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Abstract—The fourth industrial revolution, widely known as
Industry 4.0, is realizable through widespread deployment of
Internet of Things (IoT) devices across the industrial ambiance.
Due to communication latency and geographical distribution,
Cloud-centric IoT models often fail to satisfy the Quality of
Service (QoS) requirements of different IoT applications assisting
Industry 4.0 in real-time. Therefore, Fog computing focuses on
harnessing edge resources to place and execute these applications
in the proximity of data sources. Since most of the Fog nodes are
heterogeneous, distributed and resource-constrained, it is chal-
lenging to place Industry 4.0-Oriented Applications (I4OAs) over
them ensuring time-optimized service delivery. Diversified data
sensing frequency of different industrial IoT devices and their
data size further intensify the application placement problem.
To address this issue, we propose a context-aware application
placement policy for Fog environments. Our policy coordinates
the IoT device-level contexts with the capacity of Fog nodes
and minimizes the service delivery time of various I4OAs such
as image processing and robot navigation applications. It also
ensures that the streams of input data flowing towards the
placed applications neither congest the network nor increase the
computing overhead of host Fog nodes significantly. Performance
of the proposed policy is evaluated in both real-world and
simulated Fog environments and compared with the existing
placement policies. The experiment results show that our policy
offers overall 16% improvement in service latency, network
relaxation and computing overhead management compared to
other placement policies.

Index Terms—Fog computing, Application placement, Context-
awareness, Industry 4.0, Internet of Things.

I. INTRODUCTION

D evice to device connectivity, real-time data access, and
advanced automation are rapidly leading the current

industrial practice towards its fourth revolution named Industry
4.0. It focuses on building smart industries by enabling robotic
assistance, digital twin, and proactive failure management [1].
Internet of Things (IoT) is one of the key elements for Industry
4.0 [2]. Industrial IoT devices generate a huge amount of
data per unit time. These data require real-time processing
through various Industry 4.0-Oriented Applications (I4OAs)
so that different aspects of Industry 4.0 can be achieved [3].
For example, image processing and navigation applications
help to launch robotic assistance in the industries. If these
applications fail to deliver their services in due time, the
performance of industrial robots will degrade significantly.
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Since Cloud data centers reside at multi-hop distance from IoT
devices, processing of industrial IoT-data using Cloud-based
I4OAs is not feasible. It increases data propagation delay,
network congestion, and application service delivery time [4].
Therefore, Fog computing aims to overcome such limitations
of Cloud-centric IoT-models by harnessing the edge network
resources [5].

In Fog-enabled industries, machines with computing pro-
cessors such as Raspberry PIs, computers, routers, and micro-
data centers act as Fog nodes. These nodes offer Infrastructure
as a Service (IaaS) like Cloud data centers to assist the
execution of different I4OAs [6]. However, Fog nodes are
deployed in a distributed manner, and they are heterogeneous
in processing speed and networking standards. Additionally,
the features of IoT devices such as their data sensing frequency
and size of data differ from one to another [2]. These features
play vital roles in defining application characteristics. For
example, the compute intensity of an I4OA has a proportional
relationship with its input data size. Similarly, the network
intensity of an I4OA changes based on how frequently the
associated IoT devices are sending data to that application
[7]. Consequently, these features of IoT devices incite the
computational and networking load of host Fog nodes during
application execution. If the available capacity of Fog nodes
fails to deal with them, network congestion can occur, and the
computing overhead of Fog nodes can increase drastically. It
also affects the deadline-satisfied service delivery of I4OAs.
Hence, it is important to consider these issues while finding the
suitable placement option for an I4OA in Fog environments.

Different application placement policies for Fog and other
computing paradigms have already been proposed in the liter-
ature [8] [9] [10]. They narrowly exploit data size and sensing
frequency of IoT devices while making placement decisions
for applications. As a result, they often fail to grasp the char-
acteristics of applications and manage the resources efficiently.
In some cases, an application is placed on multiple computing
nodes, and input data are scheduled to them under the supervi-
sion of a centralized entity [8]. When the arrival rate of inputs
becomes high, such an application placement policy increases
overhead on the centralized entity. It also impels to change the
processing destinations of input data very frequently. However,
as an alternative, IoT devices themselves can schedule the
input data to different replicas of an application. Nevertheless,
it increases communication and computation burden for low-
energy IoT devices [11]. Thus, in both approaches, application
service delivery time degrades. To address these shortcomings,
in this work, a context-aware application placement policy for
Fog environments is proposed.
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Context awareness denotes the ability of a system to deal
with the state or contextual information of different entities
interacting with the system at any given time and adapt its per-
formance accordingly [12]. In industrial environments, IoT de-
vices, Fog nodes, and I4OAs seamlessly interact with varying
data size and sensing frequency, computing and networking
capacity, and QoS requirements. Therefore, without context-
aware approaches, it is challenging to improve the efficiency
of decision-making operations in Industry 4.0. In our proposed
placement policy, the sensing frequency and data size of IoT
devices are regarded as the device-level contextual information
because of their direct impact on Fog node functionalities and
application characteristics. Here, based on their implications,
the processing and the propagation time of input data for
corresponding I4OAs are determined. The proposed policy
jointly considers the computation and networking capacity of
Fog nodes and the QoS requirements of applications, including
their service delivery deadline during application placement.
Additionally, it resists the increment of computing overhead
on the host Fog nodes and prevents the streams of input
data from congesting the network. Thus, it helps to improve
service reliability and service time for different I4OAs in Fog
environments. The main contributions of the paper are:
• Proposes a placement policy for Industry 4.0-Oriented

Applications (I4OAs) in Fog environments that optimizes
their service time by coordinating IoT device-level con-
texts with the capacity of Fog nodes.

• Ensures processing of input data streams through placed
applications by managing network congestion and com-
putation overhead of host Fog nodes.

• Evaluates the performance of proposed policy in FogBus-
enabled real [13] and iFogSim-based simulated Fog envi-
ronments [14], and compares it with existing policies in
respect of service delivery time, network relaxation and
computing overhead management.

The rest of the paper is organized as follows. In Section
II, related researches are reviewed. Section III provides the
system overview and the software architecture of a Fog gate-
way node. Section IV describes the implication of contextual
information in the modeled system, formulates the application
placement problem, and discusses our solution. The perfor-
mance of our policy is evaluated in Section V. Finally, Section
VI concludes the paper with future works.

II. RELATED WORK

In the literature, there exist several works that highlighted
the applicability of Fog computing in Industry 4.0 [6] [15].
Additionally, different placement policies for I4OAs are pro-
posed. For example, Verba et al. [10] profiles I4OAs as per
their inputs. It helps to place applications with enhanced
service time and minimizes the effect of context-variation. Lin
et al. [16] proposed a Fog node deployment policy in a hierar-
chical platform that meets the latency and capacity constraints
of applications. Similarly, Chekired et al. [17] prioritizes the
placement of I4OAs based on their latency sensitivity. Wan et
al. [18] also developed a policy that balances the application
execution load on manufacturing components and relates their
energy usage with data size.

TABLE I: A Summary of related work and their comparison

Work IoT contexts Meets
QoS

Manages
overhead

Stable
placement

Sensing
rate

Data
size

Haferkamp et al. [8] X X
Minh et al. [9] X X X
Verba et al. [10] X X X
Lee et al. [11] X X X
Lin et al. [16] X X X
Chekired et al. [17] X X X
Wan et al. [18] X X X
Pešić et al. [21] X X X
Moore et al. [22] X X X
Afzal et al. [23] X X X X
Gu et al. [24] X X X
This work X X X X X

Not only in Industry 4.0, but the concept of Fog computing
has also been extended to other IoT-enabled systems including
Healthcare 4.0 [19] and digital agriculture [20]. There exist
some application placement policies for such systems. For
example, Minh et al. [9] proposed a context-aware framework
for IoT-Fog-Cloud infrastructure that considers location, ap-
plication deadline, and resource availability. The application
placement policy proposed by Pešić et al. [21] deals with
the variations of device-level contexts and network topology
and places the applications accordingly. Moore et al. [22]
also provided an application placement policy that engages a
centralized entity for context analysis and assists low-latency
service delivery of the applications. Afzal et al. [23] considered
data size and sensing rate of end devices while transferring
inputs to applications in energy-efficient and timely manner.

Apart from Fog computing, various application placement
policies are also discussed for other computing paradigms. For
example, Haferkamp et al. [8] developed a policy for cyber-
physical systems that exploits payload size and deadline to
prioritize the scheduling operations. Lee et al. [11] proposed
another policy for Mobile Computing that predicts the launch-
ing time of applications and improves the energy usage of
smartphones. Gu et al. [24] explored the local and remote
computation capabilities along with the network condition and
latency constraints while placing applications in Mobile Edge
Computing environments.

Table I presents a summary comparison of related works
with the proposed policy. During application placement, IoT
device-level contexts such as sensing frequency and size of
data are not exploited thoroughly in existing works along
with the capacity of Fog nodes and application QoS require-
ments. Furthermore, context parameters are not leveraged to
determine the network and computing overhead of Fog nodes.
Consequently, they often fail to assist data streams and lead
different input of a particular stream to be processed on
different Fog nodes. In this work, we address these issues
by developing a placement policy for I4OAs. It applies IoT
device-level contexts to determine the overhead of Fog nodes
and takes the application placement decision accordingly. It
ensures application QoS and manages the computational load
of Fog nodes. Furthermore, it offers stable placement that
resists the changing of processing destination for a particular
stream until any context alteration occurs. The proposed policy
can also run on different Fog nodes without the supervision
of a centralized entity.
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Fig. 1: Computing environment in a industry

III. SYSTEM OVERVIEW

A. Organization of Fog Computing Environments

In industry, IoT devices and Fog Computing Nodes (FCNs)
are arranged in the conceptual hierarchical order, as shown
in Fig. 1. At the lowest level, IoT devices reside. They sense
industrial ambiance and forward data to FCNs for processing
through placed I4OAs. Computing capabilities and peer-to-
peer communication standards vary from one FCN to another.
The applications placed on an FCN can directly access its
physical resources through the host operating system. Based
on the service outcome of these applications, IoT devices
can trigger physical actions through actuators. In either case,
service outcomes can be stored for further operations in the
future. FCNs can form several clusters among themselves
using faster communication protocols such as Constrained Ap-
plication Protocol (CoAP) and Simple Network Management
Protocol (SNMP) [4]. In Fog environments, there also exist
some Fog Gateways (FGs) that assist the interfacing of IoT
devices with the Fog Clusters.

IoT devices can subscribe with any of the FGs to launch
placement requests for associate applications. They also notify
the device-level contexts, such as the sensing frequency and
size of data to the FGs. FGs communicate with different
FCNs within Fog Clusters to grasp their capacity staus us-
ing RESTful APIs [25]. Later, based on received contextual
information of IoT devices, capacity status of FCNs, and QoS
requirements of requested applications, FGs identify service
delivery time optimized application-FCN placement map. If
an FCN is accessible through multiple FGs, their operations
on that node are synchronized by the FCN. Whenever the
Fog environment becomes overloaded or any latency-tolerant
application is requested, the FGs communicate with Cloud
data centers to assist them using remote resources. Cloud data
centers also help FCNs by offering scalable storage to preserve
their accumulated data.

The system model mentioned above facilitates simplified
third-party access to I4OAs and Fog Clusters. Consequently,
it can get affected by security and privacy threats such as im-
pairment of information, disclosure of device identity, replay,
and denial of service (DoS) attacks. These threats resist Fog
computing to support I4OAs with guaranteed performance.
Therefore, we consider the existence of an edge network-based

Context 
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Fig. 2: Software architecture of Fog Gateways

security framework [26] in the modeled Fog environment for
securing the application services and infrastructure. We also
deem that the system supports preemptive operator migration,
request re-submission, and data replication through existing
proactive and reactive fault tolerance techniques [27] [28] to
resist different anomalies, including request time out, node
failure, response error, and application breakdown, and ensures
service reliability.

B. Software Architecture for Fog Gateways (FGs)

Fig. 2 presents the software architecture of FGs for context-
aware application placement. Its details are given below.

IoT device Handler: It grasps the context of IoT devices
such as the sensing frequency and average size of data, and
stores them in a repository. It also narrates the placement
requests to a catalogue service and periodically monitors the
contextual changes of IoT devices.

Context Repository: It stores the contextual information of
IoT devices and the capacity status of accessible FCNs. It
also connects Cloud data centers for large-scale storage and
maintains a data structure called PlacementMap to track which
application is placed on which FCN.

Application Catalogue: It contains the details of different
I4OAs, including their developer specified execution model,
time and space complexity, dependency, and resource require-
ments. For various inputs, it can also enable the profiling
information of an application, such as its processing time and
the number of instructions on different FCNs.

Application Placement Engine: It assesses the compati-
bility of FCNs to host the requested I4OAs based on the
contextual information of IoT devices and the capacity status
of FCNs. It also initiates the application placement command
for the host FCN. Once an application is placed to an FCN,
its information is updated on the Context Repository.

IV. PROPOSED APPLICATION PLACEMENT POLICY

Based on the implications of contextual information, our
proposed context-aware application placement policy identi-
fies application-FCN map and ensures time-optimized service
delivery for the requested applications. In a Fog environment,
it is executed by the FGs. Basic notations to realize the policy
are given in Table II. We have discussed different aspects of
our policy in the following subsections.

A. Implications of Contextual Information

The context of IoT devices along with FCN and application-
centric information help to determine the data propagation
time and processing time for I4OAs. Let R and C be the set of
I4OAs and the set of accessible FCNs for an FG respectively.
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Data propagation time prc to an FCN c ∈ C for an application
r ∈ R is formulated as Eq. 1, where average input data size
lr is extracted from IoT device-level context and λc denotes
the network bandwidth of FCN c ∈ C.

prc =
lr

λc
(1)

Similarly, data processing time qrc for application r ∈ R on
FCN c ∈ C is calculated using Eq. 2. In this case, based on
the average size of input data lr , the number of instructions
sr in application r is extracted from its profiling information
and µc refers to the instruction execution speed of FCN c.

qrc =
sr

µc
(2)

Since, the ultimate service delivery of an application ends
with either a storage or actuation command, its transferring
time within reliable Fog network is considered negligible.
Therefore, the service delivery time trc of application r ∈ R
on FCN c ∈ C for a single input data is written as Eq. 3

trc = prc + qrc (3)

These calculations refer that an application requires to
occupy networking and computing resources of an FCN for
prc and qrc amount of time to receive and process an input
data. Networking resource occupancy αrc of application r on
FCN c denotes the total amount of time when application r
occupies networking resources of that FCN for receiving all
its input data sensed in per unit time. It is calculated using
Eq. 4 where f r signifies the data sensing frequency of IoT
devices for application r . Likewise, using Eq. 5, its Computing
resource occupancy βrc is calculated. It refers the total time
that application r requires to process f r amount of input data
occupying computing resources of FCN c.

αrc = f r × prc (4)

βrc = f r × qrc (5)

According to Eqs. 4 and 5, total Networking and Computing
resource occupancy (Φc and Ψc respectively) for all placed
applications r ′ ∈ Zc on FCN c is calculated as Eqs. 6 and 7.

Φc =
∑
r′∈Zc

αr′c (6)

Ψc =
∑
r′∈Zc

βr′c (7)

B. Indentification of Placement Map

The applications requested for placement in an industrial
scenario can have a diversified level of computing and net-
work intensity. Additionally, their QoS requirements can vary
from one to another. Therefore, it is required to focus on a
generalized objective for all applications during their collective
placement. The proposed context-aware application placement
policy resolves this issue by minimizing the service delivery
time of applications for each input data. It also helps the
policy to deal with the characteristic variations of different

TABLE II: Notations

Sign Definition
C Set of FCNs accessible through an FG.
R Set of applications requested for placement to an FG.
Zc Set of applications placed on FCN c ∈ C.
f r Data sensing frequency of IoT devices for application r ∈ R.
lr Average input data size for application r ∈ R.
σr Amount of data dealt by application r ∈ R in per unit time.
sr Number of instructions in application r ∈ R based on lr .
δr Service delivery deadline for application r ∈ R.
µc Instruction execution speed of FCN c ∈ C
λc Network bandwidth of FCN c ∈ C
pr c Data propagation time to FCN c ∈ C for application r ∈ R
qr c Data processing time of application r ∈ R on FCN c ∈ C
tr c Service delivery time of application r ∈ R on FCN c ∈ C
αr c Networking resource occupancy of application r ∈ R on FCN c ∈ C for

receiving f r input data.
βr c Computing resource occupancy of application r ∈ R on FCN c ∈ C for

processing f r input data..
Φc Total networking resource occupancy ∀r ∈ Zc on FCN c ∈ C
Ψc Total computing resource occupancy ∀r ∈ Zc on FCN c ∈ C
Nτ

r Set of inputs for application r received in τ amount of time
mc CPU usage of FCN c per unit time interval
Mτ

c Set of mc values of FCN c monitored for τ amount of time
xr c Equals to 1 if FCN c ∈ C is hosting application r ∈ R, 0 otherwise.

applications as the computing and network intensity of appli-
cations directly influence the service delivery time. Moreover,
the application service delivery time on specific FCN does not
vary significantly for each input when the IoT device-level
contexts and the load on FCNs remain unchanged. However,
in the real-world, the placement of multiple applications on
a single FCN without considering the effect of different IoT
device-level contexts can congest the network and increase the
computational overhead of the FCN. As a consequence, service
delivery time for all of its occupant applications degrade.
Therefore, a balance between their input data admittance
and processing on that FCN is required. Furthermore, the
application service for each input should be delivered within
the deadline to meet QoS. Depending on such facts, we
formulate the context-aware application placement as a multi-
constrained Integer Linear Programming (ILP) problem as
described below.

1) Formulation of Application Placement Problem: Eq. 8
signifies the objective function of proposed application place-
ment policy. It minimizes application’s service delivery time
for each input data and identifies application-FCN mapping
through a binary decision variable xrc . Constraints of this
ILP problem ensure that an application will not be placed
to multiple FCNs (Eq. 9) and its service delivery time will
meet the deadline (Eq. 10). Furthermore, Eqs. 11 and 12 refer
that Networking and Computing resource occupancy of all
applications placed on an FCN should not surpass the duration
of per unit time. Thus it maintains a balance between input
data admittance and processing through the applications within
per unit time.

min
∑
r ∈R

xrctrc (8)

subject to,

xrc ≤ 1;∀r ∈ R (9)

trc < δr ;∀r ∈ R (10)

Φc + αrc ≤ 1;∀c ∈ C (11)

Ψc + βrc ≤ 1;∀c ∈ C (12)
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Any ILP solver, for example, SCIP [29] can be used to
solve this optimization problem and identify the mapping
of applications and FCNs. However, in Fog environments,
when an FG maintains connections with large number of
FCNs and receives placement requests for numerous I4OAs,
a longer period of time is required by ILP solvers to solve
such optimization problem. It is not acceptable during real-
time interactions. Therefore, we propose a heuristic solution
to solve the application placement problem.

2) Heuristic Solution for Application Placement: The
heuristic solution for application placement is immanent in
PlaceApplication procedure presented in Algorithm 1. It iden-
tifies the FCN for placing an application which ensures least
service delivery time for its input. Details of Algorithm 1 is
discussed here.

PlaceApplication procedure takes the set of accessible FCNs
C and set of applications R requested to an FG g for placement
as arguments. It consists of 3 steps:

1. For each application r ∈ R, the amount of data σr that
an FCN requires to deal with in per unit time for hosting the
application is calculated (line 2-3). It refers to the data load
of the application which depends on the average size of input
data lr and sensing frequency of corresponding IoT devices
f r . An application that deals with huge data load is considered
heavyweight and is more likely to promote network congestion
and computing overhead compared to lightweight applications
having less data load. To reduce the scope of any impedi-
ments, it is preferable to place heavyweight applications in
earliest convenience than lightweight applications. Therefore,
Algorithm 1 sorts all application r ∈ R on R′ in descending
order of their σr (line 4).

2. For each application r ∈ R′, two variables Υr and Xr are
initialized (line 5-7). Υr stores the minimum service delivery
time for application r and Xr tracks the reference of the FCN
which delivers the application service in Υr amount of time.
Later, for each FCN c ∈ C, input data propagation time prc ,

Algorithm 1 Application Placement algorithm
1: procedure PLACEAPPLICATION(C , R)
2: for r := R do
3: σr ← f r × lr

4: R′ ← descendingSort(R, σ∀r∈R )
5: for r := R′ do
6: Υr ←∞

7: Xr ← null
8: for c := C do
9: pr c ←

lr

λc

10: qr c ←
sr

µc

11: tr c ← pr c + qr c
12: αr c = f r × pr c
13: βr c = f r × qr c
14: if tr c < Υr then
15: if tr c < δ

r then
16: if Φc + αr c ≤ 1 then
17: if Ψc + βr c ≤ 1 then
18: Υr ← tr c
19: Xr ← c

20: if Xr , null then
21: g.PlacementMap(r , Xr )

22: ZXr ← ZXr ∪ r
23: ΦXr ← ΦXr + αrXr

24: ΨXr ← ΨXr + βrXr

processing time qrc , service delivery time trc , Networking
resource occupancy αrc and Computing resource occupancy
βrc are calculated (line 8-13). Based on these calculations, it
is checked whether the service delivery time trc of application
r on FCN c is the least or not (line 14)). Subsequently other
constraints noted in Eqs. 10, 11 and 12 are also verified (line
15-17). When all constraints are met, Υr is updated with trc
and Xr is set to c (line 18-19).

3. For an application r ∈ R′, if Xr refers to an FCN, then
r is placed to that FCN. FG g updates its PlacementMap
for application r and r is added to the set of applications
placed on the host FCN (line 20-22). The total Networking
and Computing resource occupancy for all placed applications
on that FCN are also updated (line 23-24).

Whenever an FG receives placement requests for a set
of applications, PlaceApplication procedure is executed. If
an application is placed to an FCN, it will not be replaced
to other FCNs until any device-level contextual parameter
for that application is altered. If any alteration happens, the
placement request is relaunched. Thus, the procedure helps
stabilized placement of applications. However, from line 5 to
24 of Algorithm 1, there are O(|R′ | · |C |) iterations, where
|R′ | denotes the number of applications requested to FG g

for placement and |C | is the number of accessible FCNs
through FG g. If any simplified sorting approach such as
binary sorting is used to conduct the operation noted in line 4,
then the proposed context-aware application placement policy
can function with polynomial time complexity.

V. PERFORMANCE EVALUATION

The performance of the proposed policy is evaluated
through practical and simulation experiments conducted in
FogBus-enabled [13] real-world and iFogSim-based [14] sim-
ulated Fog environments respectively. In the FogBus-enabled
setup, a realistic application case scenario is considered that
can assist Industry 4.0. However, in simulated setup, synthetic
workloads in align with this realistic application case scenario
are used. The efficacy of our policy is compared with the
deadline prioritized [8], resource optimized [9], and service
time enhanced [10] application placement policies in both the
experimental setup. We have executed the policies separately
in a conceptual FG. In deadline prioritized placement, the
applications having stringent deadlines are placed faster com-
pared to others. The resource optimized placement reduces
the idle time of FCNs during application execution and the
service time enhanced placement schedules the applications
over FCNs by applying the first-come-first-serve principle and
improves their service time. In the following subsections, the
application scenario, performance metrics, and the details of
both experimental setups along with the results are discussed.

A. Application Case Scenario

One of the essential aspects of Industry 4.0 is robotic
assistance. In smart industries, for emergency management,
different sorts of surveillance equipment such as analog and
IP cameras are deployed. Image from these cameras are
analyzed by Industrial robots to extract the important features
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Fig. 3: Real experimental setup

of emergency events and take decisions [30]. Since the image
quality of analog cameras is ordinary compared to IP cameras,
several image processing applications and their services are
required to enhance the quality of images before feeding
them in robot-embedded image analysis programs. In this
work, we consider different image processing applications
such as histogram equalization, image noise reduction and
linear contrast adjustment as I4OAs [31]. After processing
images using these applications, the enhanced images are
forwarded to the Industrial robots for further analysis and
harnessing robotic assistance in an industry.

B. Performance Metrics

As performance metrics, average service delivery time Avg.
SDT, average computing resource overhead Avg. CRO, and
average network relaxation ratio Avg. NRR are used in the
experiments. The reduced value of Avg. SDT denotes the
higher potential of application placement policy. Similarly,
the decreased value of Avg. CRO refers to the enhanced
performance of the policy in managing computing overhead of
FCNs. Conversely, the increased value of Avg. NRR signifies
that the policy keeps a stable balance between networking load
and networking capacity of FCNs. Avg. SDT and Avg. CRO
are determined by following Eqs. 13 and 14 respectively where
τ = 100 seconds. Nevertheless, Avg. NRR for an FCN is
calculated using Eq. 15. Moreover, the percentage of deadline-
satisfied inputs Per. DSI and required time to identify the
placement mapping TIPM are also used here to evaluate the
performance of a policy.

Avg. SDT =

∑
∀c∈C

∑
∀r ∈Zc

∑
∀i∈Nτ

r

tirc∑
∀c∈C

∑
∀r ∈Zc

|Nτ
r |

(13)

Avg. CRO =
1
|C |

∑
∀c∈C

∑
∀i∈Mτ

c

mi
c

τ
(14)

Avg. NRR =
1
|C |

∑
∀c∈C

λc −
∑
∀r ∈Zc

σr

λc
(15)

C. Experiments on Real Setup

Fig. 3 presents a sample illustration of real experimen-
tal setup. Here, different android smart phones are used as
the camera-enabled IoT devices. They can capture images
in different frequencies and resolution using a customized

TABLE III: Specification of real experimental setup

Duration of experiment : 20 minute
Number of FCNs : 15 Raspberry PIs
Configuration of FG:
Processor RAM Clock Uplink Downlink
Intel Celeron 2 GB 1.60 GHz 2 MBPS 2 MBPS
FCN type ⇒
Configuration ⇓

Raspberry
PI 3 A+

Raspberry
PI 3 B+

Raspberry
PI 3

Raspberry
PI 2

System-on-a-chip Broadcom
BCM2837B0

Broadcom
BCM2837B0

Broadcom
BCM2837

Broadcom
BCM2836

RAM 512 MB 1 GB 1 GB 1 GB
Clock 1.4 GHz 1.4 GHz 1.2 GHz 0.9 GHz
Uplink 2 MBPS 2 MBPS 1.5 MBPS 1 MBPS
Downlink 2 MBPS 2 MBPS 1.5 MBPS 1 MBPS
Amount 3 5 4 3
Workload type ⇒
Attributes ⇓

VGA HD FHD QHD

Resolution (Pixel) 640x480 1280x720 1920x1088 2560x1440
Average size (MB) 0.106 0.230 0.358 0.420
Frequency 4 3 2 1
Deadline (second) 0.240 0.320 0.460 0.700

application. The smart phones are connected to a personal
computer which performs the activities of an FG. Furthermore,
we deploy several Raspberry PIs as FCNs to form a Fog
Cluster, and execute the image processing applications. The
uplink and downlink speed of FG and FCNs are tuned using
the Wondershaper software and they are set to follow a linear
relationship with the clock speed of corresponding Fog nodes
[25]. Table III presents the details of this setup.

To conduct the experiments in aforementioned setup, we
profile the propagation and processing time of all applications
on different FCNs for varying inputs. For instance, Table
IV shows the profiling information of histogram equalizing
application on Raspberry PI 3 B+. These information are
directly used by the proposed policy while making the place-
ment decisions for any requested applications. The results of
experiments are discussed as follows.

1) Impact of Varying the Number of Applications: As the
number of applications placed in a certain number of FCNs
increases, the Avg. SDT of applications and the Avg. CRO of
FCNs elevate (Figs. 4 and 5). It happens due to simultaneous
sharing of resources among various applications. However,
the proposed policy sorts applications in descending order
of their per unit time data load σr that implicitly places
heavyweight applications on computationally powerful FCNs.
As a consequence, the Avg. SDT of applications for this policy
remains in the lower values than others. Moreover, our policy
makes a balance between the admittance rate of inputs and
their processing on an FCN which helps to improve the Avg.
CRO of FCNs. Although the service time enhanced placement
shows the similar trend like ours, it often increases the load
on computationally powerful FCNs by placing most of the
applications over them. Additionally, the deadline prioritized
placement often leads the latency tolerant applications with
higher σr to be executed in less computationally powerful
FCNs. Both degrade the Avg. SDT of applications and Avg.
CRO of FCNs. On the other hand, while dealing with the

TABLE IV: Application profiling information

r = histogram equalizing application
Image type ⇒
FCN c ∈ C ⇓

VGA HD FHD QHD

Raspberry PI 3 B+ pr c=0.052
qr c=0.085

pr c=0.118
qr c=0.154

pr c=0.185
qr c=0.226

pr c=0.218
qr c=0.308
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Fig. 4: Avg. SDT vs number of applications
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Fig. 5: Avg. CRO vs number of applications
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Fig. 6: Avg. NRR vs number of applications

applications having higher frequency of data, the resource
optimized placement significantly increases the computing
overhead of FCNs and affects the Avg. SDT and Avg. CRO.

The proposed policy also explicitly measures the effect
of data sensing frequency of IoT devices on the networking
capacity of FCNs during application placement. Consequently,
it helps to offer improved Avg. NRR than other policies where
such analysis is narrowly attended. Fig. 6 depicts this aspect of
our proposed policy for the increasing number of applications
in Fog computing environments.

2) Impact of Varying the Number of FCNs: With the
increasing number of FCNs, Avg. SDT of applications and
Avg. CRO of FCNs decreases, and Avg. NRR increases (Figs.
7, 8 and 9). For higher number of FCNs, most of the policies
exhibit similar trend. However, when there are comparatively
lower number of FCNs for application placement, the proposed
policy outperforms others. It places applications on limited
number of FCNs considering input data size and data sens-
ing frequency of associated IoT devices simultaneously that
consequently meets computational and networking commit-
ment of FCNs with their capacity. Thus, despite of having
lower number of options for placing applications, computing
overhead of FCNs and their networking load do not increase
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Fig. 7: Avg. SDT vs number of FCNs
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Fig. 8: Avg. CRO vs number of FCNs
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Fig. 9: Avg. NRR vs number of FCNs

significantly and service delivery time of applications remain
in lower values.

3) Observation on Stream Processing: In our evaluation,
we monitor application service delivery time for a set of
inputs belonging to a particular stream (10). In context-aware
application placement, service delivery time of inputs do not
vary significantly from one to another. Since the proposed
context-aware application management reduces the scope of
computing overhead and network congestion, the service times
for different inputs of a stream remain almost same.
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Fig. 10: Service delivery time for different inputs of a stream
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TABLE V: Parameters for simulated experimental setup

Parameter Value
Simulation time 200 Seconds
Sensing duration of IoT devices 1-3 Seconds
Arrival rate of placement requests 10-30 requests/second
Number of FCNs 50
Configuration of FCNs:
Processing speed 1000-4500 MIPS
RAM 1-2 GB
Downlink bandwidth 1-3 MBPS
Uplink bandwidth 1-3 MBPS
Workload attributes:
Number of instructions 100 - 1200 MI
Input data size 0.120-0.500 MB
Service deadline 0.300-0.700 seconds
Sensing frequency of IoT devices 1-4 input/second

D. Experiments in Simulated Setup

Different parameters used in modelling the simulated setup
are listed in Table V. The workload attributes are aligned with
the specification of real experimental setup as shown in Table
III. Additionally, the configuration of FCNs are set according
to the processor benchmarking data provided in [32]. Linear
relations are maintained among the parameters of different
inputs and FCNs while setting their values from the given
range. The simulation experiments are conducted on an Intel
Celeron, 1.60 GHz, 2 GB RAM configured computer. The
results of these experiments are discussed below.

1) Impact of Varying the Arrival Rate of Requests: As
the arrival rate of placement request increases, the percentage
of deadline-satisfied inputs Per. DSI decreases (Fig. 11). It
happens because of the rising number of applications waiting
in the queue for execution. However, the deadline prioritized
placement performs better in this case as it immediately
executes the deadline-critical applications. Compared to the
service time enhanced placement, our proposed policy offers
improved Per. DSI as it does not increase the communication
and computation overhead of FCNs unevenly. Conversely, the
intention of reducing FCN’s idle time often lead the resource
optimized placement to disregard the deadline criticality of
applications. As a result, Per. DSI degrades remarkably for
this policy.

2) Comparison between Solution Approaches: The pro-
posed context-aware application placement can be performed
either by solving the optimization problem in Eq. 8 through
any ILP solver or applying the heuristic method of Algo-
rithm 1. Avg. SDT of applications in ILP-based approach is
always lower than the heuristic implementation of proposed
policy. However, at any arrival rate of placement requests, the
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Fig. 11: Per. DSI vs request arrival rate
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heuristic implementation takes less TIPM (time to identify the
placement map) compared to the ILP-based approach. Fig.
12 depicts such a scenario when the request arrival is 20
per second. Since the operations of heuristic implementation
and the deadline prioritized placement are almost similar, their
TIPM does not very significantly. The TIPM of service time
enhanced policy is lower than others as it does not include
any additional sorting operations. Conversely, the resource
optimized placement poses high TIPM because of its extensive
search for suitable applications that can reduce the idle time
of FCNs.

VI. CONCLUSIONS AND FUTURE WORK

I4OAs require to offer services in real-time. During the exe-
cution of I4OAs, the contexts of IoT devices such as their data
size and sensing frequency play influential roles in defining
the computing and networking intensity of the applications
and help in measuring the processing and communication
load of the host Fog nodes. Failure to support them with the
capacity of Fog nodes can degrade the application service time.
Therefore, in this work, we proposed a policy that implies
the IoT device-level contexts to place the applications in Fog
environments. It also ensures that the flow of data towards the
applications neither increases overhead of Fog nodes nor con-
gests the network deliberately. Thus, it reduces application’s
service delivery time, relaxes network, manages computing
overhead, and increases service reliability. Additionally, the
experimental results derived from both real and simulated Fog
environments demonstrate the efficiency of our policy.

In the future, we will explore the characteristics of appli-
cations such as their execution model, disk and I/O inten-
sity explicitly along with the device-level contexts to place
and manage them in Fog environments. Additionally, the
hypervisor or docker-based virtualization techniques applied
to Fog nodes can affect the service delivery of applications.
Therefore, we plan to investigate their effect on the proposed
policy as part of its further extension.
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