify existence of func. in cycle */

6 if f i,j,kt ∈ cycle then
/* clear cycle by accepting requests */

7 f i,j,kt ← dq ∀f i,j,kt ∈ cycle
8 else

/* get max. scored node with capacity */

9 dq ← max(all scored dq for f i,j,kt |cqt ≥ vj)
10 if fq,j,kt ̸= ∅ ∀fq,j,kt ∈ F |q ∈ [1, n], j ∈ [1,m]

then
/* assign func. to selected node */

11 f i,j,kt ← dq

12 else
/* prioritize funcs. of the node */

13 S.enqueueFront(fq,j,kt ∀fq,j,kt ∈ F)
14 cycle.enqueue(f i,j,kt , dq)

15 return F

ment is allowed (Line 11); otherwise, the local functions of490

the selected node are queued to the front, respecting their491

priority (Line 13) and the function under investigation is492

added to cycle list (Line 14). A sample scenario is provided493

in Appendix B for further information.494

Computational Complexity: We analyze the computational495

complexity of the assignment algorithm which is the main496

computation required for the scheduler. We use R to denote497

the total number of functions to be assigned. Note that498

R = |F | and is bounded by O(nmℵ). The computation499

complexity is bound by O(R2). Please, refer to Appendix500

C for a detailed analysis.501

4 PERFORMANCE EVALUATION502

4.1 Experimental Setup503

We implement a highly practical and real-world distributed504

software system, extending PiAgent [12], written in∼ 5000505

lines of Python 3.9 code to control nodes, generate work-506

load, perform scheduling, etc. We conduct a 24-hour exper-507

iment and repeat each experiment five times as per sched-508

uler. The implemented system and key settings, extensively509

following [12], are as follows.510

◦ Edge Nodes: A cluster of 10 Raspberry Pi Model 3 B+511

(n = 10) is used. Although we expect our system to512

work well in heterogeneous settings, we have deliberately513

opted for a homogeneous setup to better analyze the perfor-514

mance evaluation results, given the system is tested under515

heterogeneous energy input and workload. This could be516

more challenging to comprehend in heterogeneous settings,517

as devices have varying energy consumption. It is crucial518

6 12 18 24
Hours

0

200

400

600

800

1000

Po
we

r i
np

ut
 (w

at
t)

Node 1
Node 2
Node 3

Node 4
Node 5
Node 6

Node 7
Node 8

Node 9
Node 10

Fig. 3: Solar energy input to nodes

to emphasize that while the homogeneity aspect strictly 519

pertains to the hardware configuration, the workload and 520

energy input of devices retain their inherent heterogeneity. 521

The energy input by solar panels is emulated using real 522

traces [21] to set R, shown in Fig. 3. Each node receives 523

a considerably different rate of energy input. The battery 524

capacity is modeled from the original-size PiJuice battery 525

of Pi 3 B+ [2] and is set to ϑ = 1250 mWh, and the low 526

energy threshold φ is set to ϑ
10 = 125 mWh, where bi = 0.2. 527

The model for battery is obtained by empirical studies on 528

the same devices in [2], [12]. Furthermore, we study the 529

effect of varying the battery size in the sensitivity analysis 530

experiments. A hardware-based measurement is adopted to 531

calculate the actual energy consumption of edge nodes, us- 532

ing UM25C2 USB power meters which are highly precise [2]. 533

A 4-core Pi gives ω = 4000, but we keep a safety net of 10% 534

to avoid overheating. We empirically set the send (oj,send) 535

and receive (oj,recv) overhead for function offloading at 536

0.02 and 0.01, according to benchmarks in [2]. containerd 537

is enabled on Pis for containerization, Kubernetes K3s (ver- 538

sion v1.212) is deployed for orchestration, and OpenFaaS 539

(version 8.0.4) enables serverless computing. Given their 540

edge-friendly design, they impose a negligible amount of 541

computing overhead, i.e., 1.5% CPU use on Raspberry Pis, 542

and around 50MB of memory footprint, which will not 543

affect the execution of functions [2]. A containerized Redis 544

server, a high-speed in-memory data storage, is deployed 545

on the controller node to store function states, a technology 546

selection highly encouraged for the lightweight realization 547

of edge computing [2], [13], [14]. 548

◦ Application and Workload: A generic workflow that builds 549

a commonly-used pipeline [2], [3], [22], i.e., sensing data, 550

generating requests, invoking an execution unit, process- 551

ing, storing results, and triggering actuators, is developed 552

for evaluations. This pipeline applies to a wide range of 553

event-driven IoT applications [22], from Smart City, and 554

Autonomous Vehicles to Industrial IoT and Smart Farming. 555

We acknowledge that, although our system design can ac- 556

commodate a broad spectrum of applications, attempting to 557

host an excessive number of applications on a single edge 558

node may prove impractical due to the inherent resource 559

limitations of these devices. For instance, a Raspberry Pi 560

3, equipped with only 1 GB of RAM, has its capabilities 561

2. https://tinyurl.com/um25c

7

constrained. Therefore, we have carefully selected three562

microservices (m = 3) with distinct characteristics of CPU-,563

data-, and I/O-intensive tasks - as motivated in Section 2.1.564

This selection ensures a diverse and representative sample565

for our comprehensive evaluations. It is worth noting that566

adhering to this range aligns with practical use cases as567

supported by existing literature [22].568

The CPU-, I/O-, data-intensive microservices include569

(1) soil moisture controlling—it constantly reads the soil570

sensor data, calculates the moisture level, and stores re-571

sults in Redis; (2) irrigation management—it monitors the572

soil moisture level and applies the irrigation policies to573

connect/disconnect water through the attached actuators;574

and (3) a pest-repellent AI-enabled application—it captures575

an image using an embedded camera, triggers an HTTP576

request, the image is fetched from the generating node by577

the executing function, and a Single Shot Detector (SSD) [23]578

machine learning model performs object detection on the579

image to find pest birds in the area [12]. All microservices580

are developed in Python and are packaged as serverless581

functions. We set the CPU requirements of these three582

functions as V = {50, 100, 650}, acquired through profiling,583

and allow maximum replicas of ℵ = 3 ≡ k ≤ 3 per function.584

This limited range of replica numbers leaves sufficient room585

for the serverless platform to experiment with frequent586

scale-up/down of functions.587

The workload is generated at a different and random λ588

rate per node per function [2], [13], [24], where a deter-589

ministic uniform distribution of rates is adopted to achieve590

diversity. The request generation is synchronous, as once591

a request is finished, the next one is triggered. During the592

entire experiment, such workloads are being generated, but593

we also vary the intensity of the workload in the sensitivity594

analysis. Given the observation on a local network in ex-595

treme edge and its high available bandwidth [2], we let ϖi,j
596

be large enough, i.e., bound to the computation capacity.597

◦ Scheduler: We perform the scheduling every 30 minutes,598

i.e., ∆t = 1800s. Further, we also study the effect of varying599

this value between 15 minutes to 60 and 180 minutes in Ap-600

pendix G. For faasHouse, in the scoring phase, the plugins’601

weights are set at 100, 60, and 40 for energy, locality, and602

stickiness plugins, respectively. These values are achieved603

by resource profiling and represent the best performance604

upon experiments on the demonstrated setup. To evaluate605

the effectiveness of our assignment algorithm (i.e., Algo-606

rithm 3), we also conducted a comparative study against607

three other state-of-the-art GAP solutions. The results of this608

comparison are detailed in Appendix D.609

◦ Execution: The placement determination is translated to610

Kubernetes scheduling terminologies described in Yaml lan-611

guage [14]. Dynamic scheduling demands CI/CD (continu-612

ous integration and continuous deployment). Maintaining a613

vast number of Yaml files for n ×m deployments is highly614

cumbersome. We thus automate the entire execution process615

using Helm,3 an automation tool for Kubernetes deploy-616

ments, which allows easy and fast (re-)deployments [12].617

4.1.1 Benchmark algorithms618

We evaluate faasHouse against the following benchmarks:619

3. https://helm.sh/

◦ Optimal: It is a baseline offline algorithm that requires in- 620

advance knowledge of renewable energy input and incom- 621

ing workload for all future timeslots under consideration. 622

It solves the constrained optimisation problem described in 623

Section 2.3.1 modeled by MiniZinc4 (version 2.5.5) exploit- 624

ing Gurobi5 solver (version 9.1.12). 625

◦ Kubernetes: This is the built-in default scheduler of Kuber- 626

netes. 627

◦ Local: It is a baseline algorithm that always deploys 628

functions locally, i.e., f i,j,kt ← di. This is worth evaluating 629

to understand the impact of computation offloading. 630

◦ Random: It is another baseline that randomly places 631

functions across the cluster. It demonstrates the worst-case 632

scenario where no intelligence is considered in the sched- 633

uler’s decisions. 634

◦ Zonal: It is a dynamic energy-aware scheduler, as detailed 635

in [12], that forms zones of nodes, having different ranges 636

of SoC. The scheduler aims to assign functions within a 637

zone to equally- or better-powered zones, under special 638

considerations such as stickiness and warm scheduling. 639

4.1.2 Metrics 640

◦Operational Availability: The operational availability of a 641

node is defined as the percentage of time it is available and 642

operational, indicating that it has sufficient battery charge 643

to generate tasks and execute functions [12]. A longer avail- 644

ability of the minimum available node quantifies the effect 645

of the scheduler on the key objective outlined in Eq. (4). A 646

smaller standard deviation (SD) and range of operational 647

availability among nodes in the cluster reflects an improved 648

variation/balance in their availability. 649

◦ Nodes’ Failure: It quantifies the average of the number of 650

times at which nodes in the cluster experience operational 651

failures caused by insufficient energy levels. The lower the 652

value, the more desirable the outcome. 653

◦ Longest Availability: It measures the average of the 654

longest time nodes in the cluster could remain operational 655

without any failure, representing the reliability improve- 656

ments. The interruption can occur by a node running out of 657

battery and turning off temporarily, for instance. The longer 658

the better. 659

◦ Throughput: The average of the number of tasks executed 660

per time unit (i.e., one second) by nodes in the system [12]. 661

◦ Nodes’ Wasted Energy: It quantifies the average energy 662

input waste in mWh across the nodes in the cluster. This 663

occurs when a node’s battery is full, and it fails to efficiently 664

utilize the excess energy input. A smaller value indicates 665

better efficiency in minimizing energy waste. 666

◦ Response Time: The round trip time of a request from 667

being generated to being executed and completed by a 668

function [12]. 669

4.2 Experimental Results 670

We conducted five sets of experiments, which are detailed 671

below, and analyzed the results obtained. Each experiment 672

was repeated five times, and the averages and standard 673

deviations are reported. 674

4. https://www.minizinc.org/
5. https://www.gurobi.com/

8

◦ First set of experiments, using the setting in Section 4.1,675

gives overall results obtained by schedulers.676

◦ Second set evaluates the impact of varying the battery677

size of edge nodes (ϑ) from 1000 to 1250, 1500, and 1750678

mWh.679

◦ Third set evaluates the impact of varying workload680

intensity from 25 to 50, and 75 to 100%.681

◦ Forth set evaluates the impact of varying the scheduling682

interval times (∆t) from 15 to 30, and 60 to 180 minutes. The683

results are in Appendix G.684

◦ Fifth set evaluates the impact of varying CPU governor,685

influencing resource capacity (ω), from powersave to conserva-686

tive, ondemand, and performance. The results are in Appendix687

H.688

4.2.1 Overall Results689

Operational Availability: As shown in Fig. 4, we observe690

that the maximum operational availability of the minimum691

available node is achieved by the optimal (17.1%), faasHouse692

(15.9%), and zonal (12.2%), respectively, over the Kubernetes693

(11.7%) scheduler, demonstrating a 46%, 36%, and 4% im-694

provement. In contrast, the local and random impair the value695

to 8.6% and 9.4%.696

In Fig. 4, the range, i.e., max-min difference, of oper-697

ational availability shows that the optimal, faasHouse, and698

zonal improve it to 36.63%, 42.5%, and 48.23%, respectively,699

over the Kubernetes scheduler. This minimization represents700

a more balanced utilization of energy by nodes despite701

skewed energy supply and load generation.702

Another indication of achieving a balanced energy usage703

is the reduction in the SD of the cluster-wide operational704

availability, where the optimal (11.04) followed by faasHouse705

(13.4) minimize it up to 45% and 33%, respectively, over the706

Kubernetes scheduler (20.02).707

The key factor for such differences between sched-708

ulers is that well-performed schedulers utilize the well-709

powered nodes, particularly their wasted energy, to help710

low-powered nodes. In detail, faasHouse exploits the enabled711

resource sharing to offload functions of low-powered nodes712

to well-powered nodes. This intelligence is augmented with713

future knowledge in the optimal scheduler.714

On the weak side, the local scheduler exhausts the low-715

powered nodes’ energy in isolation and fails to exploit716

resource sharing and offloading. The Kubernetes scheduler is717

enabled with resource sharing, but its performance-driven718

scheduler fails to satisfy sustainability requirements. The719

random scheduler is enabled with resource sharing, but there720

is no rationale behind the re-scheduling decisions; hence,721

not only no improvement is observed for low-powered722

nodes by random, but also the experiments’ logs report that723

it is highly likely that it offloads well-powered functions to724

low power nodes. Lastly, while the zonal algorithm respects725

the energy status of nodes and exhibits better performance726

than the Kubernetes, local, and random schedulers, it fails727

to perform as efficiently as the faasHouse, mainly due to728

its dependence on sticky offloading and warm scheduling729

features that can make it perform over-cautiously.730

Note that the average operational availability of nodes731

is observed to be approximately identical for all schedulers:732

optimal (41.8%), faasHouse (42.09%), Kubernetes (42.29%), ran-733

dom (40.61%), and zonal (39.98%), with the exception of734

the local scheduler (35.55%). This finding confirms that the 735

improvement in minimum availability through computation 736

offloading has not resulted in a significant energy loss or 737

energy overhead. The similarity in operational availability 738

can also be attributed to the significant improvement in 739

throughput for schedulers such as optimal and faasHouse, 740

which incur higher energy consumptions. 741

Failure: Lowering failure is crucial for sustainability, and 742

it is important for the scheduler to actively prevent nodes 743

from reaching a low battery state, minimizing the chances 744

of failure. Fig. 5 shows the number of times on average 745

nodes have experienced a failure (off state) as per scheduler. 746

Compared to the Kubernetes scheduler (#73), the optimal (53), 747

faasHouse (59), and zonal (68) reduced the failures by 27%, 748

19%, and 7%, respectively. The local scheduler performs 749

considerably poorly in this case, as it disregards the low- 750

energy state of the node and excessively pushes the node 751

back into the failed and booting-up state. This behavior 752

appears so extreme that the local scheduler is less practical 753

than the random scheduler, in this metric. 754

Longest Availability: Fig. 6 shows that the optimal (520 min- 755

utes) and faasHouse (470 minutes), followed by the zonal (450 756

minutes) schedulers succeed in prolonging the operational 757

time of nodes on average, by up to 24%, 11%, and 7% against 758

the Kubernetes scheduler, respectively. The local scheduler 759

performed poorly since it fails to recognize the low-power 760

state on the nodes and keeps utilizing them even when 761

they have just been turned on. This on-and-off situation can 762

continue for a long period of time in some cases, especially 763

if the energy input and consumption of a low-power node 764

remain relatively at the same rate. 765

Throughput: Fig. 7 illustrates the system’s overall through- 766

put for different schedulers. The optimal (1.02 tasks/sec) and 767

faasHouse (0.92) schedulers enhance the throughput by up 768

to 44% and 30%, respectively, compared to the Kubernetes 769

scheduler (0.71). This improved throughput confirms that 770

nodes, particularly low-powered ones, can execute more 771

tasks when they remain operationally available for a longer 772

duration. Conversely, the reduced throughput observed in 773

the random scheduler indicates that nodes experience inter- 774

ruptions in their serviceability due to energy insufficiency. It 775

is worth noting that since requests are sent synchronously, 776

meaning a new request is sent only after the response 777

for the previous one is received, nodes that are available 778

for a longer duration generate more requests, ultimately 779

increasing the overall throughput. 780

Wasted Energy: Energy waste occurs when a node’s battery 781

is fully charged, resulting in the underutilization of the 782

excess energy input. Fig. 8 shows that the optimal (14 mWh) 783

and faasHouse (103 mWh) managed to minimize the energy 784

wastage significantly compared to the Kubernetes scheduler 785

(433 mWh), demonstrating a 97% and 76% improvement, 786

respectively. This is justified by the fact that energy aware- 787

ness, coupled with proper placement of functions, allows 788

optimal and faasHouse to utilize well-powered nodes more 789

frequently, thereby reducing the likelihood of full battery 790

and mitigating energy wastage. This intelligence also ben- 791

efits the low-powered nodes to survive longer, as shown 792

before. However, the local scheduler, while continuously 793

utilizing all nodes, fails to achieve such performance, since it 794

fails to minimize the wastage of the energy of a node having 795

9

1 2 3 4 5 6 7 8 910
Optimal

0

10

20

30

40

50

60

70 SD=11.04

Range=37.63%

1 2 3 4 5 6 7 8 910
faasHouse

SD=13.4

Range=42.5%

1 2 3 4 5 6 7 8 910
Kubernetes

SD=20.02
Range=58.01%

1 2 3 4 5 6 7 8 910
Local

SD=19.6
Range=55.98%

1 2 3 4 5 6 7 8 910
Random

SD=21.24
Range=57.09%

1 2 3 4 5 6 7 8 910
Zonal

SD=17.4
Range=48.23%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Op
. A

va
ila

bi
lit

y
(%

)

Fig. 4: Operational availability of nodes per scheduler

Optimal faashouse Kubernetes Local Random Zonal
0

20

40

60

80

53
59

73 81 75
68

27% 19% 7%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
de

s'
Fa

ilu
re

 (#
)

Fig. 5: # of nodes’ failure per scheduler

Optimal faashouse Kubernetes Local Random Zonal
0

100

200

300

400

500

600
520

470
420

358
415 45024%

11% 7%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Lo
ng

es
t A

va
ila

bi
lit

y
(m

in
ut

e)

Fig. 6: Longest availability of nodes per scheduler

a low rate of workload.796

By keeping a low-powered node available longer, as in797

the optimal and faasHouse, more tasks are generated in the798

cluster. More generated tasks means more task execution799

as well, thereby increasing the throughput. This behavior800

arises from the dual role of nodes: being both load gener-801

ators and executors. This factor is also a major reason for802

the optimal and faasHouse to not increase the average avail-803

ability of the cluster when utilizing computation offloading.804

That is, the increased load in the system also escalates the805

overall energy consumption, which decelerates the increase806

in average operational availability. The advantage of this807

increased load generation is that the IoT application serves808

more tasks and experiences a more desirable Quality of809

Experience (QoE).810

Response Time: Fig. 9 shows the CDF of response time per811

scheduler. All schedulers present a relatively similar trend,812

mainly due to the local-like network in the extreme edge.813

The minor difference in obtained response time of sched-814

ulers confirms that the balanced energy usage achieved815

by optimal and faasHouse is not at the expense of signif-816

icant QoS degradation (see Fig. 9). The main source of817

the difference lies in how much a scheduler promotes the818

local placement of functions. Given this, the local scheduler819

appears to benefit more. The faasHouse can encourage local820

placements by its locality plugin if a shorter response time821

is desired. Furthermore, for offloading-enabled schedulers,822

another potential source of difference can be the trade-off823

between throughput and response time. In other words,824

Optimal faasHouse Kubernetes Local Random Zonal
0.5

0.6

0.7

0.8

0.9

1.0

1.1
1.02

0.92

0.71

0.89

0.58

0.8344%
30% 25% 17%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (t

as
k/

se
c.

)

Fig. 7: Throughout per scheduler

Optimal faashouse Kubernetes Local Random Zonal
0

100

200

300

400

500

600

700

14
103

433

205

542

248
97% 76%

53%
43%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
de

s'
W

as
te

d
En

er
gy

 (m
W

h)

Fig. 8: Nodes’ wasted energy per scheduler

having fewer hosted functions on under-loaded nodes can 825

lead to a relatively shorter response time. This approach, 826

however, leads to lower throughput, which is in line with 827

the resource-aware nature of the Kubernetes scheduler. 828

4.2.2 Impact of Battery Size 829

Figure 10 shows the gradual increase in availability for 830

the node with minimum availability as the battery size 831

transitions from the smallest to the largest. This observation 832

is evident in the increasing trends of both the optimal and 833

faasHouse measurements The larger battery storage capacity 834

effectively minimizes energy input wastage, providing a 835

justification for the observed trend. Note that the largest 836

battery size, i.e., 1750 mWh, while consistent in improving 837

the minimum available node, fails to improve the average 838

availability of nodes significantly since the energy input 839

to batteries is limited and not scaled proportionally. The 840

nodes’ failure metric in Figure 11 demonstrates improve- 841

ment across all schedulers as the battery size increases. 842

However, it is worth noting that the energy-aware sched- 843

ulers, such as optimal, faasHouse, and zonal, outperform the 844

other schedulers in this regard. 845

The longest availability metric depicted in Figure 12 846

demonstrates an initial substantial increase followed by a 847

more gradual improvement for the energy-aware sched- 848

ulers., upon increasing the battery size. This slow-down in 849

the increase can be associated with the fact that at some 850

point onward the size of the battery does not matter since 851

10

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Response Time (sec.)

0.00

0.25

0.50

0.75

1.00
CD

F
Tail Latency (90th):

Optimal=1.19
faasHouse=1.36
Kubernetes=0.97
Local=1
Random=1.59
Zonal=1.49

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 9: Response time per scheduler

the energy intake remains unchanged due to the unchanged852

renewable energy inputs.853

The throughput measure, shown in Fig. 13, demonstrates854

a linear increase with the enlarged batteries since low-855

powered nodes can remain available longer and tasks are856

continuously executed, where the random and local present857

the least improvement. This can be associated with the858

increased opportunity to utilize peers’ excess energy. That is,859

with larger batteries, not only well-powered (and/or under-860

utilized), but also moderately-powered, nodes are enabled861

to store more energy at peak time; hence, other nodes have862

more opportunity to benefit.863

For further analysis in terms of other metrics and obser-864

vations, please refer to Appendix E.865

4.2.3 Impact of Workload Intensity866

In the main series of experiments, the workload is generated867

by nodes in the entire experiment time, i.e., intensity=100%,868

although the request rate is different per node and per appli-869

cation. It is important, however, to observe the performance870

under varying workload intensity, i.e., 25, 50, 75, and 100%.871

To achieve intensity=50%, for example, a node’s workload872

generator triggers the function during half the experiment873

time, in different timeslots that last for a certain time. The874

trigger times and timeslots are generated using Poisson and875

Exponential distributions. The overall decreasing trend in876

Fig. 14 is attributed to the increase in both the workload877

and consequently overall energy consumption. Maximizing878

the availability of the minimum available node shown in879

Fig. 14 demonstrates the persistent dominance of the optimal880

and faasHouse, followed by the zonal, schedulers. According881

to Fig. 14, the minimum available node is observed by the882

optimal scheduler at 22.1%, although the nodes experienced883

the workload only 25% of the time. This is because the884

energy input limitation is a key factor and also the base885

energy usage of nodes appears inevitable. Also, with the886

increase in workload intensity, the importance of a dynamic887

energy-aware scheduler is highlighted further. For example,888

with 25% intensity, the Kubernetes scheduler performs only889

39% less efficiently than the optimal, but this gap increases890

to 46% when the intensity is 100%.891

The nodes’ failure results in Fig. 15 show that by increas-892

ing the workload intensity, the number of failures increases893

for all schedulers. This confirms a more challenging situa-894

tion for schedulers when experiencing intensive workloads.895

It is observable that despite such challenges the optimal896

and faasHouse retain their dominance by handling intensive897

workloads more desirably.898

The longest availability measure in Fig. 16 shows 899

that, by increasing the workload intensity, the nodes ex- 900

perience shorter availability at its longest possible period. 901

The faasHouse remains performant, with an 11% distance 902

from the optimal. The local scheduler is the most affected 903

scheduler when the workload is intense since bombarding 904

a recently booted-up node using intensive workloads can 905

more quickly cause the node to fail and restart the timer for 906

measuring the longest availability, which happens to be a 907

recurring accident for nodes when using the local scheduler. 908

The throughput observations in Fig. 17 show an up- 909

ward direction by the increase in the workload intensity, 910

as expected. The key observation here is that the variance 911

between different schedulers’ throughput is increased as the 912

workload becomes more intense. This once again dictates 913

the necessity of a dynamic energy-aware scheduler for chal- 914

lenging workloads. While the local scheduler consistently 915

maintains a reasonable throughput, it falls short in meeting 916

sustainability metrics such as nodes’ failure and longest 917

availability. 918

For further analysis in terms of other metrics and obser- 919

vations, please refer to Appendix F. 920

4.2.4 Impact of Other Factors 921

Additionally, we analyzed the impact of varying scheduling 922

intervals and resource capacity (i.e., CPU Governor) on 923

faasHouse. For a detailed analysis of such sensitivity analysis, 924

please refer to Appendix G & H. In terms of sustainability 925

metrics, those types of CPU governors that allocate fewer 926

resources to functions, e.g., powersave, provide better perfor- 927

mance. 928

5 DISCUSSION 929

In this paper, we introduced an energy-aware scheduler 930

called faasHouse to enhance the sustainability of serverless 931

edge computing in extreme edge environments. It is worth 932

noting the following key innovations: 933

• The problem of imbalanced energy in edge is handled 934

by scheduler software design, which appears much 935

more affordable than dealing with hardware upgrades. 936

• faasHouse, unlike Kubernetes, adopts collective 937

placements—the decision and placement for all 938

nodes and functions are made at once, as opposed to 939

the one-by-one strategy that ignores the requirements 940

of other functions in the scheduling queue, resulting in 941

major conflicts. 942

• faasHouse supports both hard and soft constraints and 943

features an extensible design inspired by the Kuber- 944

netes scheduler. This adaptability allows it to meet 945

the evolving requirements of edge applications. Unlike 946

faasHouse, the state-of-the-art, e.g., the zonal scheduler, 947

generally requires a re-design to either accommodate a 948

different hard/soft constraint than energy or apply to a 949

different application. For example, the zonal requires the 950

system admin to empirically determine zones’ ranges in 951

advance, which is a non-trivial task, making it challeng- 952

ing to reuse for diverse IoT applications. 953

Key Insights: While the scheduler proves the appli- 954

cability of software-based adjustments to improve the 955

environment- and hardware-related challenges, which is 956

11

=1000 =1250 =1500 =1750
Nodes Battery Size (mWh)

5
8

10
12
15
18
20

M
in

im
um

 A
va

ila
bi

lit
y

(%
)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 10: Battery size vs. mini-
mum available nodes

=1000 =1250 =1500 =1750
Nodes Battery Size (mWh)

50

60

70

80

No
de

s'
Fa

ilu
re

 (#
)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 11: Battery size vs. nodes’
failure

=1000 =1250 =1500 =1750
Nodes Battery Size (mWh)

350

400

450

500

550

Lo
ng

es
t A

va
ila

bi
lit

y
(m

in
ut

e)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 12: Battery size vs.
longest availability

=1000 =1250 =1500 =1750
Nodes Battery Size (mWh)

0.60

0.70

0.80

0.90

1.00

1.10

Th
ro

ug
hp

ut
 (t

as
k/

se
c.

)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 13: Battery size vs.
throughput

25% 50% 75% 100%
Workload Intensity

8

10

12

15

18

20

22

M
in

im
um

 A
va

ila
bi

lit
y

(%
)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 14: Workload intensity
vs. minimum available nodes

25% 50% 75% 100%
Workload Intensity

50

60

70

80
No

de
s'

Fa
ilu

re
 (#

)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 15: Workload intensity
vs. nodes’ failure

25% 50% 75% 100%
Workload Intensity

350

400

450

500

550

Lo
ng

es
t A

va
ila

bi
lit

y
(m

in
ut

e)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 16: Workload intensity
vs. longest availability

25% 50% 75% 100%
Workload Intensity

0.40

0.60

0.80

1.00

Th
ro

ug
hp

ut
 (t

as
k/

se
c.

)

Optimal
faasHouse

Kubernetes
Local

Random
Zonal

Fig. 17: Workload intensity
vs. throughput

much more affordable than hardware-based solutions, there957

are certain interesting observations worthy of consideration.958

• The computation offloading allowed using well-959

powered nodes to host peers’ functions. However,960

we observed that the operational availability of well-961

powered nodes is not reduced proportionally to the962

increased available energy of low-powered nodes. This963

insight shows that the offloaded functions tend to uti-964

lize the excess energy of well-powered nodes which965

could have been wasted if not used.966

• Letting low-powered nodes to remain available for967

longer durations does not always lead to a proportional968

increase in the overall operational availability of the969

cluster. The rationale behind this lies in the improved970

overall throughput of the cluster and the generation of971

more tasks. In extreme edge computing, where edge972

nodes have a dual-role of task generation and execu-973

tion, prolonging the availability of a node results in an974

influx of additional tasks into the cluster for execution.975

This, in turn, leads to an overall enhancement of per-976

formance and quality of service (QoS).977

Scalability: The faasHouse is meant for IoT applications978

that may scale up to hundreds of nodes, e.g., Smart Farm-979

ing [16] and Smart Manufacturing [3]. In terms of the design,980

the computational complexity of the assignment algorithm981

is O(R logR+R(n+mℵ)) which is tractable even when the982

number of functions to be assigned is in the scale of thou-983

sands. In our experiments, faasHouse imposed only around984

1% computation overhead on the demonstrated cluster. In985

terms of the implementation, faasHouse requires a container986

orchestrator, Kubernetes, that at the time of writing this987

paper, allows scaling the cluster to 5000 nodes, with each988

of them running up to 110 pods (a pod can hold multiple989

containers). Please note that scalability experiments are not990

conducted in this paper, as we are limited by the real testbed991

implementation cost and space.992

Technically, the controller node might be a potential993

bottleneck of the system leading to failure or saturation.994

For failure concerns, the controller is backed with failure995

handling and high availability mechanisms in Kubernetes 996

such that the leadership can be shared among multiple 997

controllers. For saturation concerns that can occur due to 998

heavy communication between nodes or lack of coverage for 999

the extended areas, leveraging multiple clusters of Kuber- 1000

netes appears a reasonable solution, as supported by Liqo.6 1001

Lastly, a decentralization of the scheduler appears worthy 1002

of consideration as a potential avenue for future work. 1003

6 RELATED WORK 1004

Since there is limited work focused on resource scheduling 1005

of sustainable serverless edge, we broadly discuss the liter- 1006

ature on the resource scheduling of sustainable edge. 1007

6.1 Resource Scheduling in Sustainable Edge 1008

Jiang et al. [7] survey a considerable number of works on 1009

energy awareness for edge computing, pinpointing the fol- 1010

lowing aspects: (a) hardware choice, (b) computing architec- 1011

ture, (c) operating system, (d) middleware, (e) microservices 1012

or functions, and (f) computation offloading. 1013

(a) The importance of hardware choice, including at- 1014

tached devices such as batteries, is of concern where we, 1015

similar to [4], consider the support for alternative energy 1016

supplies such as renewable solar irradiation [7]. 1017

(b) Our proposed architecture is supported by energy 1018

benchmarks and measurements provided by WattEdge [2] 1019

which are found critical for practical designs [7] that incor- 1020

porate energy usage by CPU as the dominant and energy 1021

storage by a battery [2]. 1022

(c) The operating system and (d) middleware are the 1023

most relevant considerations in our proposal. In [25], 1024

scheduling improvements are practiced by energy-aware 1025

tuning of CPU frequency by machine learning mod- 1026

els, which appear computation-hungry for the resource- 1027

constrained extreme edge, whereas our proposal solves the 1028

problem with a reasonable computation complexity. 1029

6. https://liqo.io/

12

(e) Microservices are treated differently in our work1030

than in the literature by adopting the FaaS model. This1031

facilitates the migration process (i.e., moving from one1032

node to another), encouraged by [7]. Also, to minimize1033

the interruptions over migrations, our solution practices1034

graceful terminations—launch the new container and then1035

terminate the old one, which is not typically practiced in the1036

literature [4], [26].1037

Finally, (f) computation offloading, a key contribution1038

of our work, is an ideal opportunity to achieve energy1039

awareness at the edge [7]. A simulation-based solution is1040

practiced in [27], but energy harvesting by mobile devices1041

from peers makes the problem distinctly different than ours1042

which attempts to exploit renewable energy sources.1043

6.2 Scheduling in Serverless Cloud Computing1044

Studies on resource scheduling of serverless functions in1045

clouds are primarily focused on non-energy matters [28]–1046

[31]. For instance, memory and cache improvements have1047

been implemented by a scheduler to enhance the cache hit1048

ratio [28], [29]. Contrary to these approaches, we focus on1049

energy challenges at the extreme edge. For instance, we1050

simply eliminate container caching effects by pre-caching.1051

Lastly, Xtract [31] is a scalable high-performance platform,1052

which is an extension of funcX [30], and adopts a random1053

placement of functions.1054

6.3 Scheduling in Serverless Edge Computing1055

Studies on scheduling problems in serverless edge comput-1056

ing have primarily focused on resource allocation, QoS, and1057

cost efficiency [5], [13], [32]–[34]. However, energy consid-1058

erations have been overlooked to a large extent. LaSS [34]1059

takes care of latency-sensitive workflows by vertically ad-1060

justing the functions’ allocated resources to the demand.1061

Similarly, LETO [32], a theoretical solution, considers the1062

horizontal scaling of resources. In [33], the QoS and cost1063

efficiency is approached through task offloading in a cloud-1064

to-edge continuum, where they adopt Pi 3 B+ as edge nodes,1065

as we did. With cost efficiency in mind, ActionWhisk [5]1066

exploits computation offloading. In [13], migrating both task1067

and function in a cluster of heterogeneous nodes, including1068

Pis, is studied to improve the QoS.1069

6.4 Energy-aware Scheduling in Serverless Edge1070

There is a significant gap in the existing literature regarding1071

the energy awareness of serverless platforms. Discussions1072

on sustainable serverless at the edge were commenced1073

by [6], and we initiated practical investigations in [12]. The1074

present work builds upon our previous study in [12] and1075

introduces significant advancements in several key aspects.1076

Respectively, we introduce a practical architecture for the1077

serverless edge. The problem context is defined on top1078

of [12], where we here incorporate new factors into (a)1079

the edge nodes, i.e., the inclusion of CPU governors, (b)1080

application & workload, i.e., the inclusion of bandwidth and1081

data transfer, and (c) node availability, i.e., the inclusion1082

of standby energy considerations. The algorithm design1083

presents a completely novel and distinctive approach, prior-1084

itizing practicality and extensibility, inspired by Kubernetes1085

scheduler’s design, a first-class scheduling tool at the edge 1086

[2], [5], [12]–[14]. The prototype platform of [12] is extended 1087

to incorporate our new algorithms. In addition, this work 1088

encompasses a completely new set of experiments, focusing 1089

on sustainability-related metrics and parameters for evalua- 1090

tion. Furthermore, Spillner et al. [6] suggested the need for 1091

energy-aware serverless edge computing. They theoretically 1092

analyzed viable techniques such as resource scheduling, 1093

server consolidation, dynamic resource scaling, and utiliz- 1094

ing artificial intelligence. However, the suggestions lack an 1095

implementation or simulation. 1096

7 CONCLUSIONS AND FUTURE WORKS 1097

In this paper, we investigated sustainable edge computing 1098

augmented with serverless through resource scheduling, 1099

in the presence of variable renewable energy input and 1100

workload. A realistic architecture and system model for 1101

sustainable edge was presented where an energy-aware 1102

scheduler called faasHouse was proposed to address the 1103

challenge of imbalanced energy supply for renewable en- 1104

ergy and battery-powered edge clusters. The experimen- 1105

tal results demonstrate notable improvements in various 1106

aspects: (a) a 46% increase in the utilization of the least 1107

available nodes, (b) a 27% reduction in node failure rates, 1108

(c) a 24% improvement in the reliability of edge nodes, and 1109

(d) a 97% minimization of wasted renewable energy. These 1110

advancements were achieved through the implementation 1111

of a software-based solution for dynamic energy-aware 1112

scheduling. This approach eliminates the need for hardware 1113

adjustments while yielding substantial benefits. Moreover, 1114

it promotes the environmentally friendly deployment of 1115

modern computing models, such as serverless computing, 1116

at the edge. Future work includes extending the system 1117

model to support a continuum of cloud-to-edge nodes for 1118

a broader range of IoT applications, including cost-aware 1119

ones. Additionally, exploring other adaptation techniques 1120

like load balancing and resource consolidation, as well as 1121

incorporating heterogeneous resources (e.g., GPU, TPU), 1122

can enhance the scheduler’s capabilities. 1123

REFERENCES 1124

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni- 1125

akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog 1126

computing and related edge computing paradigms: A complete 1127

survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, 2019. 1128

[2] M. S. Aslanpour, A. N. Toosi, and R. Gaire, “WattEdge : A 1129

Holistic Approach for Empirical Energy Measurements in Edge 1130

Computing,” vol. 2. ICSOC, Springer, 2021, pp. 531–547. 1131

[3] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Internet of Things 1132

for Agricultural Applications: The State-of-the-art,” IEEE Internet 1133

Things J., p. 1, 2021. 1134

[4] A. Karimiafshar, M. R. Hashemi, M. R. Heidarpour, and A. N. 1135

Toosi, “Effective Utilization of Renewable Energy Sources in Fog 1136

Computing Environment via Frequency and Modulation Level 1137

Scaling,” IEEE Internet Things J., vol. 7, no. 11, pp. 10 912–10 921, 1138

2020. 1139

[5] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Tham- 1140

sen, “AuctionWhisk: Using an Auction-Inspired Approach for 1141

Function Placement in Serverless Fog Platforms,” pp. 1–48, 2021. 1142

[6] Panos, J. Spillner, A. V. Papadopoulos, O. Rana, P. Patros, J. Spill- 1143

ner, A. V. Papadopoulos, B. Varghese, O. Rana, and S. Dustdar, 1144

“Toward Sustainable Serverless Computing,” IEEE Internet Com- 1145

puting, vol. 25, no. 6, pp. 42–50, 2021. 1146

13

[7] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “En-1147

ergy aware edge computing: A survey,” Computer Communications,1148

vol. 151, no. 2018, pp. 556–580, 2020.1149

[8] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource Scheduling in1150

Edge Computing: A Survey,” IEEE Communications Surveys and1151

Tutorials, vol. 48202, no. c, pp. 1–36, 2021.1152

[9] Y. Li, Y. Lin, Y. Wang, K. Ye, and C.-Z. Xu, “Serverless Comput-1153

ing: State-of-the-Art, Challenges and Opportunities,” IEEE Trans.1154

Services Comput., vol. 1374, no. c, pp. 1–1, 2022.1155

[10] M. Aslanpour, A. Toosi, C. Cicconetti, B. Javadi, P. Sbarski, D. Taibi,1156

M. Assuncao, S. Gill, R. Gaire, and S. Dustdar, “Serverless Edge1157

Computing: Vision and Challenges,” in Australasian Computer1158

Science Week Multiconference, 2021.1159

[11] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The1160

rise of serverless computing,” Communications of the ACM, vol. 62,1161

no. 12, pp. 44–54, 2019.1162

[12] M. S. Aslanpour, A. N. Toosi, M. A. Cheema, and R. Gaire,1163

“Energy-Aware Resource Scheduling for Serverless Edge Com-1164

puting,” in 2022 22nd IEEE International Symposium on Cluster,1165

Cloud and Internet Computing (CCGrid), 2022, pp. 190-199, doi:1166

10.1109/CCGrid54584.2022.00028.1167

[13] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container1168

scheduling for data-intensive serverless edge computing,” Future1169

Generation Computer Systems, vol. 114, pp. 259–271, 2021.1170

[14] L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,1171

T. Kim, and M. Hong, “NetMARKS: Network metrics-AwaRe1172

kubernetes scheduler powered by service mesh,” Proceedings -1173

IEEE INFOCOM, vol. 2021-May, 2021.1174

[15] David W. Pentico, “Assignment problems: A golden anniversary1175

survey,“ European Journal of Operational Research, pp. 774–793, 20071176

[16] R. Mahmud and A. N. Toosi, “Con-Pi: A Distributed Container-1177

Based Edge and Fog Computing Framework,” IEEE Internet Things1178

J., vol. 9, no. 6, pp. 4125–4138, 2022.1179

[17] M. S. Aslanpour, A. N. Toosi, R. Gaire, and M. A. Cheema, “Auto-1180

scaling of Web Applications in Clouds: A Tail Latency Evaluation,”1181

in 2020 IEEE/ACM 13th UCC. IEEE, dec 2020, pp. 186–195.1182

[18] T. Sönmez and M. U. Ünver, “House allocation with existing1183

tenants: A characterization,” Games and Economic Behavior, vol. 69,1184

no. 2, pp. 425–445, 2010.1185

[19] T. Öncan, “A survey of the generalized assignment problem and1186

its applications,” Infor, vol. 45, no. 3, pp. 123–141, 2007.1187

[20] T. Sönmez and M. U. Ünver, “Matching, allocation, and exchange1188

of discrete resources,” Handbook of Social Economics, vol. 1, no. 1 B,1189

pp. 781–852, 2011.1190

[21] “Bureau of Meteorology.” [Online]. Available: http://www.bom.1191

gov.au/climate/data-services/solar-information.shtml.1192

[22] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann,1193

N. Herbst, C. Abad, and A. Iosup, “The State of Serverless Ap-1194

plications: Collection, Characterization, and Community Consen-1195

sus,” IEEE Trans. Softw. Eng., vol. 5589, no. c, pp. 1–1, 2021.1196

[23] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. &1197

Berg, A. SSD: Single Shot MultiBox Detector. Computer Vision –1198

ECCV 2016. pp. 21-37 (2016)1199

[24] S. Tuli, G. Casale, and N. R. Jennings, “PreGAN: Preemptive1200

Migration Prediction Network for Proactive Fault-Tolerant Edge1201

Computing,” in Proceedings - IEEE INFOCOM, 2022.1202

[25] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li,1203

“A Double Deep Q-Learning Model for Energy-Efficient Edge1204

Scheduling,” IEEE Trans. Services Comput., vol. 12, no. 5, pp. 739–1205

749, 2019.1206

[26] S. Ghanavati, J. H. Abawajy, and D. Izadi, “An Energy Aware1207

Task Scheduling Model Using Ant-Mating Optimization in Fog1208

Computing Environment,” IEEE Trans. Services Comput., pp. 1–1,1209

2020.1210

[27] W. Chen, D. Wang, and K. Li, “Multi-User Multi-Task Computa-1211

tion Offloading in Green Mobile Edge Cloud Computing,” IEEE1212

Trans. Services Comput., vol. 12, no. 5, pp. 726–738, 2019.1213

[28] P. Andreades, K. Clark, P. M. Watts, and G. Zervas, “Experimental1214

demonstration of an ultra-low latency control plane for optical1215

packet switching in data center networks,” Optical Switching and1216

Networking, vol. 32, pp. 51–60, 2019.1217

[29] G. Aumala, E. Boza, L. Ortiz-Aviles, G. Totoy, and C. Abad,1218

“Beyond load balancing: Package-aware scheduling for serverless1219

platforms,” Proceedings - 19th IEEE/ACM CCGrid 2019, pp. 282–1220

291, 2019.1221

[30] R. Chard, A. Woodard, I. Foster, and K. Chard, “f unc X : A1222

Federated Function Serving Fabric for Science,” pp. 65–76, 2020.1223

[31] T. J. Skluzacek, R. Wong, Z. Li, R. Chard, K. Chard, and I. Foster, 1224

“A Serverless Framework for Distributed Bulk Metadata Extrac- 1225

tion,” HPDC 2021 - Proceedings of the 30th HPDC , pp. 7–18, 2021. 1226

[32] H. Ko, S. Pack, and V. C. M. Leung, “Performance Optimization 1227

of Serverless Computing for Latency-Guaranteed and Energy- 1228

Efficient Task Offloading in Energy Harvesting Industrial IoT,” 1229

IEEE Internet Things J., vol. 4662, no. c, pp. 1–1, 2021. 1230

[33] A. Das, S. Imai, S. Patterson, and M. P. Wittie, “Performance 1231

Optimization for Edge-Cloud Serverless Platforms via Dynamic 1232

Task Placement,” Proceedings - 20th IEEE/ACM CCGRID 2020, 1233

no. 1, pp. 41–50, 2020. 1234

[34] B. Wang, A. Ali-Eldin, and P. Shenoy, “LaSS: Running Latency 1235

Sensitive Serverless Computations at the Edge,” HPDC 2021 - 1236

Proceedings of the 30th HPDC , pp. 239–251, 2021. 1237

Mohammad Sadegh Aslanpour is a PhD stu- 1238

dent at Monash University and CSIRO’s DATA61, 1239

Australia. His research interests include Cloud, 1240

Edge, and Serverless Computing—where self- 1241

adaptive, efficient, and green solutions are de- 1242

sired. He is a recipient of the best paper 1243

award/nomination from AusPDC & ICSOC con- 1244

ferences; as well as research funding, grant, and 1245

scholarships from Monash University, CSIRO, 1246

and Building 4.0 CRC. 1247

1248

Adel N. Toosi (Member, IEEE) received his PhD 1249

degree from University of Melbourne, in 2015. 1250

He is currently a senior lecturer with the De- 1251

partment of Software Systems and Cybersecu- 1252

rity, Monash University, Australia. From 2015 to 1253

2018, he was a postdoctoral research fellow with 1254

the University of Melbourne. Dr Toosi has pub- 1255

lished over 70 peer-reviewed publications in top- 1256

tier venues such as IEEE TCC, IEEE TSC, and 1257

IEEE TSUSC. His publications have received 1258

over 3,500 citations with a current h-index of 1259

28 (Google Scholar). His research interests include cloud, fog, edge 1260

computing, software-defined networking, and sustainable computing. 1261

For further information, visit his homepage: http://adelnadjarantoosi.info. 1262

Muhammad Aamir Cheema is an ARC Future 1263

Fellow and Associate Professor at the Faculty 1264

of Information Technology, Monash University, 1265

Australia. He obtained his PhD from UNSW 1266

Australia in 2011. He is the recipient of 2012 1267

Malcolm Chaikin Prize for Research Excellence 1268

in Engineering, 2013 Discovery Early Career 1269

Researcher Award, 2014 Dean’s Award for Ex- 1270

cellence in Research by an Early Career Re- 1271

searcher, 2018 Future Fellowship, 2018 Monash 1272

Student Association Teaching Award and 2019 1273

Young Tall Poppy Science Award. He has also won two CiSRA best 1274

research paper of the year awards, two invited papers in the special 1275

issue of IEEE TKDE on the best papers of ICDE, and three best paper 1276

awards at ICAPS 2020, WISE 2013 and ADC 2010, respectively. 1277

Mohan Baruwal Chhetri is a Senior Research 1278

Scientist with CSIRO’s Data61, Australia, where 1279

he leads the Human-Machine Collaboration for 1280

Cybersecurity research theme. He received his 1281

PhD degree from Swinburne University of Tech- 1282

nology, Australia. His research focus is on devel- 1283

oping technologies to facilitate decision support, 1284

automation and optimization in cyber-physical- 1285

social ecosystems. 1286

1287

14

