
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 1

An Energy-Conservative Dispatcher for
Fog-Enabled IIoT Systems: When Stability and

Timeliness Matter
Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour,

and Adel N. Toosi, Member, IEEE

Abstract—The deployment of fog computing resources in industrial internet of things (IIoT) is essential to support time-sensitive
applications. To utilize resources efficiently, a brand-new request dispatcher is required to sit between the IIoT devices and the pool of
fog resources. The need for such a dispatcher stems from the challenges specific to these systems. Firstly, fog-enabled IIoT systems
are highly dynamic and distributed. Second, fog nodes are typically power and resource limited. Finally, many IIoT applications feature
critical time-sensitivity, referred to as timeliness, and cannot tolerate response delay beyond a specific threshold. This paper proposes
an efficient dispatching algorithm to minimize energy consumption and deadline misses while keeping the system stability at a
satisfactory level. We leverage Lyapunov Optimization technique to tackle the problem and handle the system dynamics. We perform
extensive simulations to verify the effectiveness of the proposed method and provide sensitivity, scalability and model parameter
analysis. The simulation results prove the superiority of the proposed method over the state-of-the-art method up to 22% and 10% in
terms of average deadline misses and energy consumption, respectively. Further, we perform practical experiments to prove the
validity of the proposed method in a real testbed.

Index Terms—Industrial Internet of Things, Industry 4.0, Edge Computing, Fog Computing, Timeliness, Stability, Lyapunov
Optimization Technique.

F

1 INTRODUCTION

FOG computing (FC) in some aspects differs from cloud
computing, but perhaps the main distinguishing aspect

is agility [1]. Bringing computation resources to the edge of
the network makes it possible to lower the response time [2].
Thus, time-sensitive requests can be served at the network
edge [3], which also leads to another advantage, that is,
making the network core less busy [4].

In Industrial Internet of Things (IIoT), these are the
critical-mission sensors and actuators connecting to the
Internet. As a result, IIoT applications enforce pressing
demands on the stability of the system (even under stressed
conditions), preserving time constraints and energy con-
servation [5]. Processing the requests at the premises of
users, near the source of data and where they may be
consumed, helps them meet their time constraints. Thus, in
various aspects, FC can help IIoT [6]. Although structural
changes (i.e., introducing a fog layer) is necessary, it is not
profitable unless accompanied with a dispatching mechanism
to place each request on a proper computing resource
(fog/cloud). An efficient request dispatching strategy makes
decisions based on available resources, network conditions
and request requirements, and therefore, it can lead to a
lower service time and lower energy consumption, among

• A. Karimiafshar, M. Hashemi, and M. Heidarpour are with the
Department of Electrical and Computer Engineering, Isfahan
University of Technology, Isfahan 8415683111, Iran. E-mail:
a.karimiafshar@ec.iut.ac.ir, {hashemim, mrheidar} @iut.ac.ir.

• A. N. Toosi is with the Department of Software Systems and Cybersecu-
rity, Faculty of Information Systems, Monash University, Clayton, VIC
3800, Australia. E-mail: adel.n.toosi@monash.edu.

others [7].
This paper proposes a novel request dispatching (or

resource allocation) algorithm for fog-enabled IIoT appli-
cations. There are essential features specific to fog-enabled
IIoT systems that urge the need for brand new resource al-
location mechanisms. Specifically, fog-enabled IIoT systems
are characterized by the following features:

Timeliness: In IIoT, timeliness has significant importance,
as many applications impose a deadline for the time be-
tween sending their requests and receiving the correspond-
ing responses. For example, the obstacle detection (OD) for
autonomous vehicles (AV) requires the timeliness of service
to be effective. Consider a scenario in which suddenly an
obstacle (human being, large object or something harmful)
appears on the road when an AV is driving on the highway.
Here, the OD application should recognize the type of
obstacle and its velocity to make a suitable decision, such
as immediate collision avoidance or lane change maneuver.
This scenario is possible if the time needed for data commu-
nication and processing does not exceed the tolerable delay.
Indeed, if the AV drives at a speed of 200 Km/h, it would
cover a distance of 50 m in about 900 ms. Therefore, the OD
application has a deadline of 90 ms [8], [9]. Similarly, the
monitoring application for robotic arms in the automated
industry (for instance: using robotic arms for movement of
objects) also requires a response time less than 100 ms [10].
These are time-critical applications where timeliness does
matter, and deadline awareness is essential [8].

Various applications may behave differently if the dead-
line is missed. This difference can be modeled by consid-
ering different costs (or utilization loss) for various applica-

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 2

tions as the response time exceeds their deadlines. However,
the number of deadline misses is a key performance indicator
in such systems [11], [12], [13]. It is worth noting that there
is a difference between the minimization of service time
and the number of deadline misses. For example, consider
a system containing three nodes with different processing
capabilities (F1 < F2 < F3), and a task “A” with a
35ms deadline arriving into the system. Also assume that
execution of task A on F1, F2, and F3 lasts for 40ms,
33ms, and 25ms, respectively. As a result, a service time
minimization strategy forces us to execute task A on F3.
But, if instead, we focus on minimizing the number of
deadline misses, a degree of freedom shows up as there is no
difference between F2 and F3. Consequently, the degrees of
freedom of this kind may be leveraged to better cope with
stressed situations.

Stability: IIoT applications are categorized as mission-
critical, and therefore, any instability in the system may
lead to catastrophic consequences. Stability in the form
of bounded-input bounded-output (BIBO) for the system
under consideration means that the backlogs of task queues
for individual fog nodes (FNs) do not grow unboundedly as
long as the average computational demand of time-sensitive
tasks arriving into the system is less than the total compu-
tation capability of all FNs, excluding the cloud [14]. Thus,
for practical scenarios with limited buffering (queuing) ca-
pacity, keeping backlogs as small as possible would be a
design goal of any stable request dispatcher. Furthermore,
IIoT heavily relies on machine-to-infrastructure or machine-
to-machine communications, and therefore, requires the sys-
tem to be robust, stable and secure [6].

Dispersion and heterogeneity: Fog nodes can be dispersed
in various geographical locations and heterogeneous in their
electrical/computational power and persistency characteris-
tics. As a result, dispatching algorithms devised originally
for cloud computing can not be directly reused for fog com-
puting systems. Specifically, using methods such as virtual
machine consolidation and turning on/off the servers is not
suitable in fog computing systems.

Energy: In contrast to the cloud, FNs can be power-
limited devices that share their resources intermittently.
As a result, special care is needed for conservative energy
consumption [15], [16].

In this paper, based on a comprehensive review of the
related works (Section 2), we consider a three-layer IIoT
system model (Section 3) consisting of industrial equipment
at the bottom (as end devices), FNs at the middle (at the
edge of the network) and the cloud at the top (remote data
centers accessed through the Internet). We, then (in Section
4), investigate the request dispatching among the FNs and
the cloud in such a way to minimize total energy consumption
subject to preserving timeliness and system stability. The
stochastic and dynamic nature of the system parameters
(such as the requests’ arrival rate and attributes) makes
the optimal solution intricate and too heavy for practical
deployment. As a result, we resort to the so-called “Lya-
punov Optimization Technique (LOT)” to devise a greedy
suboptimum dispatching algorithm that is stable and works
independently of the dynamics of the system parameters
(Section 5). In our problem formulation, we consider mini-
mizing energy as the objective function and convert stability

and timeliness conditions, respectively, into queues and vir-
tual queues [14]. As a result, while LOT minimizes the energy,
it also guarantees the stability of our proposed algorithm in
terms of the number of queued requests and the deadline
misses. Extensive simulations and practical experiments are
conducted (in Section 6) to evaluate the effectiveness of the
proposed method under different conditions.

The main contributions of the paper are summarized as
follows:

• Besides system stability and energy minimization,
we stress on and grant special attention to timeliness
as an essential service requirement in many IIoT
applications.

• Based on LOT and virtual queues, a dynamic request
dispatching algorithm is proposed, which jointly
minimizes energy consumption and adaptively ad-
dresses system stability and timeliness. The pro-
posed method also incorporates a novel mechanism
to proactively choose and send some requests to the
cloud, which helps the system provide more space
for future requests and makes it more robust against
dynamic system conditions.

• We further demonstrate the linear time-complexity
of the proposed algorithm and prove its stability
with respect to the number of queued requests and
deadline misses.

• Based on the simulation experiments, we perform the
sensitivity, scalability, and model parameter analysis.

• A prototyping platform is implemented to validate
the proposed method.

2 RELATED WORKS

2.1 Request Dispatching in FC Environment

There have been extensive studies on computation offload-
ing, resource management and request dispatching in the
context of FC [17], [18]. For example, Ni et al. [19], con-
sidering the requests’ completion time and price as the
objectives, proposed a resource allocation strategy based
on priced timed Petri nets. Deng et al. [20] investigated
the workload allocation problem considering the tradeoff
between power consumption and transmission delay in
FC. Meng et al. [21] investigated the delay-constrained
computation offloading problem in FC, considering both
energy consumption and time constraint of the tasks. Sim-
ilarly, Wang et al. [22] considered computation offloading
in wireless powered Mobile-Edge Computing (MEC) by
jointly optimizing the frequency of the computing nodes,
number of offloaded bits and transmission energy beam-
forming. By considering both partial and binary offloading
modes, [23] introduces an energy-efficient MEC design that
aims to minimize the total energy consumption subject to
computational latency constraints. Using a software-defined
network, Zeng et al. [7] introduced a task scheduling and
resource management method to minimize request comple-
tion time. Also, Gu et al. in [24] proposed a cost-efficient task
distribution in fog-enabled medical cyber-physical systems.
In [25], Skarlat et al. presented a conceptual framework
for resource provisioning in FC, considering heterogeneity
in applications and resources. In [26], Zhang et al., using

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 3

game theoric approaches, addressed the problem of resource
allocation in a distributed fashion. Such works deal with
resource management and request dispatching in FC by
taking different objectives into account and through various
methods. However, their works are so general, and they do
not consider the specific requirements in IIoT, such as the
real-time nature of requests in IIoT applications.

2.2 Request Dispatching in IIoT

In the context of IIoT, Chekired et al. [27] proposed a
hierarchical architecture of FC and a workload assignment
algorithm for offloading peak loads over higher tiers. They
divided the requests into low and high priority requests
and used two priority queuing models. Finally, using mixed
nonlinear integer programming, they proposed a branch
and bound solution to the problem. Mishra et al. [28] inves-
tigated the scheduling of requests among fog servers using
metaheuristic techniques. They considered the tradeoff be-
tween energy consumption and makespan. Furthermore, Li
et al. [29] proposed an implementation architecture for fog-
enabled IIoT. They also introduced a resource partitioning
scheme based on service popularity by exploiting Zipf’s law.
Moreover, Shi et al. [5] introduced a load balancing strategy
based on a genetic algorithm in an IIoT environment. These
works dealt with the resource scheduling problem in the
context of IIoT. However, they did not focus on the time-
sensitivity of requests and system stability as we do in
this paper. Furthermore, we use the LOT in the category of
stochastic methods, which completely fits into the stochastic
nature of the problem.

2.3 Stochastic Methods of Request Dispatching

There are some works that try to solve the resource allo-
cation and computation offloading problem by leveraging
stochastic methods, such as [30], [31], [32], [34], [35]. For
example, Wang et al. [30], based on the Markov decision
processes (MDP) and reinforcement learning framework,
introduced a dynamic reinforcement learning scheduling al-
gorithm and a deep dynamic scheduling algorithm to solve
the computation offloading problem. However, such MDP-
based methods, by increasing the number of transitions,
suffer from the curse of dimensionality.

Besides, Kwak et al. [31] adopted LOT to minimize the
time-averaged energy consumption for given delay con-
straints. Also, Zhao et al. [32] considering a heterogeneous
delivery wireless network solved the problem of node as-
signments at the control tier and allocating resources at the
access tier based on LOT. They dealt with service hosting, re-
source allocation and computation offloading in the context
of FC, considering service time minimization and reducing
energy consumption. Different from the above works, which
mainly focused on system performance, in this work, we
focus on the system timeliness and try to dispatch requests
so that more requests meet their deadlines while minimizing
the energy consumption of the computing nodes.

In recent works [15], [33] and [16] are the most relevant
works to our work in this paper. Yang et al. [15] investigated
the problem of dynamic task scheduling considering the
tradeoff between energy consumption and service time.

Cloud

Fog Node Fog Node

Fog Node

IoT Gateway IoT Gateway

Smart Gateway

Fig. 1: High level fog network architecture.

They adopted LOT and proposed an algorithm as the so-
lution to minimize the service time. In [33], we investigated
the request dispatching problem in a fog environment to
match energy consumption with the green energy profile.
Leveraging LOT, we proposed an online algorithm to si-
multaneously dispatch requests among available computing
nodes and adjust frequency and modulation levels. How-
ever, we did not consider time-sensitivity of the requests
and system timeliness. In the concept of timeliness, we
are concerned with meeting deadlines instead of minimiz-
ing the average service time. Indeed, the requests must
be served before the deadline. Therefore, it has a binary
nature; as requests either may pass the deadline or not.
Primarily, the Lyapunov framework is used to deal with
analog variables, but in the current work, we face the
challenge of dealing with binary variables while using the
Lyapunov framework. This challenge is new and has not
been considered before in the literature. Furthermore, de-
spite our previous work that we tried to match the energy
consumption with the green energy profile, in this work, we
have focused on reducing the energy consumption. Finally,
the problem is investigated specifically with regard to the
characteristics of IIoT and Industry 4.0.

Chen et al. [16] investigated task admission and service
hosting in a fog environment to minimize average service
time while satisfying battery energy constraints. They for-
mulated the problem as a mixed-integer nonlinear stochastic
optimization problem. Based on LOT, the long-term for-
mulation of the problem is relaxed and then is converted
to a sequence of easily solvable per-slot sub-problems that
depend only on currently available system information.
Finally, they proposed an online distributed algorithm as the
solution. The studies mentioned above focused on resource
allocation and task scheduling in a fog environment and
used LOT to derive algorithms to minimize the service time.
However, they considered service time minimization as the
main objective and did not focus on the system timeliness
as we do in this paper. It is noteworthy that minimizing
the service time does not necessarily lead to timeliness.
Focusing on service time optimization will not remove the
outliers that are unacceptable to time-critical applications
such as autonomous vehicles. Finally, Table 1 presents the
summary of the most relevant works.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 4

TABLE 1: THE COMPARISON BETWEEN THIS WORK AND THE MOST RELEVANT WORKS

Reference Technology Problem Lyapunov Objectives IIoT
(stability) S.T 1 D.M 2

[19] Fog computing Resource allocation X
[20] Fog computing Workload allocation X
[21] Fog computing Computation offloading X
[7] Software-defined fog network Resource management X
[22] Mobile edge computing Computation offloading X
[23] Mobile edge computing Computation offloading X
[24] Mobile edge computing Resource management X
[25] Fog computing Resource provisioning X
[26] Cloud, edge and fog computing Resource allocation X
[27] Industrial fog computing Workload assignment X X
[28] Fog computing Service allocation X X
[29] Fog computing Resource partitioning X X X
[5] Fog computing Load balancing X X
[30] Fog computing Computation offloading X X
[31] Mobile cloud computing Resource allocation X X
[32] Content delivery wireless network Resource allocation X X
[15] Homogeneous fog networks Task scheduling X X
[33] Fog computing Request dispatching X X
[16] Industrial fog computing Computation offloading X X X

This work Fog computing Request dispatching X X X X

1 S.T: Service Time (or Makespan [28]) 2 D.M: Deadline Miss (or Delay Constraint)

3 SYSTEM MODEL

We consider a fog network composed of N FNs and a cloud
at a remote data center. In IIoT, there are many IoT devices
running applications with different requirements in terms
of data rate and time constraints. Because of the limited
resources, IoT devices may need to be served by exter-
nal resources. We assume that the IoT devices send their
requests to a gateway with a controller which decides to
redirect requests to the best-suited computing node among
available ones (preferably one of the FNs or, if necessary, the
cloud), as illustrated in Fig. 1. Once the scalability matters,
the IoT devices and FNs may be grouped into clusters
(domains) with dedicated controllers, and all requests in
one cluster are dispatched via the cluster’s controller. The
optimum dispatching algorithm requires information about
the attributes of the requests, the conditions and capabilities
of FNs, and the bandwidth of the network links.

For the sake of readability, in the following, we first
introduce the notations used throughout the paper.

Notations: The vectors are specified in bold face letters,
such as Q. We use E{.} to specify the expectation operator.
In order to show that parameter f is a function of x, we use
f̂(x). Also, lim sup denotes Limit Superior. Furthermore, a
summary of key symbols are presented in Table 2.

The controller maintains a queue model of the comput-
ing nodes and updates the model parameters continuously.
Fig. 2 presents the queue model of the system. We assume
a time-slotted dispatching strategy, with slots indexed by
t ∈ {0, 1, 2, . . . }. A(t) denotes the arrival rate into the
controller at time slot t in the unit of instructions per sec-
ond. It is assumed that A(t) is independent and identically
distributed (i.i.d.) over time slots. Ri(t) denotes the amount
of requests assigned to the ith computing node at time slot
t, and we can write A(t) =

∑N+1
i=1 Ri(t). The requests go

through the queues to get served. The queues’ backlog is
one of the important information used by the controller to
decide about how to dispatch the requests. The dispatching
decision at time t is denoted by α(t) which defines a
mapping between Kt, the set of requests arrived at time
slot t, and FNs (indexed by i = 1, · · · , N) and the cloud

TABLE 2: THE SUMMARY OF KEY SYMBOLS

Symbol Definition

t Index of time slots
A(t) Request arrival rate into the system at time slot t
i Index of computing nodes

Ri(t) Request arrival rate into the computing node i at time slot t
Bi(t) Service rate of the computing node i at time slot t
Kt Set of requests arrived at time slot t
α(t) Vector of decision control at time slot t
Qi(t) Queue backlog related to the computing node i at time slot t
k Index of requests

ri(t) Transmission rate of the computing node i at time slot t
Mk Volume of data need to be transmitted by request k
Sk Processing demand of the request k

eci (t)
Computation energy consumption of the computing node i at time
slot t

etri (t)
Communication energy consumption of the computing node i at
time slot t

ei(t) Total energy consumption of the computing node i at time slot t
ψk(t) Service time of the request k
L(t) Lyapunov function

∆(L(t)) Drift in Lyapunov function

(indexed by i = N + 1) as α(t) = {(k, i)|k ∈ Kt and i ∈
{1, 2, . . . , N + 1}}.

3.1 Queue Dynamic
As illustrated in Fig. 2, there are N + 1 queues related to
computing nodes (the FNs and the cloud) in the system.
After dispatching requests to computing nodes by the con-
troller, they wait in the corresponding queues for their turns
to be served. The dynamics of the ith queue is obtained by,

Qi(t+ 1) = max[Qi(t)−Bi(t), 0] +Ri(t), (1)

for t ∈ {0, 1, 2, . . . }, where Qi(t) denotes the queue backlog
of the ith computing node at time slot t, and Bi(t) denotes
the service rate of the computing node. Moreover, for Bi(t)
we can write Bi(t) = fi/ϕ where fi is the CPU frequency
and ϕ is the average number of cycles per instruction [20].

3.2 Computation and Communication Models
Different computing nodes may have different processing
power. They are also generally dispersed across the net-
work. Therefore, assigning a request to one computing node
or another may lead to varying amounts of computation and

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 5

Controller

Queue Backlog Information

BN+1(t)

BN(t)

B2(t)

B1(t)

RN+1(t)

RN(t)

R2(t)

R1(t)

A(t)

Cloud

IoT Gateway

Fig. 2: Queue model of the system.

communication delay and consumed energy. The delays and
energy consumption are variant and depend on the system
conditions and workload. In the following, we present the
delay and energy consumption models.

3.2.1 Delay
Computation Delay: The computation delay refers to the
delay which is incurred by serving a request in a computing
node at the fog or cloud tier. Following the model in [16], the
computation delay of the request k at the computing node i
is obtained by,

τk,i(t) =
Sk
Bi(t)

, (2)

where Sk denotes the processing demand of the request k
in the form of Million Instructions (MI).

Communication Delay: The communication delay refers
to the delay which is incurred during forward/backward
transmission of the data between IoT devices and the com-
puting node in the fog or cloud. Similar to the model
in [20], the communication delay for the request k and the
computing node i is obtained by,

Dk,i(t) =
Mk

ri(t)
, (3)

where ri(t) denotes the transmission rate, at time slot t,
of the link from the computing node i to the IoT device
originating the request k, and Mk represents the volume of
data needed to be transmitted.

3.2.2 Energy Consumption
The computing node i consumes energy ei(t) either for
computation, denoted by eci (t), or communication, denoted
by etri (t). Therefore, the total energy consumption can be
written as e(t) = ê(α(t)) =

∑N+1
i=1 (eci (t) + etri (t)). In the

following, we present the computation and communication
energy model.

Computation Energy: Power consumption in a process-
ing device has two parts, static and dynamic. Static part,
P ci,s, is consumed even if the device is idle, while the
dynamic part, P ci,d, is proportional to the utilization of the
resources [36].

pci (t) = pci,s + pci,d(t) = pci,s + (pci,max − pci,s)ϑi(t), (4)

where pci,max represents the maximum power that the com-
puting node i can dissipate, and ϑi(t) ≤ 1 is the resource
utilization. Thus, the computation energy eci can be obtained
by eci (t) = pci (t)τi(t), where τi(t) =

∑
k∈Kt

i
τk,i(t). Fur-

thermore, Kt
i denotes the set of requests assigned to the

computing node i at time slot t.

Communication Energy: The communication energy is
a function of transmission rate, and can be written as [37]:

etri (t) =
∑
k∈Kt

i

(βixi(2
ri(t)/xi − 1) + ptri,s)(Dk,i(t)), (5)

where xi is the fixed symbol rate, βi(t) is a parameter deter-
mined by the noise level and the transmission quality, and
ptri,s is the transmitter’s statics (modulation-independent)
power consumption.

4 PROBLEM STATEMENT

In this section, we mathematically formulate the problem of
request dispatching. First, we present the constraints related
to timeliness, load balancing, and stability. Then, we intro-
duce an optimum dispatching strategy as the solution to a
constrained stochastic and non-linear optimization problem
in which the averaged energy consumption is minimized
subject to the timeliness and system stability constraints.

4.1 Problem Constraints

4.1.1 Timeliness Constraint
In IIoT applications (e.g., industry 4.0), processing the re-
quests in a timely manner according to the context has sig-
nificant importance. Delays beyond the specified deadline
may lead the system to an unstable situation. So, the total
service (response) time1 for each request k, denoted by ψk,
should be preferably less than its related delay threshold,
Γk. The total service time for request k assigned to the com-
puting node i under allocation decision α(t), is obtained by
ψk(t) = ψ̂k(α(t)) = uk,i(t)+wk,i(t)+τk,i(t)+dk,i(t), where
uk,i(t) is the delay incurred during uploading the input
data of the request k from the IoT device to the computing
node i, and wk,i(t), τk,i(t), and dk,i(t), are, respectively,
the related waiting (queuing) delay, computation delay, and
the delay of transmitting the results back to the IoT device.
The parameters τk,i(t) is obtained by (2), uk,i(t) and dk,i(t)
are obtained by (3), and the waiting delay is obtained by
wk,i(t) = Qi(t)/Bi(t) at time slot t.

We define ϕk(t) = ϕ̂k(α(t)) = max{ρ(ψ̂k(α(t)) −
Γk), 0} as an indicator of how far the service time is from the
Γk threshold 2, and parameter ρ is used to determine how
much violating a deadline may cost to an application. We
try to keep the expected value of ϕk(t) below a throttling
threshold, CD by enforcing,

ϕ̄ = lim sup
T→∞

1

T

T−1∑
t=0

E{ϕ(t)} ≤ CD,

where ϕ(t) is defined as ϕ(t) =
∑Kt

k=1 ϕk(t). The throttling
threshold CD provides control over the number of deadline
misses and can be tuned based on the IIoT application under
consideration. A large value of CD causes more deadline
misses to be allowed in the system.

1. We consider the time from when the requests are sent to a comput-
ing node until the time the results are sent back to the IoT devices as
the total service time.

2. We can also substitute Γk with the average of the deadlines, the
upper/lower bound of the deadlines or any approximation of them.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 6

4.1.2 Load Balancing Constraint
Dispatching the incoming requests evenly, as much as pos-
sible, among the computing nodes is the best practice for
fair and stable resource sharing on average, whenever we do
not have the knowledge of system dynamics [5].

The backlog of each queue in the system is an indicator
of the load at that node. Due to heterogeneity in the comput-
ing nodes, load balancing should be performed according
to the nodes’ capabilities. Therefore, after normalizing the
queues’ backlog with respect to nodes’ capabilities, we
impose the load balancing constraint in the form of,

q̄i = lim sup
T→∞

1

T

T−1∑
t=0

E{Qi(t)/νi(t)} = Qavg(t),

for i ∈ {1, 2, · · · , N + 1}, and the average of all the real
queues Qavg(t) for each time slot. While νi(t) helps to nor-
malize the backlog of the queue i, and is obtained by νi(t) =
Bi(t)/Bmax(t), where Bmax(t) = maxi=1,2,···,N+1Bi(t).

4.1.3 Selection between Fog and Cloud Constraint
Although it is desirable to serve as many requests as possi-
ble at the fog tier, in our method, some are opportunistically
chosen to be sent to the cloud to provide more space for
other existing or future ones that may have more stringent
delay constraints. In this case, the requests that are best
suited to the cloud in terms of computation and communi-
cation are sent to the cloud. These are computation-intensive
requests with the least amount of data transmission to avoid
making the network core busy.

In other words, as “computationally-intensive” tasks
may block FNs (with restricted resources) from timely serv-
ing other in queue tasks, they represent good candidates to
be offloaded to the cloud. However, the computation cost
is not the only factor to assess whether a task should be
sent to the cloud or not. Another important factor is the
“communication cost”, as it affects the delay and the energy
required for the communication too. Therefore, any decision
criterion for cloud offloading may mix these two factors in a
suitable form. In this paper, we consider a utility function in
the form of Uk(t) = Sk/Mk. If the value of this function
for a request is greater than a predefined threshold, the
request is a good candidate to be offloaded to the cloud. The
threshold value depends on the queue backlog and changes
accordingly. So, we define the long term average utility of
requests which is served by the FNs as

Ū = lim sup
T→∞

1

T

T−1∑
t=0

E{Uk(t)} ≤ CL

for k ∈ Kt
F , where Kt

F denotes the set of requests assigned
to the FNs at time slot t. Moreover, CL is a threshold for
suitability of a request to be sent to the cloud. Indeed, we
dynamically tune the suitability of the requests for sending
to the cloud by taking the current status of the queues’
backlog into consideration in the form of CL ×Qiε(t) = Cγ
for i ∈ {1, 2, . . . , N}, with some finite constant value Cγ
which is set based on the system management policy. A
large value of Cγ indicates that a request must have high
computing demands or low communication requirements
to be sent to cloud. We define Qiε(t) = Qi(t) + ε for

ε > 0, therefore considering Qiε(t) > 0, we can write
CL = Q−1

iε
(t)× Cγ .

4.1.4 Stability
In the queue model of the system, stability refers to a
condition that all the queues work normally and we do not
have any congested queue. Mathematically speaking, the
queue of the computing node i is stable [14] if,

Q̄i = lim sup
T→∞

1

T

T−1∑
t=0

E{|Qi(t)|} <∞. (6)

Equation (6) not only considers the long term behavior
of the system, but also requires the queues’ backlogs to be
always finite.

4.2 Problem Formulation
Now we are in the stage to present our optimum dispatch-
ing strategy which minimizes the total consumed energy
subject to timeliness and stability conditions. The proposed
optimum dispatching strategy is the solution to the follow-
ing stochastic constrained optimization problem:

P1: min
α(t)

(lim sup
T→∞

1

T

T−1∑
t=0

E{ê(α(t))}) (7)

S.T ϕ̄ ≤ CD (7a)
q̄i = Qavg(t) (7b)
Ū ≤ CL (7c)
Q̄i <∞ for i ∈ {1, 2, . . . , N + 1}. (7d)

The problem in (7) minimizes the long term average
of energy consumption subject to the conditions (7a) to
(7d). Condition (7a) presents the timeliness constraint by
enforcing the requests to be dispatched in the right place
and served before their delay thresholds, (7b) is related
to the load balancing constraint. Condition (7c) is for the
selection between the fog and cloud, by serving the proper
requests in the FNs and opportunistically sending some
requests to the cloud, and (7d) is for preserving the stability
of queues.

P1 is a stochastic optimization problem with various
stochastic parameters. In each time slot, it needs to make
decisions on choosing the most proper nodes in the fog
or cloud tier to minimize energy consumption while pro-
viding system stability and timeliness, which requires the
knowledge of the system dynamics to be known in advance.
However, obtaining such knowledge of the system is not
easy. Therefore, P1 is a highly challenging problem. Thus,
in this paper, we leverage LOT to derive an approximate
algorithm that works without a priori knowledge of future
system dynamics.

5 PROPOSED METHOD

In this section, we stand on the concrete “Lyapunov stability
theory” to derive a solution for the main problem P1. Specif-
ically, we first cast P1 into the Lyapunov optimization frame-
work. Then, we leverage the virtual queue concept and turn
the constraints into a pure stability problem. Finally, an on-
line request dispatching algorithm is presented using the so-
called Lyapunov Optimization Technique (LOT). Although

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 7

the proposed algorithm is sub-optimum, it has provable
performance guarantees and outperforms the state-of-the-
art methods, as demonstrated in Section 6.

5.1 Compiling P1 into LOT Language
In control systems theory, the Lyapunov function has been
widely used to prove the stability of systems. On the
other hand, problems in which, along with stability, the
performance is also important, can benefit from a variant
of the Lyapunov function, which is called the Lyapunov
Optimization Technique (LOT). Here, we use LOT to jointly
stabilize system queues and minimize energy consumption
as the penalty. In LOT, a positive scalar function called the
Lyapunov function, L(t), is defined. L(t) represents the
status of congestion in the system’s queues. We use the
Lyapunov function as defined in [14], in the form of

L(t) =
1

2

N+1∑
i=1

Qi(t)
2, (8)

recalling that Qi(t) is the backlog of the ith queue. A small
value of L(t) indicates that all the queues work normally,
but a large value for L(t) means that at least one of the
queues is congested, which leads the system into an unsta-
ble situation. The LOT builds on the fact that if the initial
state of the queues is bounded, “greedily” minimizing

∆(L(t)) = E{L(t+ 1)− L(t)|Q1(t), Q2(t), . . . , QN+1(t)},
(9)

at each time slot ensures the stability of the system queues.
The function ∆(L(t)) is called drift in the Lyapunov function
and as mentioned plays a central role in LOT.

The next step in LOT is to incorporate a penalty term in
addition to the drift. The purpose of the penalty is to bring,
besides the stability constraints, other performance metrics
into the scene. Therefore, instead of minimizing the pure
drift, LOT considers minimizing a hybrid term of drift plus
penalty in the form of

∆(L(t)) + V E{P (t)|Q(t)}, (10)

where P (t) is the penalty function, and V is a scaling
factor to adjust the relative importance of the stability and
performance with respect to each other. As minimizing
energy is the objective function in P1, in our case, P (t) is
an appropriate representation of the energy consumption.
While Q(t) is the vector of all the real queues and defined
as, Q(t) , [Q1(t), Q2(t), . . . , QN+1(t)].

One final remark about LOT that remains is how to deal
with problems that contain other constraints besides the
stability. The answer to this question is the concept of virtual
queues which we ought to deploy in order to thoroughly
tackle P1 using the LOT strategy.

Specifically, virtual queues can be utilized to model time-
average constraints within the LOT. Regarding the con-
straints defined in previous sections, we use virtual queues
to turn the satisfying constraints problem into a pure stabil-
ity one within the LOT. Related to each of the constraints,
we define a virtual queue. Each queue has its own updating
equation, which is specifically defined for that queue. Let
suppose that we are successful in modeling various (non-
stability) constraints as M virtual queues, Q̃j , j = 1, · · · ,M ,

then all we need, in order to use LOT, is just to generalize
the Lyapunov function as

L(t) =
1

2

N+1∑
i=1

Qi(t)
2 +

M∑
j=1

Q̃j(t)2

 (11)

to include both real (stability) and virtual (non-stability)
queues. In the following we derive the virtual queues corre-
sponding to different constraints in P1.

– Constraint (7a): We define Z , a virtual queue that is
related to the delay constraint, discussed in the previous
sections. Virtual queue Z is updated according to

Z(t+ 1) = max[Z(t) + y(t), 0], (12)

where y(t) = ŷ(α(t)) = ϕ̂(α(t))− CD.
– Constraint (7b): Related to the load balancing constraint,

we define virtual queues Hi, i = 1 · · · , N + 1, with the
updating equation of

Hi(t+ 1) = Hi(t) + gi(t), (13)

where gi(t) = ĝi(α(t)) = Qi(t)
νi(t)

−Qavg(t).
– Constraint (7c): To choose between the fog and the

cloud, we define the virtual queue G. The update equation
for the virtual queue G is expressed by,

G(t+ 1) = max[G(t) + f(t), 0], (14)

where f(t) = f̂(α(t)) =
∑
k∈Kt Ûk(α(t))− CL.

5.2 Online Algorithm
Now we are in the stage of solving P1 using LOT.
First we define θ(t) to be a vector of concatenation
of all the real queues Q(t) and virtual queues Z(t),
H(t) = [Hi(t), · · · , HN+1(t)], and G(t) as θ(t) ,
[Q(t), Z(t),H(t), G(t)]. Accordingly, the generalized Lya-
punov function, for the problem P1, that takes into account
real and virtual queues, can be written as

Lθ(t) =
1

2
(
N+1∑
i=1

Qi(t)
2 + Z(t)2 +

N+1∑
i=1

Hi(t)
2 +G(t)2),

(15)

and the drift takes the form of

∆(Lθ(t)) = E{Lθ(t+ 1)− Lθ(t)|θ(t)} (16)

On the other hand, the objective function in P1 leads us to
consider P (t) = E{e(t)|θ(t)} as the penalty. Therefore, the
drift-plus-penalty corresponding to P1 is given by

∆(Lθ(t)) + V E{e(t)|θ(t)} (17)

which can be upper-bounded as (see appendix A in the
supplementary material for the proof)

(18)∆(Lθ(t)) + V E{e(t)|θ(t)} ≤

Υ + V E{ê(α(t))|θ(t)} −
N+1∑
i=1

Qi(t)Bi(t)

+
N+1∑
i=1

Qi(t)E{R̂i(α(t))|θ(t)}+ Z(t)E{ŷ(α(t))|θ(t)}

+
N+1∑
i=1

Hi(t)E{ĝi(α(t))|θ(t)}+G(t)E{f̂(α(t))|θ(t)},

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 8

where Υ is a constant.
To stabilize all the queues and minimize the penalty, we

need to minimize the right hand side of inequality (18).
Therefore, we obtain the minimization problem P2, given
in (19), as an LOT approach to approximately solve P1.

P2: min
α(t)

V E{ê(α(t))|θ(t)}+
N+1∑
i=1

Qi(t)E{R̂i(α(t))|θ(t)}

+ Z(t)E{ŷ(α(t))|θ(t)}+
N+1∑
i=1

Hi(t)E{ĝi(α(t))|θ(t)}

+G(t)E{f̂(α(t))|θ(t)}.
(19)

In order to solve the long term minimization problem P2, we
can opportunistically minimize P3 at every time slot [14].

P3: min
α(t)

V ê(α(t)) +
N+1∑
i=1

Qi(t)R̂i(α(t)) + Z(t)ŷ(α(t))

+
N+1∑
i=1

Hi(t)ĝi(α(t)) +G(t)f̂(α(t)). (20)

To efficiently solve P3, we propose a greedy algorithm
which starts from the first task received during time slot t,
dispatches this task to the node which minimizes the objec-
tive function in P3, and one-by-one, repeats this procedure
for all other tasks received during time slot t.

Algorithm 1: LGA

1: Initialization
Initialize the model parameters in the LOT

2: Foreach t Do
/*Obtaining required parameters and finding the best α(t) */

3: For k = 1 to Kt

4: For i = 1 to N + 1
5: αk(t) , i
6: ŷ(αk(t)) = max{ρ(ψ̂(αk(t))− Γk), 0} − CD
8: f̂(αk(t)) = Û(αk(t))− CL
9: value DpP [i] = V ê(αk(t)) +Qi(t)(

Hi(t)

νi(t)
+ 1)

+Z(t)ŷ(αk(t)) +G(t)f̂(αk(t))
End For

10: α∗
k(t) = arg minαk(t)(value DpP)

11: Logically update the queues based on the model
End For

12: α∗(t) = ∪K
t

k=1α
∗
k(t)

13: Dispatch according to α∗(t)
14: Update the Queues

End While

The proposed algorithm, Lyapunov greedy algorithm
(LGA), is summarized in Algorithm 1, and explained as
follows.

Line 1: Initialize the required parameters in the LOT,
such as the controlling parameter V .

Line 3-9: For all the requests go through the available
computing nodes and calculate the value of the expression
in (20).

Line 10-11: Find the computing node which leads to
the least value for the expression in (20) to obtain α∗k(t).
Logically update the queue based on α∗k(t) and go through
further requests.

Line 12-14: Form the whole allocation decision, α∗(t),
by union of all α∗k(t). Dispatch the requests and update the
queues.

Complexity Analysis: LGA greedily minimizes the expres-
sion in (20) at each time slot. Regrading the fact that requests
are dispatched at the beginning of each time slot, for each
request (Line 3) LGA goes through all the computing nodes
(Line 4) and selects the best choice. Thus, the complexity
of LGA is of the order |Kt|×(N + 1), where (N + 1)
indicates the number of computing nodes and |Kt| denotes
the number of requests arrived during time slot t into the
system. Therefore, LGA is greedy in nature with linear
computational complexity (with regard to |Kt| and N) and
can efficiently work in practice.

Optimality Analysis: Although LGA is sub-optimum, but
it guarantees a bound on the achievable performance.
Specifically, let e∗(t) denote the time-averaged total energy
consumption achieved by LGA, and eopt be the optimal
value of the total energy consumption (i.e., the exact solu-
tion to the problem P1), then, Theorem 1 shows that the gap
between e∗(t) and eopt closes as the scaling factor V grows.

Theorem 1: The achievable value of energy consumption
by LGA, e∗(t), is within Υ

V of eopt, i.e,

e∗(t) ≤ eopt +
Υ

V

where Υ is a constant.
Proof : Please refer to Appendix B in the supplementary

material. �
Remark 1: Theorem 1 demonstrates that under LGA,

e∗(t) is inversely proportional to V (with sufficient large
value of V , it can asymptotically converge to eopt). Also, it
can be shown that the queue backlogs are linear to V , as
revealed in Theorem 2.

Theorem 2: Under LGA, for the average overall queue
backlogs, Q(t), the following holds:

Q(t) ≤ V [eopt − e∗(t)]
ε

+
Υ

ε

where ε is a constant.
Proof : Please refer to Appendix B in the supplementary

material. �
Remark 2: Theorems 1 and 2 together explain an

[O(1
V), O(V)] tradeoff between energy consumption and

the overall queue backlogs.

6 PERFORMANCE EVALUATION

The performance of the proposed method is evaluated
through simulation and practical experiments. We have
performed extensive simulations using a custom-designed
simulator in Matlab. In this section, first, we describe the
simulation setup. Then, we present the results for the fixed-
parameters simulation and sensitivity and scalability analy-
sis. At the end of the section, we describe our implementa-
tion of a prototype in a real-world environment and present
the results for the fixed-parameters experiments.

6.1 Simulation

6.1.1 Simulation Setup
Similar to the scenarios in [5], [20], [38], we have built a
fog environment consisting of 3 FNs, a cloud server at a
remote data center and 20 IoT devices. The IoT devices

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 9

are connected to FNs based on a random topology. The
links between IoT devices and FNs in the random-generated
topology are characterized by their transmission rates uni-
formly generated by U [2, 10]Mbps, which may vary from a
time slot to the next one. However, the transmission rates
are assumed to be fixed during each time slot. We describe
each FN by its computing capability in the unit of “Million
Instructions Per Second” (MIPS) randomly generated using
the uniform distribution over [1500 2700] interval. Also, the
cloud server is described by its computing capability, which
is assumed to be 3600 MIPS. The transmission rate to the
cloud is assumed to be fixed and equal to 2 Mbps. The IoT
devices generate requests following a Poisson process with
different average rates during the day (λd) and night (λn).

It is assumed that the computing and communication
demands of requests are exponential random variables with
the average rates γ1 and γ2, respectively. Table 3 summarizes
the system model’s parameters and those required in the
proposed algorithm.

TABLE 3: CONFIGURATION OF SYSTEM MODEL PARAMETERS

λd λn
γ1 γ2 V CD Cγ(MI) (KB)

0.2 0.1 0.5 0.5 107 1 5×105

We run the simulation for 1000 time slots. The results
are reported in the form of an average of 100 experiments
(iterations).

We compare our proposed method to the state-of-the-art
method in [16], called “Adaptive Fog Configuration (AFC)”.
AFC introduces a strategy for the placement of IoT devices’
requests on FNs or the cloud. AFC similarly takes the service
time, which consists of computation and communication
delay, as the primary objective. To jointly minimize the
averaged service time and satisfy the long-term energy bud-
get constraint, it adopts the Lyapunov optimization frame-
work. AFC introduces an online algorithm by converting
the formulated problem in the long term presentation form
into a sequence of per-slot sub-problems. Furthermore, to
highlight the performance gain of the proposed method, we
also compare our results against two baseline approaches,
“Rnd” and “SJQ”. Where Rnd uniformly dispatches the
requests among the available computing nodes, and SJQ
dispatches the request to the computing node with the
shortest job queue.

The comparison is made between different methods
in terms of the average service time, average number of
deadline misses, average energy consumption, and average
queue backlog.

6.1.2 Fixed-parameters Simulation
In this section, based on the configuration specified in Table
3, we provide an overall comparison between the proposed
method, AFC, and the baseline approaches.

Fig. 3 shows the average service time (left-hand bars)
and the average number of deadline misses (right-hand
bars) for various methods. As it is observed from Fig. 3,
LGA outperforms AFC, SJQ and Rnd up to 5%, 11% and
17% in terms of average service time, and up to 22%, 64%
and 73% in terms of the average number of deadline misses,
respectively.

Rnd SJQ AFC LGA
0

20

40

60

80

100

120

140

A
v
g
.
S
er
v
ic
e
T
im

e
(m

s)

0

10

20

30

40

A
v
g
.
N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

Service Time
Deadline Misses

Fig. 3: Average Service Time and Average Number of Deadline Misses
for various methods.

Furthermore, as observed in Fig. 4, LGA shows lower
energy consumption than other methods. In particular, LGA
on average shows 10% lower energy consumption than
AFC.

Rnd SJQ AFC LGA
1

1.2

1.4

1.6

1.8

2

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
o
n
(J
ou

le
)

×10
6

Fig. 4: Average Energy Consumption under each of the selected request
dispatching methods.

Fig. 5 depicts the average queue backlog of the three
FNs (the queue backlog for the cloud is nil). It can be
observed that LGA and SJQ show a stable behavior (with
the total queue backlog of 90 and 150 MI, respectively)
while the queue backlog in AFC and Rnd method grow
dramatically (with the total queue backlog more than 1000
and 5000 MI, respectively) which can lead to an unstable
situation. Instability traces in Rnd is not out of expectation
as it dispatches requests with the same probability among
all the available computing nodes while their processing
power is not the same. Furthermore, AFC takes the service
time as the primary objective into its consideration and does
not involve the queue backlog in its formulation. Therefore
in this method, the requests are dispatched wherever they
can be served faster. Consequently, it can lead to a situation
where some FNs encounter large queue backlog and others
encounter small or zero queue backlog. On the other hand,
although LGA takes the service time into its consideration,
it also involves the queue backlog in its formulation. There-
fore, the requests are dispatched more evenly among the
FNs. But yet, because of the deadline constraint, the requests
can not be dispatched to some FNs. Thus, the queue backlog
of some FNs is very small or zero.

Rnd SJQ AFC LGA
10

1

10
2

10
3

10
4

A
v
g
.
Q
u
eu

e
B
a
ck
lo
g
(M

il
li
o
n
In
st
ru
ct
io
n
s)

FN 1
FN 2
FN 3

Fig. 5: Average Queue Backlog for each fog node under each of the
selected request dispatching methods.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7

λd

100

105

110

115

120

125

130

A
v
g.

S
er
v
ic
e
T
im

e
(m

s) Rnd
SJQ
AFC
LGA

(a) Average Service Time

0.1 0.2 0.3 0.4 0.5 0.6 0.7

λd

0

20

40

60

80

100

A
v
g
.
N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

Rnd

SJQ

AFC

LGA

(b) Average Number of Deadline Misses

0.1 0.2 0.3 0.4 0.5 0.6 0.7

λd

1

1.5

2

2.5

3

3.5

4

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
on

(J
ou

le
)

×10
6

Rnd
SJQ
AFC
LGA

(c) Average Energy Consumption

Fig. 6: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption with respect to Arrival Rate (λd).

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Computing Demand (MI)

90

100

110

120

130

A
v
g.

S
er
v
ic
e
T
im

e
(m

s)

Rnd
SJQ
AFC
LGA

(a) Average Service Time

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Computing Demand (MI)

5

10

15

20

25

30

35

40

A
v
g.

N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

Rnd
SJQ
AFC
LGA

(b) Average Number of Deadline Misses

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Computing Demand (MI)

1

1.5

2

2.5

3

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
o
n
(J
ou

le
)

×10
6

Rnd
SJQ
AFC
LGA

(c) Average Energy Consumption

Fig. 7: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption with respect to Computing Demand (1− γ1).

6.1.3 Sensitivity Analysis

This section provides further analysis on how the system
parameters can affect the performance and algorithm effec-
tiveness. Any changes in the request arrival rate, computing
demand and the amount of data needed to be transmitted
may affect the effectiveness of the proposed algorithm. We
make changes in these parameters to perform sensitivity
analysis and determine how different algorithms react to
the changes in the system model parameters.

In this series of experiments, considering the system
configuration described in Table 3, we change one of the
parameters at each experiment while keeping others intact.
A. Arrival Rate: By increasing the average request arrival rate
(λd), more workloads are injected into the system. Thus,
the computing nodes have more requests to serve, which
leads to a growth in the queue backlog and, consequently,
the service time and the number of deadline misses as evi-
denced by Fig. 6(a) and Fig. 6(b), respectively. Furthermore,
any increase in the number of requests leads to more energy
consumption, as illustrated in Fig. 6(c).

Furthermore, LGA is less sensitive to the request arrival
rate in terms of the number of deadline misses. In particular,
LGA shows 59.45% growth in the number of deadline
misses while its competitive, AFC, shows 62.3% growth
by increasing the average arrival rate from λd = 0.1 to
λd = 0.7.
B. Computing Demand: As the computing demands of the
requests are increased, it takes longer to serve the requests
as seen in Fig. 7(a). Consequently, the number of deadline
misses and energy consumption increase as observed from
Fig. 7(b) and Fig. 7(c), respectively. Also, Fig. 7 shows the
superiority of the proposed method over other methods
under different computation demands.

Moreover, LGA shows less sensitivity to computing de-
mands of the requests than AFC when we change γ1 from
0.1 to 0.7. In particular, LGA shows 21.5%, and AFC shows

24.1% growth in the number of deadline misses.
C. Communication Demand: Based on the definition of com-
munication delay, in (3), and service time, in section 4,
any increment in the volume of data communication leads
to longer service time, as it is observed from Fig. 8(a).
Consequently, we see the number of deadline misses also
increases, Fig. 8(b). On the other hand, based on the com-
munication models in (3) and (5), more communication
demand results in more energy consumption as evidenced
by Fig. 8(c). Therefore, overall we see LGA outperforms
other methods under different communication demands
and shows less sensitivity to the volume of data commu-
nication. In particular, by changing γ2 from 0.3 to 0.7, LGA
shows 96% growth while AFC shows 98% growth in the
number of deadline misses.

The relation between system timeliness and service time
can also be investigated through Fig. 6 to Fig. 8. For exam-
ple, in Fig. 8, although service time is growing from 58 to
75 by increasing the communication demand from γ2 = 0.1
to γ2 = 0.3, but the number of deadline misses does not
change in this interval. It is justified based on the notion
of deadline because a service time up to γ2 = 0.3 is lower
than the deadline threshold, and its changes have no impact
on the deadline misses and consequently system timeliness.
Remark 3: Service time of a request can only affect the
timeliness if it exceeds the deadline threshold. If service time
is lower than the threshold, further reduction in the service
time has no impact on the timelines.

6.1.4 Scalability Analysis
In this section, we provide further simulations to evalu-
ate the scalability of the proposed method. Considering
the aforementioned fixed-parameters simulation setup, we
design a scenario in which the system is scaled at each
step by increasing the number of FNs and IoT devices. We
start with 5 FNs and 33 IoT devices and scale the system
by adding five more FNs and relativity scale IoT devices

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Communication Demand (KB)

50

100

150

200

250

A
v
g.

S
er
v
ic
e
T
im

e
(m

s) Rnd
SJQ
AFC
LGA

(a) Average Service Time

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Communication Demand (KB)

0

50

100

150

200

A
v
g.

N
u
m
b
er

of
D
ea
d
li
n
e
M
is
se
s

Rnd
SJQ
AFC
LGA

(b) Average Number of Deadline Misses

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Communication Demand (KB)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
o
n
(J
o
u
le
)

×10
6

Rnd
SJQ
AFC
LGA

(c) Average Energy Consumption

Fig. 8: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption with respect to Communication Demand (1− γ2).

5 10 15 20 25 30 35

Number of Fog Nodes

105

110

115

120

125

130

A
v
g.

S
er
v
ic
e
T
im

e
(m

s) Rnd
SJQ
AFC
LGA

(a) Average Service Time

5 10 15 20 25 30 35

Number of Fog Nodes

10
2

A
v
g
.
N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

Rnd

SJQ

AFC

LGA

(b) Average Number of Deadline Misses

5 10 15 20 25 30 35

Number of Fog Nodes

10
7

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
o
n
(J
ou

le
)

Rnd
SJQ
AFC
LGA

(c) Average Energy Consumption

Fig. 9: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption as the system scaled with more fog nodes and IoT devices.

at each step (for example, 10 FNs and 66 IoT devices or
20 FNs and 132 IoT devices). The simulation is performed
for 1000 time slots. The experiment is repeated 100 times
and averaged results are reported. Fig. 9(a) to Fig. 9(c)
show the simulation results for average service time, the
average number of deadline misses and average energy
consumption, respectively. As it is observed from Fig. 9(a),
the average service time slightly increases as the system
scales up, for example, from 125 ms with 5 FNs and 33 IoT
devices to 127 ms with 35 FNs and 231 IoT devices. Also, the
average number of deadline misses increases as we scale
the system, as it is observed from Fig. 9(b), but the ratio
of deadline misses to the injected requests do not change
considerably. For example, it changes from 2.76 with 5 FNs
to 2.98 with 35 FNs. The increases in the average service time
and the average number of deadline misses happen because
as the system is scaled, we have more FNs in the system,
which results in the requests to be dispatched to FNs that
are farther from the device that originates the request as the
best choice at the time. On the other hand, with an increase
in the number of FNs, more energy will be consumed, as it is
observed from Fig. 9(c). But overall, these simulations prove
the superiority of the proposed method over the baseline
schemes under different scales of the system.

Remark 4: In practice, the FNs are divided into some
domains and sections. There may exist hundreds or thou-
sands of such domains in a clustered way (in each cluster, a
group of domains operate under the control of a dispatching
entity). Therefore, the dispatching algorithm separately runs
on each controller.

6.1.5 Model Parameters Analysis

This section is devoted to the analysis of system model
parameters (i.e., CD , CL and Cγ). Regarding that CL is a
function of Cγ , we provide analysis for one of them (just
for Cγ). Based on the aforementioned setup, we conduct
some experiments to evaluate the effect of changes in CD

and Cγ on the system behavior. In order to better reflect the
effect of these parameters, we design a scenario in which the
requests arriving into the system are network intensive (i.e.
γ2 = 0.9).

CD provides control on the throttling threshold for the
permissible number of deadline misses. Thus, changing the
value of CD can affect the system behavior. Fig. 10(a) to
Fig. 10(c) show the simulation results in terms of average
service time, average number of deadline misses and av-
erage energy consumption, respectively. For small values
of CD , more requests are dispatched to the nearer nodes,
which leads to a lower service time, and a lower number
of deadline misses as it is observed from Fig. 10(a) and
Fig. 10(b), respectively. On the other hand, specific to our
case that the requests are network intensive, dispatching
the requests to nearer nodes also leads to lower energy
consumption, as it is understood from Fig. 10(c).

As Cγ is the threshold for the proportionality of re-
quests to be sent to the cloud, changing the value of Cγ
can affect dispatching the requests. Fig. 11(a) to Fig. 11(c)
show the simulation results for the average service time, the
average number of deadline misses and the average energy
consumption, respectively. A small value of Cγ means that
the requests which do not have considerable computing
demand are dispatched to the cloud. Therefore, the service
time and the number of deadline misses increase, as it
is observed from Fig. 11(a) and Fig. 11(b), respectively.
Dispatching the requests to the cloud also leads to a greater
amount of energy consumption, as it is understood from
Fig. 11(c).

Finally, it is notable that in practice in real environment,
tuning the model parameters are performed based on the
management policy of the system. For example, tuning
CD is performed based on the percentage of permissible
deadline misses in the system.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 12

10
1

10
2

10
3

10
4

10
5

CD

200

250

300

350

400

450

500

A
v
g.

S
er
v
ic
e
T
im

e
(m

s)

(a) Average Service Time

10
1

10
2

10
3

10
4

10
5

CD

200

250

300

350

400

450

500

A
v
g
.
N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

(b) Average Number of Deadline Misses

10
1

10
2

10
3

10
4

10
5

CD

8.6

8.8

9

9.2

9.4

9.6

9.8

A
v
g
.
E
n
er
g
y
C
on

su
m
p
ti
on

(J
ou

le
) ×10

5

(c) Average Energy Consumption

Fig. 10: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption with respect to model parameter CD .

10
1

10
2

10
3

10
4

10
5

Cγ

120

140

160

180

200

220

A
v
g.

S
er
v
ic
e
T
im

e
(m

s)

(a) Average Service Time

10
1

10
2

10
3

10
4

10
5

Cγ

0

50

100

150

200

250

A
v
g
.
N
u
m
b
er

o
f
D
ea
d
li
n
e
M
is
se
s

(b) Average Number of Deadline Misses

10
1

10
2

10
3

10
4

10
5

Cγ

7.4

7.6

7.8

8

8.2

8.4

8.6

A
v
g.

E
n
er
gy

C
on

su
m
p
ti
o
n
(J
o
u
le
)

×10
5

(c) Average Energy Consumption

Fig. 11: Behavior of the proposed online algorithm (LGA) in terms of (a) Average Service Time, (b) Average Number of Deadline Misses, and (c)
Average Energy Consumption with respect to model parameter Cγ .

6.2 Prototyping Platform
To further validate the effectiveness of the proposed
method, we constructed a real testbed prototype. Fig. 12
illustrates the testbed and its hardware configuration. We
considered a scenario with three FNs (a group of Raspberry
Pis) and a cloud server (a desktop computer). The detailed
specifications of the computing nodes are listed in Table 4.
The computing nodes are connected with different network
delays to a desktop computer (PC) which performs the
responsibilities and activities of the controller. A pool of
tasks (each in the form of a hash problem) is prepared on the
controller. Based on a Poisson process, the tasks are injected
into the system (λd = 0.5). Furthermore, we leveraged
the “tc”, a Linux utility program, to configure the kernel
packet scheduler and emulate the delay in the link between
the controller (the edge) and the cloud. An accurate usb
powermeter3 is used to measure the energy consumption of
the FNs. The model parameters are set based on Table 3. The
source code of our implementation is available on GitHub4.

Fig. 12: An illustration of the real test-bed prototype.

We conducted practical experiments on the prepared
testbed to compare the performance of our proposed
method, LGA, with baseline approaches. For each exper-
iment, the performance of different methods was logged

3. UT658A USB Tester,https://www.uni-trend.com/html/product/
tyyq/Borescope/UT658/UT658A.html

4. https://github.com/fgcmp-lab/lga

TABLE 4: THE SPECIFICATIONS OF THE REAL EXPERIMENTAL
SETUP

FN 1 FN 2 FN 3 Cloud

Model Raspberry Pi2 Raspberry Pi2 Raspberry Pi3 PC

CPU Cortex-A7 Cortex-A7 Cortex-A53 Intel Core i7

Clock 900MHz 900MHz 1.2GHz 3.6GHz

RAM 1GB 1GB 1GB 8GB

Delay 0.82ms 0.88ms 0.34ms 320ms

for 1000 tasks, and the results are reported in the form
of an average of 10 repetitions. Fig. 13 shows the average
service time (left-hand bars), and the average number of
deadline misses (right-hand bars) for each method. As it
can be observed, LGA outperforms the other methods. In
particular, LGA surpasses AFC by 23% and 58% in terms
of the average service time and the average number of
deadline misses, respectively.

Rnd SJQ AFC LGA
10

0

10
1

10
2

10
3

A
v
g.

S
er
v
ic
e
T
im

e
(s
)

0

100

200

300

400

500

600

A
v
g.

N
u
m
b
er

of
D
ea
d
li
n
e
M
is
se
s

Service Time
Deadline Misses

Fig. 13: The Average Service Time and the Average Number of Deadline
Misses for various methods in practical experiments.

Furthermore, as observed in Fig. 14, LGA demonstrates
a lower average total energy consumption (across different
computing nodes) than the other methods. Specifically, in
contrast to AFC, LGA consumes 5% less energy.

Finally, Fig. 15, depicts the average queue backlog for the
FNs. It is observed that the queue backlog grows dramati-
cally when the Rnd method is used. On the other hand,
in SJQ, the tasks are evenly distributed among the FNs.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 13

Rnd SJQ AFC LGA
0

1

2

3

4

A
v
g
.
E
n
er
g
y
C
o
n
su
m
p
ti
o
n
(J
o
u
le
)

×10
4

Fig. 14: Average Energy Consumption under each of the selected
request dispatching methods in practical experiments.

Moreover, for the case of AFC, the queue backlogs for FN1
and FN2 have almost the same sizes as those for the SJQ.
But AFC manages to lower the backlog of the FN3 down to
a level that is not observable in Fig 15. Moving further in
this direction, LGA successfully makes the backlogs of two
FNs (i.e., FN2 and FN3) insignificant and outperforms all
the other approaches in terms of the queue backlogs.

Rnd SJQ AFC LGA
10

1

10
2

10
3

10
4

A
v
g
.
Q
u
eu

e
B
a
ck
lo
g
(M

il
li
o
n
In
st
ru
ct
io
n
s)

FN 1
FN 2
FN 3

Fig. 15: Average Queue Backlog for each fog node under each of the
selected request dispatching methods in practical experiments.

6.3 Discussions
To evaluate the performance of the proposed method, we
conducted both simulation and practical experiments. The
simulation environment preliminary is set up to provide
more efficient control on the system parameters. This en-
ables us to perform sensitivity, scalability and model param-
eters analysis. On the other hand, the prototyping platform
provides a sense of how our proposed method would act
in a real environment. Considering the high level of ab-
straction in the simulated environment, on one hand, and
the real application tasks in the prototype, on the other
hand, we witness some degree of discrepancies between
the simulation and practical results. However, the results
are consistent when we study the relative performance of
different methods. In particular,

• Both simulation and practical results agree on the
supremacy of the LGA method.

• Our findings from the practical experiments are
aligned with what simulation predicts.

7 CONCLUSIONS AND FUTURE WORK

Fog enabled IoT is a three-layer structured platform that
aims to provide a mechanism to facilitate time-sensitive IoT
applications. However, to be fully effective, this mechanism
needs to be coupled with intelligent strategies (policies)
that determine how the system resources should be used.
In this paper, we focused on request dispatching strategy
among the fog nodes and the remote cloud in the context of
industrial IoT (IIoT) applications. We identified timeliness,

stability, and energy consumption as important measures to
be carefully monitored by any dispatching method in the
IIoT context. We first formulated the problem as a stochastic
non-linear optimization that minimizes energy subject to
timeliness and stability constraints. Then, we leveraged
Lyapunov Optimization Technique (LOT) to derive an ef-
ficient greedy algorithm, LGA, to solve the dispatching op-
timization problem. We proved that LGA drives the system
such that timeliness and stability constraints are satisfied.
Moreover, we conducted extensive numerical experiments
in both simulation and the real-world testbed to showcase
the performance of our proposed algorithm against baseline
and alternative methods. Numerical results verified that
LGA outperforms others in the average service time, the
number of deadline misses, and energy consumption. In
this paper, we focused on the IIoT application. Considering
other IoT usage scenarios, such as intelligent transportation,
smart city, and smart grids, with their own specific quality
of service demands and conditions, draws an exciting road
map for future work.

REFERENCES

[1] M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem, “Joint
cloudlet selection and latency minimization in fog networks,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4055–
4063, 2018.

[2] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z.
Patrikakis, “A cooperative fog approach for effective workload
balancing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 36–45, 2017.

[3] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability
of fog computing in the context of internet of things,” IEEE
Transactions on Cloud Computing, vol. 6, no. 1, pp. 46–59, 2015.

[4] S. El Kafhali and K. Salah, “Efficient and dynamic scaling of fog
nodes for iot devices,” The Journal of Supercomputing, vol. 73, no. 12,
pp. 5261–5284, 2017.

[5] C. Shi, Z. Ren, K. Yang, C. Chen, H. Zhang, Y. Xiao, and X. Hou,
“Ultra-low latency cloud-fog computing for industrial internet
of things,” in 2018 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2018, pp. 1–6.

[6] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog com-
puting in industrial internet of things and industry 4.0,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4674–4682,
2018.

[7] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization
of task scheduling and image placement in fog computing sup-
ported software-defined embedded system,” IEEE Transactions on
Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[8] A. Chebaane, A. Khelil, and N. Suri, “Time-critical fog computing
for vehicular networks,” Fog Computing: Theory and Practice, pp.
431–458, 2020.

[9] Q. Wu, H. Liu, R. Wang, P. Fan, Q. Fan, and Z. Li, “Delay-sensitive
task offloading in the 802.11 p-based vehicular fog computing
systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 773–785,
2019.

[10] T. Lins and R. A. R. Oliveira, “Cyber-physical production systems
retrofitting in context of industry 4.0,” Computers & industrial
engineering, vol. 139, p. 106193, 2020.

[11] C. Tang, M. Hao, X. Wei, and W. Chen, “Energy-aware task
scheduling in mobile cloud computing,” Distributed and Parallel
Databases, vol. 36, no. 3, pp. 529–553, 2018.

[12] M. Gorlatova, H. Inaltekin, and M. Chiang, “Characterizing
task completion latencies in fog computing,” arXiv preprint
arXiv:1811.02638, 2018.

[13] Z. Zhou, P. Liu, Z. Chang, C. Xu, and Y. Zhang, “Energy-efficient
workload offloading and power control in vehicular edge com-
puting,” in 2018 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 2018, pp. 191–196.

[14] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, JULY 2020 14

[15] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang,
“Debts: Delay energy balanced task scheduling in homogeneous
fog networks,” IEEE Internet of Things Journal, vol. 5, no. 3, pp.
2094–2106, 2018.

[16] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive fog configuration
for the industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4656–4664, 2018.

[17] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog
computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, 2019.

[18] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing:
State-of-the-art and research challenges,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

[19] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation
strategy in fog computing based on priced timed petri nets,” ieee
internet of things journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[20] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal work-
load allocation in fog-cloud computing toward balanced delay and
power consumption,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 1171–1181, 2016.

[21] X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid
computation offloading with cloud and fog computing,” IEEE
Access, vol. 5, pp. 21 355–21 367, 2017.

[22] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 17,
no. 3, pp. 1784–1797, 2017.

[23] F. Wang, J. Xu, and Z. Ding, “Multi-antenna noma for computation
offloading in multiuser mobile edge computing systems,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 2450–2463, 2018.

[24] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient
resource management in fog computing supported medical cyber-
physical system,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 1, pp. 108–119, 2015.

[25] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized iot service placement in the fog,” Service Oriented
Computing and Applications, vol. 11, no. 4, pp. 427–443, 2017.

[26] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han,
“Computing resource allocation in three-tier iot fog networks:
A joint optimization approach combining stackelberg game and
matching,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1204–
1215, 2017.

[27] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial iot
data scheduling based on hierarchical fog computing: a key for
enabling smart factory,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4590–4602, 2018.

[28] S. K. Mishra, D. Puthal, J. J. Rodrigues, B. Sahoo, and
E. Dutkiewicz, “Sustainable service allocation using a metaheuris-
tic technique in a fog server for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4497–4506,
2018.

[29] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based
smart resources partitioning for fog computing-enabled industrial
internet of things,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4702–4711, 2018.

[30] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic
and computation co-offloading with reinforcement learning in
fog computing for industrial applications,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2018.

[31] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource
and task allocation for energy minimization in mobile cloud
systems,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 12, pp. 2510–2523, 2015.

[32] S. Zhao, Y. Yang, Z. Shao, X. Yang, H. Qian, and C.-X. Wang,
“Femos: Fog-enabled multitier operations scheduling in dynamic
wireless networks,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1169–1183, 2018.

[33] A. Karimiafshar, M. R. Hashemi, M. R. Heidarpour, and A. N.
Toosi, “Effective utilization of renewable energy sources in fog
computing environment via frequency and modulation level scal-
ing,” IEEE Internet of Things Journal, 2020.
with hybrid energy harvesting,” Sensors, vol. 18, no. 9, p. 3140,
2018.

[34] H. Zhang, Z. Chen, J. Wu, Y. Deng, Y. Xiao, K. Liu, and M. Li,
“Energy-efficient online resource management and allocation opti-
mization in multi-user multi-task mobile-edge computing systems

[35] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis, and
A. Paulraj, “Distributed online optimization of fog computing for
selfish devices with out-of-date information,” IEEE Transactions on
Wireless Communications, vol. 17, no. 11, pp. 7704–7717, 2018.

[36] W. Li, I. Santos, F. C. Delicato, P. F. Pires, L. Pirmez, W. Wei,
H. Song, A. Zomaya, and S. Khan, “System modelling and perfor-
mance evaluation of a three-tier cloud of things,” Future Generation
Computer Systems, vol. 70, pp. 104–125, 2017.

[37] B. Zhang, R. Simon, and H. Aydin, “Energy management for time-
critical energy harvesting wireless sensor networks,” in Symposium
on Self-Stabilizing Systems. Springer, 2010, pp. 236–251.

[38] P. G. V. Naranjo, E. Baccarelli, and M. Scarpiniti, “Design and
energy-efficient resource management of virtualized networked
fog architectures for the real-time support of iot applications,” The
Journal of Supercomputing, vol. 74, no. 6, pp. 2470–2507, 2018.

Aref Karimiafshar received M.Sc. and PhD de-
grees in computer engineering from Isfahan Uni-
versity of Technology (IUT), Iran, in 2013 and
2020, respectively. He is currently a Postdoctoral
Research Fellow in the Department of Electrical
and Computer Engineering at IUT. His current
research interests include operating systems,
cloud computing, edge computing, and Internet
of Things. Currently, he is working on resource
management in cloud/edge computing and inte-
grating renewable energy.
Massoud Reza Hashemi received a PhD de-
gree in electrical and computer engineering from
the University of Toronto, Canada, in 1998. From
1998 to 1999, he was a Postdoctoral Fellow
with the University of Toronto. He was a found-
ing member and the Lead Systems Architect
with AcceLight Networks in 1999, where he de-
veloped some of the key system elements of
a multi-terabit multiservice core switch. Since
2003, he has been with the Isfahan University of
Technology, where he is currently an Associate

Professor. As the head of the university IT center from 2005 to 2013,
he restructured and consolidated the foundations of IT in the campus,
the university campus network, and the university data center. From
2016 to 2017, he was a Visiting Scholar with the University of Toronto
on sabbatical leave. His current research interests include Software-
Defined Networks, Cyber-physical Systems, IoT and Fog Computing.

Mohammad Reza Heidarpour received B.Sc.
and M.Sc. degrees in electronics and commu-
nication engineering from Isfahan University of
Technology (IUT), Iran, in 2006 and 2008, re-
spectively, and the PhD degree in electrical en-
gineering from the University of Waterloo (UW),
Ontario, Canada, in 2013. He has done post-
doctoral research at the Coding and Signal
Transmission (CST) laboratory in UW from May
2013 to November 2015 and at IUT from De-
cember 2016 to October 2017. He is currently an

Assistant Professor in the Department of Electrical and Computer Engi-
neering at IUT. Dr Heidarpour’s research interests include broad areas
of Wireless Communication, Data Networks, and Network Algorithms.

Adel N. Toosi is a lecturer at the Department
of Software Systems and Cybersecurity, Faculty
of Information Technology, Monash University,
Australia. Before joining Monash, Dr Toosi was
a Postdoctoral Research Fellow at the University
of Melbourne from 2015 to 2018. He received
his PhD degree in 2015 from the School of
Computing and Information Systems at the Uni-
versity of Melbourne. Dr Toosi’s research inter-
ests include scheduling and resource provision-
ing in Cloud/Fog/Edge Computing environments,

Internet of Things, Software-Defined Networking, Green Computing
and Energy Efficiency. Currently, he is working on building sustainable
Edge/Fog computing environments. For further information, please visit
his homepage: http://adelnadjarantoosi.info.

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Supplementary Material for An
Energy-Conservative Dispatcher for

Fog-Enabled IIoT Systems: When Stability and
Timeliness Matter

Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour,
and Adel N. Toosi, Member, IEEE

F

APPENDIX A
PROOF OF INEQUALITY (18):
Proof: Using max[a−b, 0]2 ≤ (a−b)2, from (1), we can write

(1)
Qi(t + 1)2 −Qi(t)

2

2
≤ Bi(t)

2 + Ri(t)
2

2
− B̃i(t)Ri(t)

−Qi(t)[Bi(t)−Ri(t)],

where B̃i(t) , min[Qi(t), Bi(t)].
Similarly, from the updating rule of the virtual queues

Z(t), H(t) and G(t) we can write

(2)
Z(t + 1)2 − Z(t)2

2
≤ y(t)2

2
+ Z(t)y(t),

(3)
Hi(t + 1)2 −Hi(t)

2

2
≤ gi(t)

2

2
+ Hi(t)gi(t),

and

(4)
G(t + 1)2 −G(t)2

2
≤ f(t)2

2
+ G(t)f(t).

Using the upper-bounds (1) to (4), we have an upper-
bound for ∆(Lθ(t)), given by

∆(Lθ(t)) ≤ Υ +
N+1∑
i=1

Qi(t)E{Ri(t)|θ(t)} −
N+1∑
i=1

Qi(t)Bi(t)

+ Z(t)E{y(t)|θ(t)}+
N+1∑
i=1

Hi(t)E{gi(t)|θ(t)}

+ G(t)E{f(t)|θ(t)},
(5)

where we have maintained significant terms, i.e., those
containing queues or virtual queues (and thus can be very
large), and replaced all the other by a constant finite upper-
bound Υ (which does exist as we assume system parame-
ters, such as request arrival rate and processing capacity of
FNs, are all bounded parameters).

Finally, adding V E{e(t)|θ(t)} to both sides proves the
results. �

APPENDIX B
PROOF OF THEOREMS 1 AND 2
Proof: Assuming the original problem P1 is feasible, there
exists a decision that is independent of the queue backlogs,
which based on (18) and doing some manipulations, yields
(ε is a non-negative value) [1]:

(6)∆(Lθ(t)) + V E{e∗(t)|θ(t) ≤ Υ + V eopt − εQ(t),

where Q(t) ,
1

2N + 4
(
∑N+1

i=1 Qi(t) +Z(t) +
∑N+1

i=1 Hi(t) +

G(t)), representing overall backlogs of the queues in the
system.

Taking expectation of both sides of (6), yields:

(7)E{L(θ(t + 1))} − E{L(θ(t))}+ V E{e∗(t)}
≤ Υ + V eopt − εE{Q(t)},

by summing (7) over t ∈ {0, 1, 2, ..., T − 1}, we have

(8)
E{L(θ(T))} − E{L(θ(0))}+ V

T−1∑
t =0

E{e∗(t)}

≤ Υ + V eopt − ε
T−1∑
t=0

E{Q(t)},

By rearranging the terms in (8), dividing by V T and taking
lim sup when T →∞ yields:

(9)e∗(t) , lim sup
T →∞

1

T

T−1∑
t =0

E{e∗(t)} ≤ eopt +
Υ

V
,

Theorem 1 is proved. �
by rearranging the terms in (8), dividing by εT and

taking lim sup when T →∞ yields:

(10)Q(t), lim sup
T →∞

1

T

T−1∑
t =0

E{Q(t)} ≤ V [eopt − e∗(t)]

ε
+

Υ

ε
,

Theorem 2 is proved. �

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

REFERENCES

[1] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Supplementary Material for An
Energy-Conservative Dispatcher for

Fog-Enabled IIoT Systems: When Stability and
Timeliness Matter

Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour,
and Adel N. Toosi, Member, IEEE

F

APPENDIX A
PROOF OF INEQUALITY (18):
Proof: Using max[a�b, 0]2  (a�b)2, from (1), we can write

(1)
Qi(t+ 1)2 �Qi(t)2

2
 Bi(t)2 +Ri(t)2

2
� B̃i(t)Ri(t)

�Qi(t)[Bi(t)�Ri(t)],

where B̃i(t) , min[Qi(t), Bi(t)].
Similarly, from the updating rule of the virtual queues

Z(t), H(t) and G(t) we can write

(2)
Z(t+ 1)2 � Z(t)2

2
 y(t)2

2
+ Z(t)y(t),

(3)
Hi(t+ 1)2 �Hi(t)2

2
 gi(t)2

2
+Hi(t)gi(t),

and

(4)
G(t+ 1)2 �G(t)2

2
 f(t)2

2
+G(t)f(t).

Using the upper-bounds (1) to (4), we have an upper-
bound for �(L✓(t)), given by

�(L✓(t))  ⌥+
N+1X

i=1

Qi(t)E{Ri(t)|✓(t)}�
N+1X

i=1

Qi(t)Bi(t)

+ Z(t)E{y(t)|✓(t)}+
N+1X

i=1

Hi(t)E{gi(t)|✓(t)}

+G(t)E{f(t)|✓(t)},
(5)

where we have maintained significant terms, i.e., those
containing queues or virtual queues (and thus can be very
large), and replaced all the other by a constant finite upper-
bound ⌥ (which does exist as we assume system parame-
ters, such as request arrival rate and processing capacity of
FNs, are all bounded parameters).

Finally, adding V E{e(t)|✓(t)} to both sides proves the
results. ⇤

APPENDIX B
PROOF OF THEOREMS 1 AND 2
Proof: Assuming the original problem P1 is feasible, there
exists a decision that is independent of the queue backlogs,
which based on (18) and doing some manipulations, yields
(" is a non-negative value) [1]:

(6)�(L✓(t)) + V E{e⇤(t)|✓(t)  ⌥+ V e
opt � "Q(t),

where Q(t) , 1

2N + 4
(
PN+1

i=1 Qi(t)+Z(t)+
PN+1

i=1 Hi(t)+

G(t)), representing overall backlogs of the queues in the
system.

Taking expectation of both sides of (6), yields:

(7)E{L(✓(t+ 1))}� E{L(✓(t))}+ V E{e⇤(t)}
 ⌥+ V e

opt � "E{Q(t)},

by summing (7) over t 2 {0, 1, 2, ..., T � 1}, we have

(8)
E{L(✓(T))}� E{L(✓(0))}+ V

T�1X

t =0

E{e⇤(t)}

 ⌥+ V e
opt � "

T�1X

t=0

E{Q(t)},

By rearranging the terms in (8), dividing by V T and taking
lim sup when T ! 1 yields:

(9)e⇤(t) , lim sup
T !1

1

T

T�1X

t =0

E{e⇤(t)}  e
opt +

⌥

V
,

Theorem 1 is proved. ⇤
by rearranging the terms in (8), dividing by "T and

taking lim sup when T ! 1 yields:

(10)Q(t), lim sup
T !1

1

T

T�1X

t =0

E{Q(t)} V [eopt � e⇤(t)]

"
+
⌥

"
,

Theorem 2 is proved. ⇤

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

REFERENCES

[1] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

