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Abstract—The shift towards renewable energy sources for powering data centers is increasingly important in the era of cloud
computing. However, integrating renewable energy sources into cloud data centers presents a challenge due to their variable and
intermittent nature. The unpredictable workload demands in cloud data centers further complicate this problem. In response to this
pressing challenge, we propose a novel approach in this paper: adapting the workload to match the renewable energy supply. Our
solution involves dynamic overbooking of resources, providing energy flexibility to data center operators. We propose a framework that
stochastically models both workload and energy source information, leveraging Markov Decision Processes (MDP) to determine the
optimal overbooking degree based on the workload flexibility of data center clients. We validate the proposed algorithm in realistic
settings through extensive simulations. Results demonstrate the superiority of our proposed method over existing approaches,
achieving better matching with the renewable energy supply by 55.6%, 34.65%, and 40.7% for workload traces from Nectar Cloud,
Google, and Wikipedia, respectively.

Index Terms—green computing, sustainable computing, energy efficiency, cloud computing, renewable energy, data centers, VM
consolidation, overbooking.
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1 INTRODUCTION

THE adoption of sustainability practices to reduce carbon
emissions resulting from cloud data center (CDC) oper-

ation is of major importance due to the high operational
costs and energy demands of CDCs. In addition to tech-
niques for reducing total energy consumption, powering
data centers using renewable (green) energy sources, such
as solar energy, can significantly reduce carbon emissions.
However, the continuity and reliability of renewable energy
supply from sources such as solar and wind power is lesser
than grid power supplies, due to its stochastic and intermit-
tent nature. In other words, the variable and intermittent
nature of both workload demand and renewable energy
supply make the goal of powering data centers using re-
newable energy sources more challenging than established
alternatives.

Current data centers are designed with overprovision-
ing to meet peak demand and mitigate the challenges of
serving fluctuating workloads [1], [2]. Recent work pro-
posed resource allocation management for the workload
by jointly exploiting VM consolidation and overbooking of
resources [3], [4]. Overbooking is the process of allocating
more virtual machines (VMs) on a physical server than the
server is sized for. This work aims to exploit varying degrees
of overbooking to elastically manage power and workloads
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when necessary. We exploit energy source-aware resource
allocation management so that the energy required to serve
the workload favors available green energy where possible.

Due to the complexity of resource allocation in cloud
data centers, a large body of solutions designed for energy-
efficient resource management algorithms are based on
heuristics [5], [6], [7], [8]. Heuristic-based algorithms have
become popular in such applications as they can produce
acceptable results in a reasonable time frame. However,
heuristic methods have their own limitations. They cannot
search the entire solution space, and hence their perfor-
mance depends on the strength of the heuristic within the
context of the related problem targeted to be solved. As
a result, their performance is not guaranteed. This work
aims to deal with the variability of workload demand and
renewable energy supply, which are non-deterministic in
practice, by modeling them as stochastic processes.

We investigate and model the variability of workload
demand and green energy availability as Markov Decision
Processes (MDP). Notably, this work considers that the
cloud data center is powered by an on-site renewable energy
system (e.g., a photovoltaic solar power system) and can
use available power from the grid when the supply from
renewable resources is inadequate. As this work aims to
exploit varying degrees of overbooking to control the power
requirement, a challenging question to address is “when
and in what capacity should overbooking of resources be
applied to better match the power demand of the workload
with the available renewable energy supply?” We aim to
find a policy to apply optimal overbooking levels. The pol-
icy contains actions for the best overbooking levels applied
to allocated resources in different time slots.

The key contributions of the paper are as follows:
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• We propose a green-energy-aware architecture to
manage the resources of a CDC.

• We model the green-energy-aware resource alloca-
tion management problem as a discrete finite state
Markov Decision System problem.

• We propose a solution methodology by exploiting
the dynamic adjustment of varying overbooking lev-
els according to the availability of renewable energy.

• We propose the novel concept of Green SLA, which
allows for an agreement between CDC clients and
CDC providers to negotiate the degree to which over-
booking can be applied to CDC clients’ workloads in
favor of renewable energy availability.

• We conduct simulation-based experiments using
real-world data derived from various workload
traces including a community cloud, Wikipedia and
Google traces, and renewable energy availability data
from practical solar systems.

The remainder of the paper is organized as follows: The
background of renewable energy aware sustainable CDCs
is explained in Section 2. This is followed by the proposed
system with the details of problem formulations in Section 3.
Our proposed algorithm is explained in Section 4. Section 5
presents the details of the performance evaluations includ-
ing the results. Finally, the conclusions and future works are
discussed in Section 6.

2 RELATED WORK AND MOTIVATION

This section presents an overview of the related work and
the motivation underpinning this work.

2.1 Related Work
Several works have explored the area of resource manage-
ment for cloud data centers in an energy-efficient manner.
Most of these works addressed a particular component of
cloud infrastructure and proposed energy-efficient manage-
ment techniques for the targeted components. Some works,
such as [17], [18], [19], considered power consumption by
the CDC network fabric and proposed energy-efficient ways
to manage it. CARPO [17] exploited the correlation between
traffic flows to consolidate the less correlated traffic into the
same network link to improve efficiency. However, Heller
et al. [18] observed that the dominant cause of power
consumption in CDC network fabrics are switching com-
ponents when powered on, and that as little as 1-2 Watts
per port are saved by powering off unused ports. This work
did not consider the edge switches of the empty servers as
part of their energy-saving mechanism. Maestro et al. [20]
investigated a decentralized architecture for cloud resource
management based on blockchain technology, while dis-
regarding constraints related to energy sources. Cziva et
al. [19] minimized network-wide communication cost by
exploiting temporal network traffic information while not
considering the servers’ power consumption.

Several studies considered servers and network compo-
nents together as part of their mechanisms for improving
energy efficiency, specifically [1], [4], [21], [22]. Jin et al. [21]
considered the host and network jointly to decide upon
VM placements in targets to optimize power consumption.

They proposed a mechanism to find a suitable host for the
VM placement by utilizing a depth-first search. Fang et
al. [22] investigated the placements of VMs in the hosts and
network routing together. They proposed to form groups
of VMs that share higher mutual traffic and then assign
these to the same rack. This way, they aimed to minimize
traffic between racks to permit unutilized switches to be
powered off to save energy. Zheng et al. [1] observed
that the workloads in different servers and the data center
network (DCN) traffic flows do not peak simultaneously.
Based on this observation, they consolidate servers and
traffic to save more energy, considering correlations between
workloads. Thus their proposed power optimization strat-
egy, PowerNetS, jointly minimizes the power consumption
of servers and DCN [1]. VM placements and consolidation
strategies are also used in [4] and [23] to reduce the energy
requirement of a data center. Consolidating the VMs in a
minimal subset of physical hosts can effectively reduce the
requirement by pushing the unused hosts into idle mode.
Son et al. [4] also turned the network switches off to save
more energy when not utilized. None of these works consid-
ered powering CDCs with a renewable energy source. None
of their proposed solutions also considered energy supply
source awareness as part of their resource management
framework.

Workload distribution across various geographical loca-
tions has been proposed to optimize operating costs and bal-
ance workloads. Research conducted by Ammari et al. [24]
aimed to address applications with a bounded delay when
deployed in Distributed Green Data Centers (DGDCs). Their
study focused on the cost-effective scheduling of various
heterogeneous applications while ensuring the delay-bound
constraints of different tasks were met. Previously, Yuan
et al. [25] proposed a Geography-Aware Task Scheduling
(GATS) method that considers spatial disparities in DGDCs.
This approach maximizes the total profit to the DGDC
provider by intelligently scheduling tasks in all applications.
Additionally, Yuan et al. [26] introduced a multi-objective
optimization technique for DGDCs that aims to maximize
the profit of DGDC providers and minimize the average task
loss for all applications. The method jointly determines the
division of tasks among multiple Internet service providers
(ISPs) given the task service rates of each Green Data Center
(GDC). However, these research works necessitated the con-
sideration of delay-bound constraints to effectively schedule
workloads. This requirement may unfortunately not always
be feasible for all types of services.

Additionally, Li et al. [27] conducted an investiga-
tion into the optimization of workflow execution costs on
Infrastructure-as-a-Service (IaaS) clouds while adhering to
service-level agreements with users. Zhou et al. [28] pro-
vided a thorough review of deep reinforcement learning-
based approaches in cloud scheduling, encompassing recent
research in this domain, with a specific focus on resource
scheduling in Cloud Computing. Meanwhile, Zhang et
al. [29] explored the management of cloud resources using
deep reinforcement learning to automate and efficiently
negotiate appropriate configurations in a complex cloud
environment. However, these research endeavors did not
specifically address the energy-related and green computing
aspects of cloud data centers.
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TABLE 1: Literature comparison

Research Work Consume Brown Consume Green Apply Migration Apply Varied Consider On-site Green-aware Dynamic Consider
Energy Energy Dynamic Overbooking Renewable Resource Management Stochasticity

Le et al. [9] ✓ ✓ ✗ ✗ ✗ ✗ ✗
Celesti et al. [10] ✓ ✓ ✗ ✗ ✗ ✗ ✗

Li et al. [11] ✓ ✓ ✗ ✗ ✓ ✗ ✓
Toosi et al. [12] ✓ ✓ ✓ ✗ ✓ ✗ ✗

Farahnakian et al. [13] ✓ ✗ ✓ ✗ ✗ ✗ ✓
Son et al. [4] ✓ ✗ ✓ ✓ ✗ ✗ ✗

Goiri et al. [14] ✓ ✓ ✗ ✗ ✓ ✗ ✓
Hasan et al. [15] ✓ ✓ ✗ ✗ ✓ ✗ ✗

Khosravi et al. [16] ✓ ✓ ✓ ✗ ✓ ✗ ✓
Chakraborty et al. [5] ✓ ✓ ✓ ✗ ✓ ✓ ✗

OUR WORK ✓ ✓ ✓ ✓ ✓ ✓ ✓

Several research studies have concentrated on the direct
incorporation of renewable energy to provide power to
data centers. Goiri et al. [14] proposed a delay in serving
workloads to align them with available renewable energy
supply, where workloads could be deferred. Hasan et al. [15]
proposed to compromise non-core and independent fea-
tures, which could be isolated to align their execution with
green energy availability. Khosravi et al. [16] proposed
migrating VMs between geographically diverse sites to ex-
ploit local availability of renewable energy. Similarly, Liu et
al. [30] proposed geographical load balancing with “follow
the renewables” routing to manage the workloads. Lin et
al. [31] extended that concept by combining brown and
green energy to achieve a net-zero brown energy system.
Toosi and Buyya [32] presented a fuzzy logic-based load-
balancing algorithm without a priori knowledge to solve the
same problem. These reactive solutions are based on routing
the incoming workload to “follow the renewables” when
receiving job requests. However, none of these research
works considered VM management inside the CDCs that
exploits overbooking techniques to maximise renewable
energy utilization.

Chakraborty et al. [5] aimed to address this critical issue
by proposing a heuristic-based approach that utilized a
fixed and pre-defined amount of overbooking. However,
their approach failed to consider the power consumption
overhead of VM management and was limited to reactive
responses to renewable energy generation. Additionally, it
did not take into account the probabilistic nature of both
workload and renewable energy generation. In contrast, this
work deals with the variability of workload demand and
renewable energy supply, which are non-deterministic in
practice, and then uses MDP-based dynamic overbooking
to match this variability. It also explores VM management
with varying levels of overbooking to identify appropriate
matches between energy consumption and renewable en-
ergy availability, while also considering the energy overhead
required to manage VMs and apply overbooking.

Xu et al. [33] conducted a study on the optimization of
renewable energy utilization in environmentally sustainable
cloud data centers, with a primary emphasis on admission
control and battery charge and discharge scheduling. In
contrast, our research uses the grid as the backup energy
source and focuses on dynamically adjusting the overbook-
ing level based on the availability of renewable energy, an
aspect that has not been thoroughly explored in the current
literature. Nevertheless, both approaches share common
ground in employing a finite-horizon MDP approach. MDP-
based solutions and reinforcement learning approaches con-

tinue to be extensively researched in the field of process
industries [34] [35].

2.2 Motivation

CDC clients are service providers who subscribe to re-
sources from CDC operators in order to run and manage
end-user applications. To become more environmentally
friendly, we assume that CDC clients agree to accept some
levels of intermittent resource overbooking from the CDC
operators in exchange for incentives such as carbon tax ben-
efits or discounts, when exposed to overbooking, as a part of
a service level agreement (SLA). We have named this part of
the agreement as Green SLA. Green SLA is a suitable option
for services that are commonly underutilized or applications
that can handle occasional overbooking, such as batch jobs,
background processing, and optional tasks. Overbooking,
however, may result in a degradation of Quality of Ser-
vice (QoS), e.g., delayed response time for end users of
the services provided by cloud clients (service providers).
To ensure compatibility with the incentives received, CDC
clients should manage their applications accordingly.

In this work, we propose that CDC operators take
advantage of Green SLA opportunities for overbooking in
order to reduce brown energy consumption. In practice,
CDC operators may use overbooking and impose CPU
over-commitment without even informing clients [36]. For
example, VMware considers up to 200% CPU over-booking,
according to its best practice recommendations, as a perfor-
mance sizing guideline. Moreover, it is common that CDC
providers offer services at different QoS levels and prices.
For example, Amazon Web Services (AWS) offer interrupt-
ible Spot Instances [37] in their spare capacity for less than
the On-Demand price. This work proposes an optimized
policy for applying overbooking in order to match the
supply of renewables with data center power consumption,
motivated by a proposed Green SLA which incentivizes both
parties to use renewables.

3 SYSTEM MODELING AND PROBLEM STATEMENT

This section presents an overview of our system model with
the key issues addressed in this paper in a typical CDC
scenario, followed by the power consumption models of the
CDC components. Then, we present a discrete-time finite-
state MDP to handle and model this issue and to find the
optimal overbooking policy as a solution.



4

Data Center

Worklo
ad

On-sit
e So

lar 

Sys
tem

Utility Grid
Inverter

Controller
Wind Farm

Gree
n SLA

Cloud Data 

Center Clients

Decisions on 
dynamic resource 

overbooking

Power

Energy Profile 
Information

Reso
urce

 

utiliz
ation 

Information

Green energy
 supply

Data center Power 
Consumption

Matching 
Demand to 

Supply

Fig. 1: Schematic view of the system.

3.1 System Overview

A schematic diagram of the proposed system with a typical
CDC scenario is shown in Fig. 1.
Input component: The CDC clients subscribe to resources
from the data center to manage and run applications for
the end-users. In order to provide services to the end-users,
CDC clients transmit their workloads to be processed, while
complying with the agreed Green SLA standards. These
workloads are subsequently allocated to virtual machines
(VMs) residing within the data center infrastructure. The
Controller component of the system receives workload re-
quests from the CDC clients, accompanied by the resource
utilization and energy profile information obtained from the
power system. The Controller module proceeds to provide
dynamic resource overbooking using these information. A
detailed explanation of the Controller component is pro-
vided later in this section and in Section 3.3.
Data center components: The system considers a data cen-
ter that consists of multiple physical machines serving the
user requests by assigning VMs with the required virtual
CPUs (vCPUs), Memory, and Disk. Different components
and activities that consume power such as physical hosts,
switches, and cooling systems, are considered. Note that,
since the method is designed to manage workload and their
associated resources, we only focus on the computational
load-variant energy components. Thus, we disregard the
other components that do not directly vary with the compu-
tational load, such as power control systems and lighting, as
they remain load-invariant. Power consumption models for
all components are reported in Section 3.2.

Power system: Several energy sources are also consid-
ered to power the data center, including onsite solar panels
to generate green energy and coal-based brown energy
from the grid. The controller tracks and manages power
consumption by exploiting dynamic overbooking levels per
the proposed algorithm in Section 4.

This work encourages on-site renewable without local
storage such as lithium batteries in CDCs, similar to greener
services presented in [38]. Recent works such as [14], [39],
[40] specifically avoided batteries because of 1) the high pro-
curement and maintenance cost of batteries, 2) the shorter
lifespan relative to the other components, and 3) the fact
that they are not fully recyclable due to technical constraints
and regulatory gaps that present challenges in disposal. In
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Fig. 2: Example of how consolidation with overbooking can
reduce power consumption [5].

addition, the cost of expanding energy storage installations
to fully support a CDC operation without a grid connection
can become prohibitively expensive, especially as the size
of the data center grows. Thus, in this work, we assume
procuring power from grid as a fallback source when renew-
able power is insufficient. We consider inverters to combine
multiple power sources. Inverters can supply power from
renewable sources, send excess power back to the grid, and
switch to grid power when renewable energy is insufficient.

Controller component: The objective of this study is to
synchronize the energy consumption of a data center with
the supply of renewable energy. The Controller module
evaluates the present resource allocation, workload, and
availability of green energy to monitor the system’s per-
formance. It employs a discrete-time finite-state Markov
Decision Process (MDP) based approach, dependent on the
workload and solar power history, to generate a policy
output (elucidated in Sec. 4) that outlines actions for optimal
overbooking levels. These strategic outputs are employed
to dynamically allocate resources with varying overbooking
levels at each time interval (e.g., hourly throughout a day)
to control and better align the energy requirement of the
data center with the supply of green energy. The MDP
model’s different components and our strategy’s working
procedures are expounded upon in detail in Section 4.

Our proposed method only applies a varying degree of
overbooking when the supply of renewable energy is inad-
equate. As described above, we assume that there is a Green
SLA between CDC operators and clients, which enables
occasional overbooking when renewables are scarce. This
agreement aims to motivate both parties to adapt greener
services knowingly and with mutual benefits, as explained
above in Section 2.2. In the next section, we explain the
procedure for reducing power consumption followed by an
in-depth discussion of consumption models.

Fig. 2 illustrates how to reduce power consumption
by exploiting consolidation and overbooking through VM
migration activity. A group of VMs hosted by the corre-
sponding physical hosts (servers) is shown in the left part
of Fig. 2. The green area represents the maximum level
of overbooking that can be applied to the VM’s requested
resources (green + pink) according to the Green SLA. The
implementation of overbooking along with consolidation
can lead to a lower resource usage, and thus, can save
energy, as shown in the right part of Fig. 2. Note that idle
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TABLE 2: Some basic notations for problem formulation

Symbols Description
hi The ith host in the data center
H ∀i, hi ∈ H , set of all hosts in the data center,
|H| Total number of hosts in the CDC
si ith switch in the data center
S The set of all network switches in the CDC, ∀i, si ∈ S
|S| The total number of network switches in the data center

P (hi) Power consumption of host i
Pid Idle power consumption of host
Ppk Peak power consumption of host
ui CPU utilization percentage of host i
αi The number of VMs placed in host i

P (si) Power consumption of switch i

(base) power consumption is a constant factor consumed by
hosts and switches regardless of how much load they are
serving [4]. This work aims to save this energy as much as
possible and whenever a host is idle, we turn it off.

3.2 Energy Model
This section presents power consumption models represent-
ing the different components of the system and management
activity of a CDC.

3.2.1 Compute Energy Model
The power consumption of a server is typically modeled
by its CPU power and the widely-used model proposed by
Pelley et al. [41], which is a linear function that considers
the base idle power consumption and the consumption due
to CPU utilization, with the power consumed increasing
linearly as CPU utilization increases. This model has also
been adopted in other recent works, such as [4], [5], [42],
[43]. Therefore, the power consumption of any host hi is
modeled below:

P (hi) =

{
Pid +

(
Ppk − Pid

)
· ui if αi > 0

0 if αi = 0
(1)

where Pid and Ppk are the power consumption of a host
in its idle and peak states, which are constant factors, ui is
the dynamic power consumption of host, which is linearly
related to the CPU utilization percentage, and αi is the
number of VMs placed in host i.

The compute subsystem of a CDC comprises a set of
hosts. Its power consumption during time slots 0 to T is
determined by the Equation 2:

PC =
T∑

t=0

δt ·
|H|∑
i=1

P (hi)

 (2)

where |H| is the total number of hosts and δt is the duration
of the respective time slot.

3.2.2 Network Energy Model
The network power is mainly modeled by its consumption
of active switching components [18] as adopted by recent
works, such as [5], [43]. Thus, we assume that the power
consumed by the network is predominantly determined by
the number of active (On) switches. The power consumption
of any switch si, P (si), is modeled as:

P (si) =

{
Psw if si is ON
0 if si is OFF

(3)

where Psw is the power consumption of the switch.
We compute the network subsystem energy consump-

tion using equation 3, over time period 0 to T by the given
Equation 4:

PS =
T∑

t=0

δt ·
|S|∑
i=1

P (si)

 (4)

Note that power consumption of the network subsystem
in a CDC is typically low, comprising approximately 5% of
the total power consumption, primarily due to the energy
usage of network switches [18], [44].

3.2.3 CRAC Model

The thermal management of a data center is typically han-
dled by a Computer Room Air Conditioning (CRAC) unit,
which we assumed to be the only cooling system facility
available in this study. More sophisticated cooling systems
can be added to the model if needed. To estimate the power
consumption by the CRAC subsystem, we adopt a highly-
cited model from the [45]. This work is also adopted by
the recently published works [5], [46]. According to this
model, the Coefficient of Performance (CoP ), which is a
function of the cold air supply temperature Ts, determines
the efficiency of the CRAC subsystem. CoP represents the
ratio of the total power of the compute subsystem to the
power consumption required to extract the dissipated heat
by the CRAC subsystem.

PAC = PC/CoP (Ts) (5)

where PC represents compute power and PAC represents
cooling system power. Either diminishing the compute load
or increasing the temperature of supplied cold air can re-
duce the power consumption of the cooling system. The
following regression model, adopted from [45], estimates
the CoP .

CoP (Ts ) = aT 2
s + bTs + c. (6)

where a = 0.0068, b = 0.0008, and c = 0.458. Equations 5 and
6 indicate that an increasing value of Ts causes a reduction
in cooling power when the compute system power remains
the same. Now, a function of compute power consumption
PC and supplied cold air temperature Ts can measure the
total energy consumption for the cooling system and it is
represented below (by using (5), (2)):

PAC (PC , Ts) =

∑T
t=0

(
δt ·

∑|H|
i=1 P (hi)

)
CoP (Ts )

(7)

Thus, the total energy consumption by the CRAC system,
compute, and network of CDC over the time slots 0 to T
can be formulated as:

PT = PAC (PC , Ts) + PC + PS (8)

Which is:

PT =
T∑

t=0

δt ·
|S|∑
i=1

P (si)

+

(
αT 2

s + βTs + γ + 1

αT 2
s + βTs + γ

)

·
T∑

t=0

δt ·
|H|∑
i=1

P (hi)

 (9)
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3.2.4 Energy Model for Virtual Machines (VM) Migration
This work considers live VM migration technology, which
has proven to be a powerful management technique for data
center operators to optimize the placement of VMs in a non-
disruptive manner [47]. Virtualization technology giants,
such as VMware and Xen, have successfully adopted live
VM migration in a memory-to-memory strategy using a pre-
copying mechanism [48], [49], [50]. This method migrates
the physical memory image to the new destination host
while the VM in the source host is running. The energy
overhead during live migration activity can be measured
as the sum of two components.

1) The first component calculates the overhead for the
migration effort that depends on the size of the memory-
to-memory transfer due to migration activity through the
interconnect fabric. We adopt [50] to calculate this additional
amount of energy consumed (denoted by Em), which is
obtained as the increased amount of consumption arising
from live VM migration. They model this energy as the
linear regression of the network traffic for the memory size
of the VM that is being migrated (Vm).

Em = aVm + b (10)

where a =0.512, b =20.165, and the R2 is as high as 0.993.
2) The second component of the energy overhead during

the live migration process calculates the energy overhead
of keeping both the source and destination hosts turned on
during the migration. Note that we trigger VM migration
when evacuating a host to be turned off to reduce power
consumption. So, before turning off the source host, the en-
ergy consumed by the evacuating (source) host j is modeled
as:

Eh = τ × P (hj) (11)

where τ is the time required for the migration of VMs of host
j. So, the energy overhead for the migration at any time-slot
t is modeled as:

P (Mt) = Em +
∑

Evacuating Hosts

Eh (12)

The total energy overhead for the migration activity PM

during time slots 0 to T is determined by the (13):

PM =
T∑

t=0

δt · P (Mt) (13)

3.3 Problem Formulation
To better match the data center’s power consumption with
the supply of green energy, we aim to find an optimized
policy to apply varying degrees of overbooking while serv-
ing the workload. As shown in the schematic overview
in Fig. 1, the Controller manages the resource allocation to
serve the workload depending on the availability of green
energy. So, the Controller keeps track of the current alloca-
tions, workloads, and green energy supplies. We consider a
discrete-time finite-state MDP-based algorithm to find the
optimal policy within a fixed time horizon (e.g., a day).
The output of the policy contains actions for the selection of
optimal overbooking levels applied to allocating resources
in each time slot. We discuss different components of the
MDP model below.

3.3.1 States
To implement the discrete-time finite-state MDP we must
divide the time horizon into a set of identical discrete time
slots. In this work, we consider single-day optimization and
we thus divided each day into 24 one hour time slots. But
the model can be simply generalized to any other time
horizon and respective number of time slots. We focus on
the hourly time cycles of a day since the weather data
availability is often on an hourly basis, and services are
billed per hour by popular providers such as AWS.

The system state S(t) at time slot t includes 1) the hour of
the day, 2) workload demand, 3) available renewable energy,
and 4) the level of overbooking. The state space of the hour
of the day at time t is given as H(t) ≤ HM ∈ [1, 24] ∩ N,
which is the set of natural numbers (N) from 1 to 24, both
inclusive.

The state space of workload demand at time t is given
as W (t) ≤ WM ∈ Z+, where Z+is the set of non-negative
integers and WM is the maximum workload the system
can serve. The workload is measured by the number of
VM instances needed to be served during time period t.
The available renewable energy at time t is represented by a
discrete random value G(t) ≤ GM ∈ Z+. G(t) represents
the amount of green power generated by the onsite
renewable power system and GM is the maximum amount
of renewable power that can be generated by the system.
Similarly, O(t) ≤ OM ∈ Z+ is a discrete value denoting
the overbooking level at time t, where OM is the maximum
overbooking level possible in the system. Therefore, the
state of the system at time t, S(t), is denoted by:

S(t) ≜ [H(t),W (t), G(t), O(t)] ∈ S (14)

where S stands for all possible states.

3.3.2 Actions
At the beginning of each time slot, the system determines
the control action to increase or decrease the amount of
overbooking. Here, the action of adjusting the overbooking
basically changes the active resource allocation schemes
and results in changes in energy consumption to serve the
workload leading to a better match with the available green
energy. The amount of overbooking leads to a different
scheme of resource allocation including consolidation and
VM migrations. A following state S(t + 1) depends only
on the current state S(t) and the decision maker’s action.
Therefore, it satisfies the Markov property of the model
that the state transitions must be independent of actions
and states encountered before the current decision step. Our
model decides to perform an action in each state denoted
by A, where depending on the overbooking level a at the
current state S(t), the model decides to increase or decrease
the amount of overbooking by |a− b| to reach overbooking
state b at the state S(t+1). The actions change the states from
one to another and achieve different rewards. The objective
of the system is to calculate the optimal policy in form of
a mapping from states to actions such that the reward is
maximized. In this case, we need to select the overbooking
level b for the next state S(t+ 1) such that it can return the
maximum reward. The reward function is discussed in the
next subsection.
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3.3.3 Reward Function
At each time slot, the process is at state S(t), and we choose
a possible action A. The process randomly moves to the
next state S(t + 1) at the next time slot, and gives the
corresponding reward R(S(t), A). Our model is designed in
such a way that a higher reward is produced when power
consumption is closer to available green power. Updating
the overbooking level has an energy overhead, as it needs
to be achieved by changing the active resource allocation.
Thus, the energy requirements has two parts, one is to
serve the workload, and another is the overhead to update
resource allocation (e.g., the energy overhead of VM mi-
gration for host evacuations and consolidations). The sum
of these two energy requirement components needs to be
as close as possible to the green energy supply to achieve
optimal results. Let, G be the green energy supply and E
represents the sum of the following two energy requirement
components: 1) the energy required to serve the workload
denoted as E(W (t)) (derived by Equation 9) and 2) the
energy overhead of updating the overbooking level from
a to b, denoted as EO(|a− b|) (derived by Equation 13), that
is, E = E(W (t)) + EO(|a − b|). We define X = G − E,
and Y = X

EMAX
, where EMAX is the highest electrical

energy required, i.e., at the full capacity of all the hosts
in the CDC. Moreover, we have introduced a controlling
factor, represented by ρ (0 ≤ ρ ≤ 1), which provides
additional flexibility by enabling a weighted preference to
be set in situations where the sum of energy consumption
components (E) exceeds the green energy (G), or vice versa.
When ρ is set to a higher value, it emphasizes a more
conservative approach to using brown energy, prioritizing
environmental friendliness. In contrast, when ρ is set to a
lower value, it focuses on lowering Green SLA violations and
adopting a more conservative overbooking strategy. Thus,
we define the reward function as:

R =

{
ρ× (1− Y ) if G >= E
(1− ρ)× (1 + Y ) if G < E

(15)

where G represents the green energy supply and E de-
notes the sum of two energy components. The function
is designed to provide a higher reward when the energy
consumption E is closer to the available green energy G,
with a flexible reward for situations where E exceeds or
falls short of G.

3.3.4 Transition probabilities
The probability of moving from one state to another de-
pends on transition probabilities. In other words, the chosen
action A depends on the probability that the MDP moves
into each state S(t + 1). We assume that the decision-
maker uses a long history of workload demand and renew-
able power generation to compute these probabilities. Sec-
tions 5.2 and 5.3 describe sample procedures we followed to
compute these probabilities. So, the probability of attaining
a specific workload level W (t) and green power generation
G(t) at a time slot t are known in advance and are denoted
by P (W (t)) and P (G(t)), respectively. Thus, the transition
probability with a specific action A from a state S(t) to
S(t+ 1) is computed as:

PA(S(t), S(t+ 1)) = P (W (t+ 1))× P (G(t+ 1)) (16)

Agent

Environment
(Data Center)

Action(At)Reward
Rt

Rt+1

St+1

Diff.of(Egreen&Edemand)
Less difference, 
higher reward

Varied 
Overbooking ratio

State S(t) =  
H(t) : Time of the day
W(t) : Workload
G(t) : Renewable energy
O(t) : Applied overbooking

Fig. 3: The operation of the MDP.

3.3.5 Optimal Policy
The expected reward is maximized in the observation period
for the optimal policy. This optimal policy π∗ contains the
best action for all the states in MDP and the equation for
this policy is shown below:

Oπ∗
(S(t)) = maxA

{
R(S(t), A)+

γ
∑

S(t+1) PA(S(t), S(t+ 1))×Oπ∗
(S(t+ 1))

} (17)

Note that, this equation is referred to as the Bellman opti-
mality equation, where Oπ∗

(S(t)) is the value function for
the optimal policy and π∗ refers to optimal policy. The
algorithm to solve this problem is presented in the next
section.

4 GREEN AWARE ALGORITHM

This section proposes an algorithm to address the problem
formulated in Section 3.3 and explains how it works in a
typical CDC scenario.

4.1 MDP-based Green aware Algorithm
Our green-aware MDP based algorithm, outlined in Algo-
rithm 1, can determine the control actions for the optimal
policy. The policy provides actions for selecting optimal
overbooking levels to allocate resources in each time slot
and consequently leads to match the supply of energy
from renewable source with energy requirement of the data
center.

Initializing system information: The algorithm starts
by initializing the system with information about the maxi-
mum levels for workloads and green energy, as well as the
number of observation slots. It then sets up the necessary
variables to explore all possible states (Lines 1-2).

Identifying reachable states and the possible actions:
The algorithm identifies all possible states based on the max-
imum levels of workload, green energy, and overbooking
that can be applied. Only states with a non-zero probabil-
ity are considered reachable (Lines 3-13). For these reach-
able states, the algorithm adds possible actions accordingly
(Lines 14-16).

Updating transition probabilities and reward of states:
The algorithm retrieves the transition probabilities (Equa-
tion (16)) of different levels of workload and green power.
Then, it updates the reward (Equation (15)) of each state
accordingly (Lines 17-18).

Computing the utility function: The algorithm calcu-
lates the optimal expected reward value for all reachable
states using Algorithm 2 (Line 19).
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Algorithm 1 Control Actions for the MDP Based Green
aware Algorithm

Input: Observation time slots, Transition probabilities for
workloads and green energy, System states
Output: Control actions for all reachable states.

1: T ← Number of observation slots, WM ← Maximum
levels of workload, GM ← Maximum levels of green
energy, P (w(t)),P (g(t)) ← Transition probabilities for
workloads and green energy as described in section 5.2
and 5.3

2: ht, wt, gt, ot ← 0, S← ∅ ▷ Required variables for
time slots, workload, green energy, overbooking levels,
respectively, to build the set S, of all possible states that
our system can reach

3: while h(t) ≤ T do
4: while w(t) ≤WM do
5: while g(t) ≤ GM do
6: if P (w(t)) × P (g(t)) > 0 then
7: while o(t) ≤ OM do
8: S.Append(S(t) as (h(t), w(t), g(t), o(t)))
9: end while

10: end if
11: end while
12: end while
13: end while
14: for all reachable states in S do
15: Adding action A(a, b) into possible actions A(S(t))

for S(t)
16: end for
17: Update transition probabilities from S(t) to S(t+1)
18: Update the reward function from S(t) to S(t+1)
19: Oπ∗

(S(t))← Optimal expected reward by Algorithm 2
20: Deciding the control actions based on Oπ∗

(S(t)).
21: Return best actions for states

Deciding upon the actions: Based on the optimized
expected reward value, the algorithm selects the action that
maximizes the objective function for each state, as outlined
in Equation (17). It then returns the best action for each state.

Algorithm 2 determines the optimal expected reward by
iterating through all possible actions. It utilizes value itera-
tion to maximize the reward value by initializing the basic
parameters of the MDP. The algorithm takes all the reach-
able states and the possible actions as inputs, and iterates
to find the optimal expected reward value Oπ∗

(S(t)) with
optimal policy π∗. In each iteration, the optimal expected
reward value is updated based on the expected reward
from the previous state. The algorithm converges when the
next iteration could not modify the expected reward value
more than a pre-determined small value. Once the optimal
expected reward value is obtained from Algorithm 2, Algo-
rithm 1 can determine the optimal control action.

Complexity analysis: In our proposed algorithm, each
parameter value was iterated over all possible combinations
of the other parameters, thus forming the solution space
of all possible states that our system can reach. This re-
sulted in a polynomial time complexity of O(τκλµ), where
τ , κ, λ, and µ are the maximum number of levels of
observation-slots, green power, workload, and overbooking,

respectively. This is because the algorithm iterates over this
solution space.

4.2 Working Mechanism with MDP-Based Algorithm
The overall workflow of our proposed system utilizing the
MDP-based green-energy-aware algorithm is presented in
Fig. 4. The cloud data center clients subscribe to resources
from the data center to manage and run end-user appli-
cations. CDC clients and operators discussed and agreed
with the Green SLA to promote environmentally friendly
computing, which incentivizes both parties to use renew-
ables. Workloads to serve the service demanded by end
users are transmitted to be processed while complying with
the Green SLA standards. The Controller component receives
workload requests and checks resource utilization and en-
ergy profile information from the power system. Workloads
are allocated to virtual machines (VMs) in the data center
infrastructure. The Controller module scrutinizes and eval-
uates this information before processing the workloads. It
checks for a suitable overbooking level, as suggested by
Algorithm 1, to control the energy requirement to serve
these workloads to match the available renewable energy.

5 PERFORMANCE EVALUATION

We conducted a performance evaluation with realistic set-
tings to validate the effectiveness of our proposed MDP-
based algorithm. We used historical solar data from the
Australian Government Bureau of Meteorology along with
three realistic workload traces. This approach allowed us to
simulate different scenarios and measure the effectiveness of
our algorithm in terms of reducing brown energy consump-
tion and balancing energy consumption with the availability
of green energy.

5.1 Workload Traces
We employed three realistic data center workloads, derived
from the Google Cluster, Wikipedia, and Nectar community
cloud traces. To fit the workloads into states, we divided
the workloads into 10 discrete levels. The Google Cluster
and Wikipedia traces are publicly available and have been
widely used in the literature [51], [52] as representative
of real-world workloads. The Google workload represents
activities in a cluster of approximately 12,500 compute cells
managed by Google’s Borg cluster management software.
The Google Cluster trace includes job requests submitted
to a cluster over a period of one month. Wikipedia traces
contains 10% of all HTTP requests issued to Wikipedia (in
all languages) available at [52], [53]. The workload follows
a diurnal pattern with clear periods of different workload
intensity largely matching the Solar traces. Nectar [54] is an
Australia’s national research cloud that provides services to
Australian universities and researchers. The traces for the
Nectar Cloud are extracted from the real usage of resources
at the Monash University Nectar node. The Nectar cloud
workload pattern is consistent throughout the year.

Since we needed VM requests for our experiments, we
mapped Google’s job requests to generate VM requests
similar to [16], [32]. We used the first 504 hours of data to
compute the workload level probabilities and the last 7 days
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Fig. 4: The sequence diagram of the overall workflow of the system.
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(a) Google workload trace.
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(b) Wikipedia workload trace.
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(c) Nectar workload trace.
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(d) Renewable energy trace

Fig. 5: Workloads and a renewable energy trace used in the experiment

of data for the experiment. Fig. 5a shows the normalized
workload of VM requests generated based on the schedul-
ing algorithm in [12], [32] used in our experiments. We used
4231 as the peak number of VMs and scaled the workload
accordingly.

For Wikipedia workload, we used the requests from Oct-
14, 2007, which totaled about 2119.6M requests. We used
the first 504 hours of data to compute the workload level
probabilities and the next 7 days of data for the experiment.
We mapped these request traces to generate VM requests in
a similar way as done in [32]. We normalized the Wikipedia
workload shape to the peak and then matched its peak to
the peak of the Google workload to standardize the experi-
mental environment. Fig. 5b shows the normalized Wikipedia
workload trace used in our experiments.

The Nectar Cloud workload was collected over a longer
period of time, so we used the first 3600 hours of data
to compute the workload level probabilities and the next
7 days of data for the experiment. We normalized the
workload shape to its peak, and then matched it to the
peak of the Google workload to standardize the experimental

environment. Fig. 5c shows the normalized Nectar Cloud
workload trace used in this experiment.

5.2 Workload Level Probabilities
P (W (t)) represents the probability of achieving a specific
workload level W (t) at time slot t. It is calculated based on
historical data on a daily cycle. So, for a specific time slot
of the day (e.g., 10:00 to 11:00 am), it counts the number of
occurrences of a certain workload level in that time slot by
iterating over the historical data. The number of occurrences
is then divided by the total number of counts in all the levels
for that time slot to calculate the respective probability. This
results in a 10×24 probability matrix, where the rows rep-
resent the different workload levels and columns represent
the time slots of a day.

5.3 Solar Power Levels
We use hourly satellite data for solar irradiation falling
on a horizontal surface collected by the Australian Bu-
reau of Meteorology. We employ historical data for global
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Algorithm 2 Optimal expected reward for Algorithm 1

Input: all reachable states S in S, possible action A(S),
estimated transition probabilities at time interval t
Output: Optimal expected reward value

1: ε← error, γ ← Discount factor
2: repeat
3: O ← O′, δ ← 0,
4: for each state S ∈ S do
5: O′(S) = R(S,A)+γ ·maxA

{∑
S′ PA(S(t), S

′)×

O(S′)
}

6: if |O′(S)−O(S)| > δ then
7: δ ← |O′(S)−O(S)|
8: end if
9: end for

10: until δ < ε(1− γ)/γ
11: Return O′(S) as Oπ∗

(S(t)) for Algorithm 1 ▷ optimal
expected reward

horizontal solar irradiance (GHI) on an hourly basis over
25 years (1990 to 2014). We assume that the solar system
proportionately converts hourly GHI values to power. We
use the same hour of the day to compute the likelihood
of green power generation at a specific level P (G(t)). For
example, to compute the probabilities at level 6 at hour
11:00 am on January 30, 2015, we look at the historical data
over 25 years at 11:00 am on the same date. We count the
number of occurrences of attaining a certain level in that
time slot, and iterate over the historical data. We built our
MDP-based model with 10 equally-sized levels of power
generation, where the minimum level is 0 and the maximum
is 9.

5.4 Baseline Algorithms
Load Balanced (LB): This naive algorithm aims to dis-
tribute workloads evenly among the available hosts. The
algorithm selects the least loaded host to accommodate a
newly requested VM and does not take overbooking into
consideration. We use this widely used policy as a baseline
algorithm for comparison.

Best Fit (BF): This algorithm follows the best fit policy
and places VMs into the most loaded host that still has
the capacity to accommodate the VM. Like LB algorithm,
it applies zero overbooking and does not consider any VM
migration. This policy, along with additional constraints,
is also commonly used as a baseline for comparing with
modified strategies.

BF75 Algorithm: This policy is similar to the BF baseline
policy, but with a constant overbooking level of 75% for
all hosts. However, unlike the MDP-based policy, this one
overbooks the resources all the time, even when enough
renewable energy is available and hence not caring for Green
SLA. We will compare the results of this updated policy
to our dynamic overbooking algorithm to understand the
differences.

BF150 Algorithm: It follows a similar policy to the previ-
ous baseline policy, but with a higher constant overbooking
level of 150% similar to that used in the MDP-based policy.
We considered this policy as a lower-bound baseline. We

aim to compare the performance of our dynamically over-
booked algorithm to this lower-bound model that always
overbooks at the highest level.

Reactive based Green-energy-aware Best Fit with Mi-
gration (BFMig) Algorithm: This policy launches the VMs
similar to BF and then applies VM migration to reduce
brown energy usage when not enough renewable is avail-
able. A recent work [13] utilized a modified version of this
policy to compare their scheme. We modified this policy
as a renewable-energy-aware exploitation of VM migration
and consolidation to reduce brown energy use. This policy
measures the power use at each prefix time-slot and triggers
migrations to consolidate VMs that results in reducing the
power usage when not enough renewable is supplied. We
use this modified renewable-energy-aware policy for com-
parison.

In our research, we have considered discussed strategies
to compare with our proposed method. Among these, the
Load Balanced (LB) and Best Fit (BF) algorithms are com-
monly reported and utilized VM placement strategies for
managing cloud workloads, which we have used as baseline
algorithms to measure the efficacy of our proposed method.
Additionally, we have introduced two improvised baselines
that overbook without any consideration of renewable en-
ergy availability. It was necessary to understand the effects
with and without this awareness to evaluate the impact
of our proposed strategy. Therefore, we have incorporated
these two baselines, namely BF75 and BF150, in this section
for comprehensive analysis.

Furthermore, the current contribution presents a dy-
namic management of workloads optimizing the renewable
energy utilization searching over the entire solution space
rather than any updated dynamic strategy based on reactive
nature of changing the workloads and renewable energy
availability with the time. So, an updated strategy which
can reactively manage the resources with the presence of
awareness of renewable energy availability should be a
prominent test criteria. Therefore, we consider another up-
dated algorithm BFMig for comparison: a renewable energy-
aware, reactive, and dynamic strategy considering initial
VM placements, VM consolidation, and migration applied
with similar objectives. Recent work like [13] also utilized a
modified version of this policy to compare their scheme. We
modified this policy as a renewable-energy-aware synergis-
tic exploitation of initial VM placements, VM migration and
consolidation all together to reduce brown energy use.

5.5 Experimental Setup

The proposed algorithm are implemented in a simulation
environment, as described in [43], to evaluate their perfor-
mance. The simulation includes all the monitoring com-
ponents to handle variable renewable energy availability,
multiple energy supply sources, energy consumption for
Compute, Network, and Cooling subsystems, energy over-
head during migration activities, and dynamic overbooking
methods. The data center used in the simulation has 128
hosts connected by an 8-port fat-tree network topology
with 16 hosts per pod and 25°C cold air supply for the
cooling system. The energy consumption in the data center
is derived by the consumption of servers (260W on-peak),
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TABLE 3: Experimental setup table

Parameter description Value
The total number of hosts in the DC 128
Number of hosts under edge switch 4
Power consumption of host servers 260W
Power consumption of switch component 60W
Cold air supply temperature 25°C
Memory size of VMs 4GB
Number of VMs in a host 34
Number of levels in workload traces 10
Number of levels in solar energy traces 10
Number of levels in employed overbooking degree 6
Overbooking degree employed in each level 30%
Frequency of workload and energy traces in a day 24
Required model parameters as adopted from [45] a=0.0068

b = 0.0008
c = 0.458

Required model parameters as adopted from [50] a=0.512
b = 20.165

ρ value explained in Sec. 3.3.3 for general results 0.5
ρ value explained in Sec. 3.3.3 for results in Fig. 11 0.0 to 1.0
Overbooking ratio used in BF75 algorithm 75%
Overbooking ratio used in BF150 algorithm 150%
δt duration in time slots 1 hour

cooling components, switches (60W), VM migration activi-
ties using the energy models explained in Section 3.2.

Physical servers and VMs are assumed to be homoge-
neous in the setup. Each physical server has the capacity
to host up to 34 VMs at peak load without overbooking.
The energy overhead for migration activity is modeled in
Section 3.2.4 according to [49] and 4GB of memory, similar
to a popular medium-sized VM in OpenStack, is set as the
amount of data to be transferred over the network for a
single VM migration.

The experiments analyze the impact of 30% overbooking
for each level, with five such levels. The value of ρ is set to
0.5 for general results and the impact of varying ρ values
is presented in the Section 5.7.6. All simulations are run
on an Intel Core i7-8850H 2.6GHz × 12 core CPU 64-bit
computer with 32 GB of DRAM, running Ubuntu 18.04.3.
For experiments dealing with migration policy, the time
window to run a migration is set to 1 hour, so migration
is attempted as per our algorithm once every hour.

5.6 Performance Metrics
Absolute energy difference: This metric is used to measure
the difference between the consumed energy and gener-
ated renewable energy on an hourly basis. It is used to
evaluate how well the energy requirements are matched to
the supply of renewable energy. In the results section, the
summation of this metric over all days is reported to provide
a total difference. The value is computed thus:

T∑
t=0

δt ·
∣∣∣∣EC

t − EG
t

∣∣∣∣ (18)

where, EC
t is the consumed energy to serve the workload at

time-slot t, EG
t is the generated green energy at time-slot t,

and δt is the duration of the time-slot t, which is an hour in
this case. The goal is to minimize this metric.

Brown energy usage: Another main objective is to ana-
lyze the consumption of brown energy. To understand this
factor, we measure the consumed energy required from the

brown energy source (grid) for all considered algorithms.
This metric represents the total amount of brown energy
(EB) usage over all hours, as described in the following
equation:

EB =
T∑

t=0

δt ·MAX

{
0,
(
EC

t − EG
t

)}
(19)

where, EC
t , EG

t , and δt are similar to (18). This metric
provides the total amount of brown energy consumption
over all hours. The goal is to minimize this consumption.

Percentage of green energy usage: Another objective is
to analyze whether our MDP-based approach can utilize a
higher fraction of renewable energy. To evaluate this, we use
the metric “percentage of renewable energy usage” (Ep

G).
The percentage of renewable energy usage out of the total
energy consumed to serve the workload is measured by the
following equation. The denominator of (20) measures the
total consumed energy to serve the workload.

Ep
G =

(∑T
t=0 δt · EC

t

)
− EB∑T

t=0 δt · EC
t

× 100% (20)

where, EC
t , EB , and δt are similar to (18) and (19).

This metric provides the percentage of renewable energy
usage out of the total energy consumed to serve the work-
load. The goal is to increase this percentage, which means
to utilize more renewable energy.

Green SLA violations: We use overbooking to favor the
use of renewable energy, but our objective is not to use it
when sufficient renewable energy is available. Therefore,
instances where we employed overbooking while there was
sufficient renewable energy present as instances of a Green
SLA violation. We measure this metric as Green SLA Violation
Ratio (SLAGreen), which is quantified as the ratio of the
total instance-time (It) that the system remains overbooked
while there is enough renewable energy available and the
total instance-time. It is described in the following equation:

SLAGreen =

∑
Violated Time Slots O

d
t × It∑

All Time Slots It
(21)

where, Instance-time It measures the sum of the products of
duration and number of VM instances in the time slot t and
Od

t is the degree of overbooking level applied at the time
slot t.

This metric provides the ratio of the instances where the
system remains overbooked while there is enough renew-
able energy available. The goal is to minimize this ratio,
which means to avoid overbooking when there is enough
renewable energy available.

Our research is focused on the utilization of renewable
energy sources within data center infrastructure. We specif-
ically explore the foundational aspects of energy utilization
and environmental impact within data center operations.
Thus, our evaluation metrics are tailored to reflect this
specialized focus, with a primary emphasis on energy met-
rics, which inherently encompass carbon footprint and cost
considerations. For instance, the utilization of brown energy,
a widely accepted metric in green or sustainable computing,
serves as a straightforward indicator of the efficiency of
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approaches addressing this problem. Additionally, we intro-
duce a novel metric, Green SLA Violations, which addresses
the intersection of environmental sustainability and service
level agreements, an area we believe deserves attention in
modern data center management.

5.7 Experimental Results and Analysis
We describe experimental results in this section. To evaluate
the performance, we performed our experiment on our sim-
ulation setup (see Section 5.5) with the VM traces of three
workloads (see Section 5.1), each of 24×7 hours. Renewable
energy traces utilized for the experiment are described in
Section 5.3.

5.7.1 Brown Energy Consumption
The total brown energy purchased from the grid (brown
sources) in seven days for different algorithms are shown in
Fig. 6a, Fig. 6b, and Fig. 6c. Our proposed MDP-based ap-
proach results in about 2323kWh, 1379kWh, and 1688kWh
of brown energy consumed to serve Nectar, Google and
Wikipedia workloads, respectively. This is the closet to the
BF150 approach (about 1915kWh, 1062kWh, and 1506kWh
for Nectar, Google and Wikipedia workloads, respectively),
which achieves the best results by always overbooking the
system at the highest degree possible. Note that our pro-
posed MDP based approach applied overbooking in differ-
ent degrees as per the availability of green energy. However,
it still achieves substantially close results to the strategy that
always overbooks to the highest level, while outperforming
it in other metrics as discussed in the following.

5.7.2 Matching against Green Energy availability
This section demonstrates how the resource allocation
strategies of the algorithms perform in matching the re-
newable energy supply to serve the different workloads.
Our proposed MDP-based approach can allocate resources
in a way that can achieve a better match with the supply
of renewable energy. We measure the total absolute energy
difference on an hourly basis, as explained in Equation (18)
for seven days using three years of solar data for differ-
ent algorithms. Figures 7a, 7b, and 7c show the average
of total difference for seven days for different algorithms.
Our MDP-based approach results in the lowest difference
(about 2395kWh, 1731kWh, and 1967kWh for Nectar, Google
and Wikipedia workloads, respectively) and therefore out-
performs all other algorithms, including the BF150 approach
(about 2490kWh, 2014kWh, and 2327kWh for Nectar, Google
and Wikipedia workloads, respectively), which always over-
books the system at the highest degree possible. This trend
is consistent for all three types of workloads.

5.7.3 Utilization of Green Energy
One of the objectives was to analyze whether our MDP-
based approach can utilize a higher proportion of green
energy. We measured the percentage of green energy us-
age out of the total energy usage to serve the workload
based on Equation (20). The average of green energy us-
age percentage in seven days for different algorithms are
shown in Figures 8a, 8b, and 8c. Our proposed MDP-
based approach (about 41.3%, 49.5%, and 46% for Nectar,

Google and Wikipedia workloads, respectively) outperforms
the BF150 approach (about 37.1%, 41.5%, and 37% for Nectar,
Google and Wikipedia workloads, respectively) through its
varying levels of overbooking. This trend is consistent for
all three types of workload. More detailed comparisons are
presented in the next section for all three workload patterns.

5.7.4 Green SLA Violation Ratios
We analyzed the Green SLA violation ratios of algorithms that
employed overbooking in order to exploit its benefits for the
utilization of clean energy. We used Equation (21) to assess
the performance of these algorithms. The lower the ratio, the
less overbooking occurs when there is enough renewable
energy. We found that the violation ratio is the highest
for BF150 as this algorithm is unaware of green energy
availability and applied the highest level of overbooking
while sufficient renewable energy is available to serve the
workload. This trend is the same for all three workload
types. The average of the sum of Green SLA violations ratios
for the selected seven days from three consecutive years
shows that our proposed MDP-based algorithm results in
fewer violations than the overbooking-based baselines for
all three considered Nectar, Google and Wikipedia workloads.
Our proposed MDP-based algorithm always results in very
low violation as it decides and triggers the overbooking
ratio more accurately. The average sum of the seven days
is shown in Figures 10a, 10b, and 10c for Nectar, Google and
Wikipedia workloads, respectively.

It is worth mentioning that overbooking of resources
may lead to QoS degradation for end-users, such as delayed
response times. QoS degradation in general may increase
with higher overbooking levels, but the impact may vary
with the varying application types or utilization levels. An
experiment conducted in [55] measured how overbooking
may affect response time, and one service showed about 2.5
times increment (from about 31 ms to about 79 ms) in 75%
overbooking compared to no overbooking. Another service
shows nearly two times increment (from about 22 ms to
about 47 ms) from no overbooking to 75% overbooking. This
work does not report on the QoS degradation in essence, as
it is up to cloud clients (service providers) to decide how to
manage QoS for end users, determine acceptable levels of
overbooking, and whether the Green SLA is appropriate to
apply in a specific context.

5.7.5 Comparison of Improvements
We compared the performance of various algorithms across
three types of workloads and measured their relative perfor-
mance improvement over the naive LB algorithm in terms of
brown energy usage, absolute energy difference, percentage
of green energy usage, as shown in Fig. 9. Our proposed
MDP-based approach implements varying degrees of over-
booking based on the availability of renewable energy and
manages to reduce brown energy usage significantly (59.5%,
67.7%, 63.6% for Nectar, Google and Wikipedia, respectively).
BF150 achieve the best performance across all algorithms in
terms of brown energy usage due to its always overbooking
strategy at the highest level possible. In comparison, our
proposed MDP-based approach results in slightly higher
brown energy usage (7.1%, 7.4%, 6.9% for Nectar, Google and
Wikipedia, respectively) with significantly lower Green SLA
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Fig. 6: The average of total brown energy usage for various algorithms for all three workloads.
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Fig. 7: The average of total absolute energy difference (measured in hourly basis) for various algorithms for all three
workloads.
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Fig. 8: The average of green energy usage percentage for various algorithms for all three workloads.
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Fig. 9: Improvements in brown energy consumption, absolute energy difference, and green energy use normalized to the
naive LB algorithm for various algorithms for all three workloads.
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Fig. 10: Green SLA violation ratio of various algorithms for all three workloads. No Green SLA violation is reported for the
LB and BF approaches as they do not apply overbooking.

Workload
Type

Brown
energy

Absolute
difference

Green
energy

Nectar 59.5 58.2 79.0
Google 67.7 60.3 81.8
Wikipedia 63.6 58.4 77.4

TABLE 4: Comparison of improvements (%) in MDP based
algorithm for all three workloads compared to the naive LB
algorithm. MDP based algorithm shows promising improve-
ments in reducing the power use from the brown sources,
absolute energy difference (measure of how energy con-
sumption matched with renewable energy supply, bigger
value means better matching), and the proportion of green
energy usage to the total energy use, for all three workloads.

violations (As shown in Fig. 10). This performance is 58.1%,
35.3%, and 53.2% better than the baseline BF for Nectar,
Google and Wikipedia, respectively.The MDP-based approach
also results in the best match with the available renewable
energy by 58.2%, 60.3%, and 58.4% for Nectar, Google and
Wikipedia workloads, respectively. This is 56.8%, 34.1%, and
49.4% better than BF, and 1.6%, 6.5%, and 7.6% better than
BF150 for Nectar, Google and Wikipedia workloads.

The percentage of renewable energy use is significantly
higher for the MDP-based strategy (79.0%, 81.8%, 77.4%
for various workloads, respectively). It outperforms the
always most heavily overbooked BF150 strategy by 17.2%,
31.1%, and 34.1%, respectively. This improvement is more
significant when we compared our strategy with the BF
non-overbooking strategy (77.9%, 64.2%, and 71.9% respec-
tively). Our results demonstrate that the renewable energy
usage improvement is higher when the overall workload
is higher in the system. Hence, the Nectar workload, which
generates a consistently higher workload demand, produces
the best improvement in this case. A summary of these
comparisons is also shown in Table 4.
5.7.6 Impact of ρ
The trend lines displayed in Fig. 11a illustrate how
power consumption from brown energy sources varies with
changes in the ρ factor. The trend lines for all three work-
loads demonstrate that brown energy consumption gradu-
ally decreases as the value of ρ increases. This is due to the
fact that higher rewards are attained by using less brown
energy. However, achieving these higher rewards involves
adopting a higher degree of overbooking, which comes with
a risk of higher Green SLA violations. Upon analyzing the
results, we discovered that our algorithm was able to reduce
brown energy consumption to levels as low as BF150.

Fig. 11b shows how absolute energy difference (com-
puted by Equation 18) changes with varying ρ factor in the

MDP-based algorithm. The trend lines for all three work-
loads indicate that this difference decreases slightly after a
certain value of ρ, as higher rewards are achieved when
energy consumption is closer to, though still higher than,
the available green power.

Fig. 11c illustrates how the percentage of energy con-
sumption from green sources varies with ρ factor using the
MDP-based algorithm. The trend lines for all three work-
loads indicate that the energy utilization from green sources
slightly increases with higher values of ρ. This is because the
algorithm rewards situations that are more environmentally
friendly, with lower brown energy usage and higher green
energy utilization. Thus, a higher ρ value encourages greater
use of green energy sources.

Our findings regarding Green SLA violations align with
our other observations. As depicted in Fig. 11d, we ob-
served a direct relationship between increasing values of
ρ and higher levels of Green SLA violations, which can be
attributed to the increased levels of overbooking that are
encouraged by higher ρ values. This trend was consistent
across all three workloads, except for the Nectar workload.
This occurs because the energy consumption from Nectar
consistently exceeds the input of renewable energy gen-
erated, allowing for permissible overbooking at each time
slot. Consequently, there are fewer instances of violations
resulting from unnecessary overbooking.

5.8 Discussions
This section summarizes the notable advantages and lim-
itations of the proposed method compared to alternative
methods and discusses the challenges and difficulties in
applying it in real-world environments.

Key Advantages: The proposed method presents several
significant advantages over existing approaches that focus
on adapting data center loads to match the renewable en-
ergy supply. Firstly, our methodology is distinguished by
dynamically adjusting the degree of overbooking based on
the availability of renewable energy, eliminating the need to
reject any workload demand. This unique contribution has
not been previously explored in the literature.

Secondly, our proposed approach reduces overbooking
and over-subscription of resources when local renewable
energy generation is abundant, and it provides a framework
for flexible service level agreements based on the availability
of renewable energy.

Lastly, heuristic methods have limitations, such as their
inability to analyze the entire solution space effectively,
and their effectiveness heavily relies on the strength of the
heuristic within the context of the problem being solved.
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Fig. 11: Trend line of power consumption from brown energy sources, absolute energy difference, green energy use, and
violating Green SLA when serving Google, Wikipedia, and Nectar workloads with varying ρ value applied in reward
mechanism through MDP based algorithm.

Consequently, the performance of heuristic methods cannot
be guaranteed. In response to the non-deterministic variabil-
ity of workload demand and renewable energy supply, we
propose using stochastic processes to model these complex
phenomena accurately. By doing so, our approach offers a
more robust and effective solution than traditional heuristic
methods.

Challenges: This work promotes the use of on-site re-
newable generation to accelerate decarbonization and en-
able greener services, without the need for local energy
storage. This approach is particularly suited for small-scale
(micro) data centers located at edge locations, a market
that is rapidly growing [56]. This, however, is not with-
out challenges when putting the proposed method into
practice, including: a) dealing with the heterogeneity of
resources and applications in large-scale data centers, b)
the “curse of dimensionality” that our MDP-based solution
may confront, when the number of states and actions to be
considered grows exponentially with the increasing number
of dimensions or variables [57], c) the impact of aggressive
consolidation on the wear-and-tear, and lifespan of physical
servers due to frequent on-off cycles, and d) the MDP
approach necessitates prior knowledge of the probability
distribution related to the availability of renewable energy
and workload variations, which can be challenging to obtain
in some cases. Reinforcement learning methods such as
those mentioned in [28], which can operate effectively in
unknown environments, can address this limitation.

While large-scale data centers may comprise a variety of
heterogeneous servers and switches, devices in small-scale
data centers are more likely to be homogeneous. Therefore,
we focused on a homogeneous configuration and developed
our strategies for this simplified setting. However, our work
can be readily extended to model heterogeneous scenarios
as a finite set of homogeneous subsets, without compromis-
ing the general structure of the solution.

Our proposed MDP-based solution presents challenges
associated with the “curse of dimensionality” [57] [34], as
noted above. While our solution only has three dimensions
in states and one dimension in action, we discretize the
workload and energy into a few coarsely grained levels (e.g.,
10) to reduce the number of possible states and manage
complexity. As a result, the optimality of the decision-
making process is impacted by introducing bounded errors.
However, it is still important to carefully select variables
and use techniques such as dimensionality reduction to

ensure reasonable computational complexity when seeking
an optimal solution.

We conducted experiments using seven days of renew-
able energy data collected over three consecutive years and
real-world workloads. We varied the strategies while main-
taining the same experimental environment and achieved
promising results with our algorithm compared to alterna-
tives for all tested workloads in the proposed experimental
settings, which strengthens the validity of our conclusions.

Although our experiments were conducted in specific
settings, the overall trends remain consistent. We used
a realistic computing environment, including devices and
power consumption as described, and adopted all setting
values from highly cited publications using experimental
configurations from relevant domains and common prac-
tices, ensuring that our approach performs well in a real-
world scenario. Additionally, we compared our experimen-
tal results with baseline algorithms to validate that our pro-
posed algorithm’s performance was within a viable order
of magnitude. However, since the objective of an MDP al-
gorithm is to optimize performance over longer time spans
of operation, such a comparison cannot be considered as
a general measure of relative performance and may vary
based on the experimental design, experimental settings
and time span of experiments. To identify conditions where
MDP-based algorithms provide decisive performance ad-
vantages over greedy algorithms, a specific experimental
design would be necessary that falls outside the scope of
this work.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper addresses the challenge of powering cloud data
centers with renewable energy and proposes a framework
that dynamically manages resources and leverages work-
load and energy source information. The main issue we
address is determining when and in what capacity over-
booking of resources should be applied to better match
the power demand of the workload with the available
renewable energy supply. Our proposed approach, based
on a Markov Decision Process (MDP), effectively addresses
this issue. The proposed method stands out as unique by
dynamically adjusting the overbooking degree based on
renewable energy availability. It uses stochastic processes to
model non-deterministic variability, offering a more robust
solution than traditional heuristic methods. Our findings
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suggest that the proposed approach can significantly im-
prove the utilization of green energy and reduce the usage
of non-renewable energy.
In the future, we will investigate Reinforcement Learning-
based approaches to dynamically set optimal overbooking
levels, consider the addition of battery storage, and also
investigate prediction-based decision approaches.
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