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Abstract— Cloud service providers (CSP) and cloud consumers often need to forecast the cloud price to optimize their 

business strategy. However, pricing of cloud services is a challenging task due to its services complexity and dynamic nature of 

the ever-changing environment. Moreover, the cloud pricing based on consumers’ willingness to pay (W2P) becomes even 

more challenging due to the subjectiveness of consumers’ experiences and implicit values of some non-marketable features, 

such as burstable CPU, dedicated server, and cloud data center global footprints. Unfortunately, many existing pricing models 

often cannot support value-based pricing. In this paper, we propose a novel solution based on value-based pricing, which does 

not only consider how much does the service cost (or intrinsic values) to a CSP but also how much a customer is willing to pay 

(or extrinsic values) for the service. We demonstrate that the cloud extrinsic values would not only become one of the 

competitive advantages for CSPs to lead the cloud market but also increase the profit margin. Our approach is often referred to 

as a hedonic pricing model. We show that our model can capture the value of non-marketable features. This value is about 

43.4% on average above the baseline, which is often ignored by many traditional cloud pricing models. We also show that 

Average Annual Growth Rate (AAGR) of Amazon Web Services’ (AWS) is about -20.0% per annum between 2008 and 2017, 

ceteris paribus. In comparison with Moore’s law (-50% per annum), it is at a far slower pace. We argue this value is Moore’s law 

equivalent in the cloud. The primary goal of this research is to provide a less biased pricing model for cloud decision makers to 

develop their optimizing investment strategy. 

 

Index Terms—Cloud Characteristics, Time Dummy, Extrinsic, Intrinsic Variables, Hedonic Pricing,  

——————————      —————————— 

1 INTRODUCTION

RICING cloud computing has always been a big chal-
lenge not only to many Cloud Service Providers 

(CSPs) but also to many cloud consumers because of the 
exponential growth of new service features or characteris-
tics appear almost daily. Although pricing of cloud 
service delivery has often been drawn an analogy as a 
new public utility service [1], the underlying structure of 
cloud pricing is much more complicated than the 
traditional public utility services due to the rapid 
development of cloud technologies and multiple layers of 
service delivery models (or Anything as a Service: XaaS). 

As Weinman [2] had noticed, the utility pricing or Pay-
As-Your-Go (PAYG) is not the only possible model for 
the cloud. Some firms have begun to explore their mar-
keting strategy to support “pay-what-you-like”. He indi-
cated one of the important lessons that CSPs should learn 
from other industries is that relying on innovative cloud 
services and technologies is not enough. CSP has to also 
come up with new pricing models for their services. This 
means that CSPs should “move beyond competition just 
on price to competition on pricing.” The question of how 
to move beyond competition just on price leads to the 
idea of how to establish innovative pricing models for 
cloud services. The primary objective of cloud pricing 
model is to capture cloud service values along with its 
pricing variation as well as the dynamic nature of cloud 
technology development.  

Our observation shows that the revenue growth of 
Amazon Web Services (AWS), one of the leading global 
CSPs, has a positive correlation with its cloud characteris-
tics (See Fig. 1). This means various cloud service 
features, such as PAYG, burstable CPU, data center global 
footprint, GPU, one account for all location, etc. (Notice 
that the number of characteristics has been increased from 
just a few in 2006 to more than thousand in 2017 due to 
AWS’ continuous cloud innovation [24]). The basic ques-
tion is “Will the cloud characteristics impact its service 
price or customer willingness to pay (W2P)?” If so, what 
is the relationship between cloud characteristics and its 
service prices? Most importantly, how we can calculate or 
estimate the values of these characteristics. One of the 
solutions is a so-called hedonic model. The compelling 
reason to propose the hedonic model is that it can capture 
non-market values (extrinsic values) for the cloud ecosys-
tem and evolutionary characteristics that either directly or 
indirectly impact on its service prices. 

P 

 

Fig.1: AWS Revenue Expansion and Characteristics 
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Empirically, the basic premise or assumption of the 
hedonic function is that the product price difference is 
closely aligned with its characteristics (or features) varia-
tion. This means that if we can successfully establish a 
relationship between cloud service price differences with 
various cloud service characteristics, we will be able to 
estimate the price of cloud services accurately.   

Another advantage to consider the hedonic approach 
is that the cloud price can be modeled by the regression 
analysis for the cloud service features along with its price 
variation over a period. In comparison with other meth-
ods, such as survey-based or contingent valuation [3] or 
Delphi [4] method, hedonic regression approach is quick 
and cost-effective if the chosen dataset is sufficiently large 
for the regression analysis. Moreover, it can be easily up-
dated. It is a great fit for the cloud environment because 
of its ever-changing market conditions and rapid 
technological innovations. 

Historically, the hedonic model has two different ob-
jectives. One is to predict the future price of goods or ser-
vices that customers are willing to pay. This purpose of 
hedonic prediction is to help decision makers to make an 
optimized strategic decision. The other is a hedonic index, 
which is to establish a price ratio by comparing it with a 
price in a base period. The goal of the hedonic index is to 
monitor the price of either inflationary or deflationary, 
which is to verify what has happened in the past.  

In this paper, we mainly focus on hedonic prediction 
or estimation. In order to achieve a better estimation, we 
introduce the concept of both intrinsic and extrinsic vari-
ables for hedonic function model, which is inspired by 
G.E. Moore [9] as a solution for cloud pricing problem. 
The intrinsic variables of cloud instances are defined as 
cloud resources, such as memory, CPU, storage, and net-
work performance. They often appear as numerical vari-
ables. In contrast, the extrinsic variables can be anything 
from Burstable CPU, OpenStack compatible API, the 
global footprint of Cloud Data Center (DC), Mobile Ap-
plication, vertical scaling without a reboot, to even one 
account for all locations. They are binary or categorical 
variables. In this paper, we propose a pricing model 
based on hedonic principles to capture the values of both 
intrinsic and extrinsic variables. This can help both CSPs 
and cloud consumers to estimate cloud prices more accu-
rately. In addition, it explains the reasons why some mar-
ket leaders of CSP do not only compete based on the price 
of intrinsic value but also on the price of an extrinsic one. 
Our proposed model will help many cloud decision mak-
ers to understand the price differentiation. We believe it 
will become a practical tool in a price modeling toolbox 
for many CSPs and it will also provide a pricing tech-
nique for many cloud consumers to select the right CSP 
for their application need. In summary, we have made the 
following contributions: 

1) We articulate that cloud prices are dependent on 
both intrinsic and extrinsic variables according to the util-
ity theory. We have also demonstrated how to compute 
these extrinsic values practically.  

2) We construct a novel form of hedonic function for 

cloud pricing, which consists of three explanatory varia-
bles: intrinsic, extrinsic and time dummy. 

3) To the best of our knowledge, this is the first attempt 
to use the time dummy variable to correctly calculate Av-
erage Annual Growth Rate (AAGR) for cloud service. If 
we use AWS as a benchmark, it is about -20.0% per an-
num. This rate basically captures Moore’s law behaviors. 
It is also the first time to comprehensively describe the 
context regarding the hedonic model for the cloud pric-
ing. Moreover, it attempts towards pricing the cloud ser-
vices with both panel and cross-sectional datasets.    

4) We show that cloud price is declining but at a slow-
er pace than what Moore’s Law predicts for computing 
hardware [38]. We argue this slow pace is due to the non-
marketable pricing values (by alone these features have 
no value) namely, extrinsic variables or characteristics.  

5) We exhibit that our novelty pricing model can pro-
vide a good and simple solution to predict cloud price. 
We also show that a customer is paying more than a typi-
cal baseline service price (a standard configuration of 
cloud instance) on average for their business needs.  

This study uses AWS data in 2014 to generate a simple 
hedonic regression model. Based on this model, we 
estimate a cloud price (by an average configuration of 
cloud instance) in 2017 and then compare with the real 
price in 2017. Our results show that the model can predict 
with an average accuracy of 87%. We use AWS 10 years 
unbalanced panel (longitudinal) data to construct a he-
donic model with time dummy variables. According to 
this model, we can calculate the value of AAGR. By using 
AAGR, we can revise our estimation of cloud price. How-
ever, this price estimation does not take into a considera-
tion of the extrinsic variables. In order to capture the 
extrinsic values, we develop a comprehensive hedonic 
model to calculate the value of each extrinsic characteris-
tic based on the cross-sectional data of five CSPs. Finally, 
we update the estimated cloud price to achieve the much 
accurate results based on the particular type of workload. 

The rest of paper is organized as follows: Section 2 
provides the background information. Section 3 reviews 
related works and introduces the hedonic concept. It con-
sists of three parts: the empirical work of hedonic analy-
sis, the hedonic pricing model for computer prices and 
the hedonic model for cloud. Section 4 defines the hedon-
ic function for cloud pricing. Section 5 provides a 
performance evaluation. Section 6 analyses the results 
with detailed discussion. The final section draws 
conclusions and indicates the future directions. 

2 BACKGROUND 

To set the background, we consider a scenario where a 
Chief Information Officer (CIO) of a firm needs to make a 
strategic investment decision whether to build their own 
private cloud (on-premises) or just migrate IT workloads 
to the cloud provider (off-premises, either private or 
public cloud infrastructure). Assume that the firm has its 
own on-premises IT infrastructure that still supports its 
existing business applications and the book value of IT 
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assets that cannot be written off for the next 12 ~ 36 
months. 

In this discussion, we ignore other issues such as types 
of IT workload, migration cost and system lifecycle man-
agement (SLCM) cost. The fundamental issue can then be 
boiled down to “how can we estimate the future market 
price of cloud services for the next 12~36 months?”. The 
logic behind this line of reasoning is if we can successfully 
predict or estimate the cloud price along with its service 
features (or cloud characteristics) that the business re-
quires, we can select either building or buying or a hybrid 
solution for IT infrastructure. This means that if we can 
use the pricing model to predict the future price of cloud 
services accurately, we can help the CIO to develop a bet-
ter IT investment strategy. However, cloud pricing 
modeling is much more complicated due to hedonic na-
ture of many of its characteristics or features.  

The term “hedonic” or “hedonism” was derived from 
a Cyrenaic parable in ancient Greek. It literally means 
“The Choice of Pleasure” [5] in contrast to “pain”. Eco-
nomically, the connotation of hedonic is the meaning of 
gain, which is opposite to lose. From a cloud consumer 
perspective, hedonic values can be interpreted as some 
implicit benefits that are derived from specific cloud 
characteristics offered by a particular cloud service. Of-
ten, these service values are not only dependent on its 
intrinsic variables but also many extrinsic variables. 

Traditionally, the price of any given cloud service (typ-
ically IaaS) is often determined by its cost components or 
required resources. It is referred to as cost-based pricing. 
With cost-based pricing, one of the disadvantages is that 
it cannot capture many cloud service characteristics. The 
other conventional approach to pricing is based on sup-
ply and demand, which is dependent on the market com-
petition or the existing market conditions. We often call it 
market-based pricing. Unfortunately, many innovative 
services and cutting-edge technologies do not have an 
existing market to decide the price of goods. In contrast, 
the hedonic pricing model can overcome these issues to 
some extent because it can capture both intrinsic values 
(resource costs) and extrinsic values (service characteris-
tics) and can estimate the missing or future price based on 
the existing market [46] [31]. This way, we can present a 
hedonic based pricing model to CIOs to estimate the fu-
ture cloud price accurately. (Table 1 lists all the acronyms 
used in this paper.) 

3 RELATED WORK 

The modern hedonic theory can be traced back to the 
founder of modern utilitarianism, Jeremy Bentham [6]. In 
Bentham’s view, the hedonic value is the sensational 
pleasure. He identifies seven main variables (IDCNPFE) 
to calculate hedonic values. We show these values and 
their relevance to cloud computing values in Table 2.  

In contrast to Bentham’s view, John Stuart Mill [7] em-
phasized a higher level of intellectual happiness, which 
differs from Bentham’s pure hedonic value. He stated, “It 
is better to be a human being dissatisfied than a pig satis-
fied; better to be Socrates dissatisfied than a fool satis-
fied.” In today’s a cloud pricing term, Mill’s hedonic val-
ue means to pursue a good result for business applica-
tions while Bentham’s hedonic value emphasizes to max-
imize the number of cloud service characteristics for the 
maximizing number of cloud customers.   

G.E. Moore [8] divided the hedonic values into two 
kinds: intrinsic (or non-instrumental) and extrinsic (or 
instrumental) [9]. This is Moore’s significant innovation 
to hedonic theory. The concept of intrinsic value means 
that something is good or valuable on its own and the 
value is independent of others. For example, RAM, CPU, 
and storage can be considered as intrinsic values. In con-
trast, the extrinsic value is determined by the relationship 
to others, such as PAYG, burstable CPU and 24X7 sup-
ports, which are dependent on RAM and CPU. G.E. 
Moore’s concept of intrinsic and extrinsic values under-
pins our hedonic model. 

3.1 The Empirical Hedonic Analysis 

The empirical hedonic analysis had been adopted as 
early as the 1920’s. Zvi Griliches [10] generalized the he-
donic regression model along with a semi-logarithmic 
form for the vehicles’ application in the 1960s. Griliches 
noticed many practical issues of the hedonic model analy-
sis [31]. One of them was “How should the regression 
framework be expanded, what variables should be added 
to it, so as to keep the resulting estimates stable in facing 
of changing circumstances?”. He emphasized the essence 
of hedonic analysis is to estimate the “missing” prices or 
values due to quality or characteristics change, which 
influences our hedonic models for the cloud pricing.  

TABLE 2 
Bentham’s Seven Hedonic Variables Relevant to Cloud 
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TABLE 1 Acronyms Used in this Paper 

 

Bentham’s Hedonic
Variables (IDCNPFE)

Bentham’s Definition Value Range Hedonic Values Relevant to Cloud  

Intensity (I)
the amount of quality for 

pleasure or pain
0-10 Quality of Services

Duration (D)
how long the pleasure or pain 

will last
From minutes to 

weeks
Usage Time

Certainty (C)
the probability of the pleasure 

or pain will occur
0 – 100% Certainty of price discount

Nearness (N) how far off in the future Now – Years When discount price starts & ends

Purity (P) how the decency of pleasure 0-100%
Dependent conditions to obtain 

cloud  service

Fecundity (F)
the probability of reproducing 

the pleasure or other 
pleasures

0-100%
Probability of having discount price 

& more cloud service  features 
continuously in future

Extent (E)
the number of people will be 

impacted by the pleasure
One or Many

Number of people can share the  
Cloud services

Acronym Definition Acronym Definition

AAGR Average Annual Growth Rate I/O Input / Output

API Application Programming Interface IaaS Infrastructure as a Service

AWS Amazon Web Services OLS Ordinary Least Square

CAGR Compound Average Growth Rate PAYG Pay As You Go

CIO Chief Information Office RAM Random Access Memory

CSP Cloud Service Providers SLCM System Lifecycle Management

EBS Enterprise block Store SSD Solid State Drive

EC2 Elastic Compute Cloud vCPU Virtual Central Processing Unit

ECU Elastic Compute Unit VM Virtual Machine

GCP Google Cloud Platform W2P Willingness to Pay

GPU Graphic Processing Unit XaaS Anything as a Service

HDD Hard Disk Drive YoY Year on Year
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3.2 Hedonic Model for Computer Price 

In addition to the property and automobile applica-
tions, another popular application of the hedonic model is 
computer hardware, such as a mainframe, workstation, 
and personal computer. Since later 1970s, there have been 
countless publications regarding of hedonic price index of 
workstation and Personal Computer (PC). One of the ear-
lier works was contributed by R. Michaels’ [11]. He 
demonstrated how to establish a hedonic function with 
CPU performance, memory size, the speed of I/O, stor-
age capacity and high-speed storage characteristics plus 
brand name and time dummy variables. Based on the 
regression analysis, the paper indicated that brand name 
had an insufficient impact on implicit prices and the de-
viation of quality-adjusted prices is smaller for the high-
end computer equipment. The main conclusion of the 
paper was “observed price variations to be consistent 
with the economic theory” (value for money).  

For the same topic, Cole et al. [12] presented and com-
pared different PC hedonic price indexes with matched-
model index and demonstrated that the traditional 
matched-model index is inadequate for PC product be-
cause the index excluded many new replacement PC 
models due to rapid technology improvement in PC in-
dustry. However, the authors did not give an explanation 
for why was the reason for PC price deflation. 

Ernst R Berndt and Zvi Griliches [13] separated the 
price-decreasing problem into two issues: one is a price 
index and the other is the ratio of performance against 
price. They provided a variety of price indexes to serve 
the purpose of the deflation explanation for the 
microcomputer. The indexes were a kind of benchmark to 
measure “a technological frontier in the PC market” 
based on an unbalanced panel data. The paper reported 
testing results with various hedonic regression models, 
especially leveraging many dummy variables, such as 
year, vintage, process bit-length and age of PC. One of the 
apparent results was the PC price was decreasing alt-
hough the quality of the PC was improving. Moreover, 
the authors noticed the issue of the parameters of the 
regression model has high variances and is unstable. The 
decision to select a set of variables from a pool of charac-
teristics was arbitrary.      

In contrast to many indexes oriented hedonic analysis, 
Rao et al. [14] mainly addressed the issue how to econom-
ically analyze information system (IS), which is how to 
acquire workstation hardware in the 1990s for many large 
organizations. The authors presented a hedonic function 
in the Box-Cox [15] transformation form (Equation 1) in 
order to extract a pattern between prices and the hard-
ware characteristics. 
𝑦𝜆 − 1

𝜆
= 𝛽0 + 𝛽1

𝑥1
𝜆 − 1

𝜆
+ 𝛽2

𝑥2
𝜆 − 1

𝜆
+⋯+ 𝛽𝑛

𝑥𝑛
𝜆 − 1

𝜆
 (1) 

   where y is the workstation price, 𝑥𝑖
𝜆 is the workstation 

ith characteristic. 𝛽1⋯𝛽𝑛 are the coefficients, 𝛽0 is the in-
tercept value.  is the transformation power parameter. 
The authors had noticed there were many difficulties to 
construct a hedonic function form, some of which still 
exist for determining cloud service pricing. These issues 

include: 
1) How to aggregate the characteristics of a good or ser-

vice at a box level. 
2) How to specify the characteristics in detail.  
3) How to select each characteristic that can reflect both 

customers’ values and resource costs. 
4) How to handle the evolutionary characteristics. 
5) How to trace and measure these characteristics at the 

box level. 
6) How to apply the hedonic model or appropriate he-

donic function at the box level. 
In comparison with Rao’s hedonic model, Pakes’ paper 

[16] demonstrated a relatively easy way to construct a 
hedonic model from an index perspective. Parkes’ empir-
ical results show that PC’s hedonic price had a sharp de-
cline while the traditional matched model exhibited the 
near-zero values. According to Hulten [17], Pakes made 
three major contributions to the hedonic analysis: 

1) The coefficients of hedonic function are not always 
fixed over time. Moreover, the sign of the coefficient 
is not necessary to be positive. In other words, some 
product’s characteristics may have a negative impact 
on the overall hedonic values. 

2) Two hedonic functions of the same product could be 
different from each other. 

3) Each hedonic function is sufficient to make a quality 
judgment. 

In addition, Pakes’ theory of hedonic function is much 
easier to be grasped in comparison to other forms that 
have too many “restrictive assumptions.” It can be 
directly derived from the theory of microeconomics [18], 
which the hedonic price reflects the price elasticity. Let 
(𝑥𝑖 , 𝑝𝑖)  denote the characteristics and the price of the 
product “i” and 𝑄𝑖  is the quantity of demand of the prod-
uct. Note 𝑄𝑖  is dependent on the price 𝑝𝑖  and 𝑥𝑖. We can 
graphically show the product’s price in Fig. 2. 

From the Lerner index, we should have the Equation 
(2) [19]: 

𝐿𝑖 =
𝑝𝑖 −𝑚𝑐

𝑝𝑖
=
1

𝜖𝑖
 (2) 

where “𝑝𝑖” is a market price of the product, and “𝑚𝑐” is 
the marginal cost for the product and 𝜖𝑖 is the elasticity. 
From microeconomics theory [18], the elasticity can also 

  

Fig.2: Theoretical Interpretation of Hedonic Price 
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Marginal cost Markup price
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be represented using equation (3):  

𝜖𝑖 =  |
𝑝
𝑖

𝑄
𝑖

𝜕𝑄
𝑖

𝜕𝑝
|  (3) 

From (2) and (3), we have the equation (4): 

𝑝𝑖 = 𝑚𝑐 +
𝑄𝑖

|𝜕𝑄𝑖/𝜕𝑝|
 (4) 

Subsequently, the hedonic function can be written as: 

ℎ(𝑥𝑖) ≡ 𝐸[𝑝𝑖|𝑥𝑖] = 𝐸[𝑚𝑐|𝑥𝑖] + 𝐸 [
𝑄𝑖

|𝜕𝑄𝑖/𝜕𝑝|
| 𝑥𝑖] (5) 

This equation consists of both marginal cost (first term) 
and markup price (second term). The first term is also 
dependent on customers’ demand. The challenging ques-
tion is how the first and the second terms interact with 
each other and how to calculate the market price. 

Fortunately, we can use the regression analysis as an 
empirical tool to estimate the relationship between the 
response variable (cloud price) and explanatory variables 
(cloud characteristics). This is the basic idea of the 
hedonic approach. The idea of predicting hedonic price 
has been consolidated by Haas, Court, and Waugh and 
theorized by Lancaster [20] and Rosen [21]. According to 
Brachinger [22], the functional relationship of hedonic 
prices can be defined as: 

𝑀𝑊𝑇𝑃 =
𝜕𝑝

𝜕𝑥𝑖
(𝑥) =

𝜕ℎ

𝜕𝑥𝑖
(𝑥), (𝑖 = 1⋯𝑘)   (6) 

where “MWTP” is the marginal willingness to pay, “p(x)” 
is the price function, “h(x)” is the hedonic function. 𝑥𝑖 is 
the characteristic of a product. Practically, there are four 
common types of hedonic forms (linear, semi-log, log-log 
or Cobb-Douglas and logarithmic, see Table 3). But, as 

both Rosen and Halvorsen et al. [25] indicated that “The 
appropriate functional form for the hedonic equation 
cannot in general be specified on theoretical grounds”. 
This means that a practical solution to select a particular 

function form is really dependent on a dataset in hand, 
which is to examine which function form to be goodness-
of-fit with a collected dataset. Halvorsen proposed a sta-
tistical procedure to select a functional form with a Box- 
Cox methodology that is basically to use likelihood ratio 
to examine the appropriateness of the alternative func-
tional forms. However, Cassel et al. [26] argued that Box-
Cox transformation is inadequate for the purpose of pre-
dicting hedonic prices because: 
1) It is not necessary to increase the accuracy of price pre-

diction. In fact, it could lead to a poorly estimated re-
sult, which it had been demonstrated by Rao [14]. 

2) The collected data may contain some negative values, 
but the traditional Box-Cos function does not allow any 
negative values because any negative number raised to 
non-integer real power would become imaginary. 

3) Because the mean predicted the value of the untrans-
formed dependent variable is not necessary to be equal 
to the estimated mean that has been transformed. As a 
result, the nonlinear transformation will introduce a bi-
as for the untransformed variable.  

Overall, the nonlinear transformation results would be 
challenging to be explained. 

3.3 Hedonic Model for Cloud Price 

To the best our knowledge, only limited studies of he-
donic analysis had been conducted for cloud pricing, alt-
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TABLE 3 Common Regression Function Forms for Hedonic Analysis 

 
Function form Regression Equations Lerner Index (Inverse of elasticity) Hedonic Price

Linear

Quadratic

Cubic

Semi-log Intrinsic 

& Extrinsic & 

Time Dummy

Exponential or 

Semi-log

Semi-log + 

Dummy Variable 

Power or Double 

log ( or  Cobb-

Douglas model)

Logarithmic



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2858266,
IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, MANUSCRIPT ID 

 

hough the hedonic model has been widely applied in oth-
er industries, such as real estate, automobile, hotel, 
airline, and recreation. El Kihal et al. [27] were among the 
first presented a simple hedonic analysis regarding Infra-
structure as a Service (IaaS) clouds. The result of the 
hedonic analysis is not compelling because the adjusted 
R-squared was 43% (IBM). Nevertheless, they initiated 
the hedonic model for further study of cloud prices. Mi-
tropoulou et al. [41] [45] provide a hedonic price index for 
cloud price comparison purposes among 23 CSPs.  

In summary, previous studies left a large gap of he-
donic modeling for the cloud pricing in term of exploring 
different alternative hedonic forms, reducing regression 
errors, increasing R-squared values and adding practical 
values for cloud decision makers. In this paper, we show 
how to overcome many of these issues. 

4 HEDONIC FUNCTION FOR CLOUD PRICING 

4.1 Hedonic Function 

By the extension of previous research for cloud prices, 
we first define the simplest hedonic function form of line-
ar regression using OLS (Ordinary Least Square) method 
for our initial test. It can be directly interpreted as the 
mean coefficient values multiplied by independent varia-
bles (a vector of cloud characteristics) plus an error term: 

𝑝(𝑋) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ε       (7) 

where 𝑋 = (𝑥1, 𝑥2, . . , 𝑥𝑘), 𝑥𝑖 are independent variables and 
also a vector to represent different cloud characteristics, 
such as RAM, CPU core, virtual CPU, storage size and 
network bandwidth. The “k” is the number of cloud char-
acteristics. “p” is a dependent variable to represent cloud 
instance price, which can be observed from CSP’s web 
price catalog. Both independent and dependent variables 
are numerical values. 𝛽𝑖 is the linear coefficient and 𝛽0 is 
the interception point of the linear equation and ε is the 
error term or noise. The issues of the linear model are: 
1) It may create substantial errors because of underfit-

ting. The previous analytic results [27] demonstrated 
the R-squared value could be as lower as 46%.  

2) This model cannot capture the price change due to 
time variation for the unbalanced panel data. In other 
words, it is impossible to measure the price change 
along with the temporal domain. 

3) This model also ignored extrinsic features. 
4) Moreover, some of the cloud characteristics provided 

by each individual CSP, such as dedicated server, 
burstable CPU, and OpenStack API cannot be captured 
due to the binary nature of these features. Therefore, it 
could lead to inaccurate price estimation. 
In order to overcome these issues, we have to develop 

much sophisticated hedonic function forms to minimize 
the regression errors based on the collected datasets. 

4.2 New Hedonic Function Form 

One of the solutions to minimize regression error due 
to time dependency is to add another independent varia-

ble for the unbalanced panel data, namely time dummy 
or indicator variables to the OLS equation. This variable 
can capture the chronological influence of the cloud pric-
es. As a result, the equation (7) would become the equa-
tion (8) as:  

𝑝(𝑋) = β0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛿𝑡𝑑𝑡

𝑇

𝑡=1

+ ε      (8) 

𝑋 = 〈𝑥1⋯𝑥𝑘 , 𝑑1⋯𝑑𝑇〉, 𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

Here, 𝑑𝑡 is the time dummy variable. Often, the unit of 
T is the number of years. 𝛿𝑡 is the coefficient value. ε is the 
error term that generates by both numerical and binary 
variables.  

Furthermore, in order to capture the categorical varia-
ble of cloud service characteristics we separate all cloud 
characteristics into two categories, namely intrinsic and 
extrinsic characteristics. The intrinsic characteristics are 
closely associated with cloud infrastructure cost. They 
often appear to be the continuous variables. In contrast, 
the extrinsic characteristics are the binary variable. It 
means that CSPs can either support or not for a particular 
cloud instance. These service features will only add val-
ues to the customers when some intrinsic cloud character-
istics are enabled. Let alone they often have no instru-
mental values to customers. Subsequently, we can devel-
op further the equation (9) to be as following: 

𝑝(𝑿) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

+∑𝛿𝑡𝑑𝑡

𝑇

𝑡=0

+ ε, (9) 

𝑿 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑗 , 𝑑1⋯𝑑𝑇〉 

𝑧𝑗 ∈ {0,1},   𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

 where 𝑧𝑗is the binary variable (In general, 𝑧𝑗 can be a cat-
egorical variable.) that represents extrinsic cloud charac-
teristics j and “l” is the number of the extrinsic character-
istics. 𝜉𝑗  is the coefficient of the binary variable. ε is the 
term of combination errors for both intrinsic and extrinsic 
characteristics plus time dummy variable. If we take the 
derivative of equation 9, we should have a vector of de-
rivatives. 

 
𝛻𝑝(𝑋) = [𝛽1 𝛽2⋯ 𝛽𝑘   𝜁1 𝜁2⋯𝜁𝑙   𝑑1 𝑑2⋯𝑑𝑇 ]

𝑇        (10) 
 

Intuitively, the extrinsic cloud characteristics are simi-
lar to spatial fixed effects in the property data application. 
As Kuminoff et al. [34] suggested adopting a combination 
of spatial fixed effects, quasi-experimental identification 
and temporal controls would provide an unbiased result 
because of many unobserved characteristics. If all 
characteristics are explicit, Cropper et al. [35] suggested 
that linear and quadratic Box-Cox forms would produce 
the best results.   

However, Triplett [28],[29] Griliches [30] and Gordon 
[32] indicated that the semi-log form has frequently 
emerged as “best” in hedonic function form tests. As a 
result, we can rewrite the equation (9) as a semi-log form. 
It can handle the substantial prices variation of cloud in-
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stances for a long-time period. 

ln [𝑝(𝑋)] = 𝛽0 +∑𝛽𝑖𝒙𝒊

𝑘

𝑖=1

+∑𝜉𝑗𝒛𝒋

𝑙

𝑗=1

+∑𝛿𝑡𝒅𝒕

𝑇

𝑡=1

+ ε,   (11) 

𝑿 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑗 , 𝑑1⋯𝑑𝑇〉 

𝑧𝑗 ∈ {0,1},   𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

Transformations will make sense if the dataset has the 
following features [33]: 

1) The variance of the errors is unequal or heterosce-
dasticity. 

2) The ratio between max and min is greater than 5. 
3) The scatterplot of dependent and independent vari-

ables is curved. 
4) The data points are skewed, which the data has a 

long right tail. 
5) All values are positive. 
Generally, the transformation will consider the re-

sponse variable (cloud instance price) first and then both 
explanatory and response variables. Another solution to 
reduce the regression errors is to develop a polynomial 
regression formula, which is to add multiple high order 
terms for the independent variables if the collected 
dataset shows that the relationship between dependent 
variable (cloud price) and independent variables (cloud 
service characteristics) is not linear.    

We considered a variety of hedonic function forms, as 
shown in Table 3, to minimize estimated errors.  

5 PERFORMANCE EVALUATION 

5.1 Datasets and Assumptions 

5.1.1 AWS Panel Data 

The AWS panel data comes from two sources: 1) inter-
net archive [23], 2) Amazon annual reports [24]. The data 
was recorded or sorted based on the time sequence that 
AWS released a new service catalog every time.  

Although Amazon started its AWS business as early as 
in 2006, AWS had a limited number of characteristics for 
its cloud services. Most of them belonged to intrinsic 
characteristics. In fact, AWS did not offer the cloud ser-
vices to the general public until 2007. Consequently, the 
cut off time for the panel data test began in 2008. In the 
beginning, AWS offered only four instances to the public. 
Later, AWS gradually added more types of cloud instanc-
es to its service catalog. Each instance has a particular 
configuration, Application Programming Interface (API) 
name, and its price tag. After 2013, AWS superseded 
some previous generation of Elastic Compute Cloud 
(EC2) and replaced with a current generation of instances. 

AWS pricing catalog is evolving from time to time due 
to the innovation of cloud technologies and pricing mod-
els. Some intrinsic variables are mixed with numerical 
and categorical values. Moreover, AWS sometime chang-
es its CPU measurement in response to the cloud market 
competition [36]. Therefore, we have made the following 
assumptions in order to simplify the AWS panel dataset:     

1) For optimized instances, AWS uses HDD for d-serial 
instance and Non-Volatile Memory (NVMe) SSD for i3-
serial instance. The rest of the instances are either SSD or 
EBS only. In order to simplify the calculation, we assume 
these different characteristics of instance storage to be the 
same as HDD, in term of unit cost.  

However, the prices of SSD, NVMe SSD and HDD are 
different in the market. So, this assumption will contrib-
ute the certain price variations in our analysis.  
2) The networking performance in the AWS catalog is 
mixed with numerical and categorical variables. As a 
result, we unified all variables with the same numerical 
unit, which the category of very low is equal to “1”, “low” 
is equal to “2”, “low to moderate” is equal to “3”, 
“Moderate” is equal to “4”, “high” is equal to “5” and 
“Up to 10 GBits” is equal to “6”. This assumption might 
also create some errors because “1” might not be neces-
sarily equivalent to 0.1 GBits link.   
3) AWS has two different types of instance prices for two 
operation systems: Linux and Windows. For this paper, 
we only use Linux price on-demand. The price ratio of 
Linux and Windows is ranging between 1.00 and 2.05. It 
is dependent on the size or capacity of the instance. AWS 
provides customer long-term subscription discount if 
cloud customers have a long-term commitment, which is 
so-called “reserved price”. This is another aspect of the 
problem that will be dealt with separately in other 
research. 

5.1.2 Computer Hardware Data 

In order to make a price comparison between cloud 
service (IaaS) and general computer hardware with the 
influence of Moore’s law, we include the general comput-
er hardware market data of CPU, GPU, SSD, flash 
memory, storage, Hard Disk Drive (HDD) [47]. There 
have been some other works [39] [40] [44] for cloud price 
comparison, but they only focused on the cloud compute 
or storage resources in isolation. Our study takes into 
account all dependent variables.     

5.1.3 Cross-Sectional Data 

The cloud characteristics are released by different CSPs 
almost daily. Capturing all cloud characteristics is 
impossible. Due to the limitation of the dataset, we only 
have the total of 55 extrinsic cloud characteristics. Among 
them, 48 are considered to be the typical cloud character-
istics, such as Pay-As-You-Go, Web interface, API, and 
Free-Transfer-In, which nearly all CSPs provide these 
common characteristics for their service. As a result, they 
have become the baseline of extrinsic cloud characteris-
tics. In this study, we limit the number of extrinsic charac-
teristics for our analysis because some of the extrinsic 
characteristics are insignificant (p-value > 0.05) such as 
vertical scaling without a reboot, OpenStack-compatible 
API and backup snapshot due to a limited number of data 
points. Furthermore, each CSP started the cloud business 
at the different time. Some of them just launched the 
cloud business recently. 
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5.1.4 All Cloud Instances of Five Leading CSPs  

According to the latest Gartner’s magic quadrant mar-
ket report for the public cloud of IaaS [37] AWS, Mi-
crosoft and Google are the market leaders and Rackspace 
is one of the challenges and closely follows these three 
(see Table 4). Linode is one of the leading competitors in 
US IaaS market. 

Note that some of the extrinsic characteristics add extra 
costs for the cloud services, for example, 10-node Hadoop 

cluster would have the extra cost of 0.15/per hour. In 
order to make a fair and horizontal comparison among 
different CSPs, we only track some extrinsic cloud charac-
teristics across the board, which have no extra charge for 
an instance price. We assume CSPs do not charge an extra 
price for their baseline service configuration in their price 
catalog. These extrinsic characteristics of cloud service 
often have the binary values, which are either 0 or 1. 

5.2 Test Design, Roadmap and Results 

We start with the 1st test that is designed to analyze the 
cloud instance price. We adopt AWS cloud catalog da-
taset for the 2014 year (see Section 5.2.1). It is a simple 
OLS test. The purpose of this test is to examine the rela-
tionship between cloud instance prices (on-demand price 
for Linux OS) and its intrinsic characteristics. According 
to AWS, ECU (virtual server) resource is equivalent to 
CPU capacity of one 1.0-1.2GHz 2007 Opteron or 2007 
Xeon processor. However, AWS has quietly adopted the 
unit of vCPU measurement in 2014. Each vCPU would 
correspond to a hyperthread of Intel Xeon core (clock 
speed) except t-serial instances. The purpose of a 
hyperthread technology is to increase CPU performance 
by sharing the computational workload among multiple 
cores. The value of ECU usually is higher than vCPU 
except for t-serial instances. 

The second test consists of time dummy variables 
based on AWS unbalanced panel dataset between 2008 
and 2017 (as discussed in Section 5.2.2). This test is an 
extension of the OLS. However, we add the second and 
third order polynomial terms into the linear equation in 
order to increase R- squared and reduce p- values.  

The last test is to compare cloud instance prices among 
five different CSPs based on the cross-sectional dataset in 
2017. This test is designed to add the extrinsic variables 
into the hedonic function form. It is to analyze the impact 
of cloud extrinsic characteristics on the price of baseline 
instance configuration (as discussed in Section 5.2.3). A 
roadmap of these three tests is illustrated in Fig 3, which 

illustrates how we demonstrate the cloud extrinsic char-
acteristics. In doing so, we report some performance and 
decision parameters of the preliminary models and then 
the full cross-sectional data for the final model.      

We used R and R Studio to implement both panel data 

and cross-sectional data regression analysis. 

5.2.1 AWS Instance Price Test 

According to our test design, we construct a simple 
linear regression model between Linux on-demand price 
and six explanatory intrinsic variables and then have a 
normality test and residual plots with instance price for 
the dataset. 

Both R-squared and adjusted R-squared values are 
about 0.82-0.83 so that OLS only explains 82% of data 
points. Based on both the normality test and residual 
plots, we can see two outlier data points. These outlier 
points may cause regression errors. If we excluded these 
two points, the R-squared values could be increased.  

We also notice that the coefficient of both vCPU and 
Bit (Architecture 32-bit or 64-bit) is negative. This may 
also be triggered by the regression errors. By excluding 
the new large GPU instances or outlier data points, we 
can improve the residual values of this OLS dramatically. 
The R-squared values are lifted to about 93% (Table 5).  
Note: “*”means a significant code of p-value, “***”= p<0.001, “**”= 

p<0.01, “*”= p < 0.05    

Furthermore, the p-values of ECU, CPU, and Bit be-

come insignificant. The test has proved the Gartner’s 
claim [36], which AWS quietly shifted from ECU to 
vCPU. Therefore, we can safely exclude ECU and CPU as 
independent variables with limited impact on R-squared 
and adjusted R-squared values. By extracting hidden val-
ues from the intercept (or beta zero), we can transform it 
to a semi-log form and add polynomial higher order 
terms into the OLS equation (as shown in Table 6).  

 

Fig.3: Simple Roadmap of Three Tests  

TABLE 4 
Five Leading Public Cloud Service Providers 

 

TABLE 5 
The Linear Form of Hedonic Function for 2014 
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OLS Test (Temporary 
Results)

Time Dummy or Panel data 
test (Temporary results)

Cross Sectional data test 
(Final Result)

Section 5.2.1 Section 5.2.2 Section 5.2.3

AWS 2014 price catalogue
Predict  2017 price

AWS 10 Years Prices
Modified by AAGR

Five  CSPs’ Prices
Corrected by Extrinsic Variables

Coefficients Estimated  Std. Error t-value Pr(>|t|)

Intercept -0.3377 1.06E-01 -3.176 0.00186 ** 

RAM 0.0049 3.98E-04 12.326 < 2e-16 ***

VCPU 0.0181 5.94E-03 3.044 0.00283 ** 

Storage 0.00005 8.42E-06 5.897 3.01e-08 ***

network performance 0.1755 2.67E-02 6.586 1.02e-09 ***

Residual standard error: 0.5949 on 130 degrees of freedom

Multiple R-squared:  0.9273,    Adjusted R-squared:  0.9251 

F-statistic: 414.8 on 4 and 130 DF,  p-value: < 2.2e-16

Name of CSP

No of 

Instances 

prices

No of baseline 

Characteristics

No of Host 

Domains (30-

Jan-17)

No of Host 

Domains (30-

Mar-17)

AWS 76 48 948,207 1,015,002

Microsoft Azure 69 48 142,854 149,175

Google Cloud Platform 21 48 599,846 630,117

Rackspace 19 48 504,624 487,827

Linode 14 48 210,106 220,717
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One issue with the linear form is that the absolute val-
ue of the intercept  𝛽0 (-0.338) is the highest in comparison 
with other 𝛽𝑖 (or hedonic) values. A practical interpreta-
tion of this negative 𝛽0 is that AWS would pay customers 
upfront for on-demand instance which is not the case. 
One of the reasons for the higher absolute 𝛽0  value is 
there are other hidden variables within 𝛽0. With the semi-
log form, the 𝛽0 value is down from 0.338 to 0.0064. Alt-
hough both R- squared values slightly decline by about 
2%, the 𝛽0 value is reduced nearly 53 folds. On the other 
hand, the result of the semi-log form is difficult to be in-
terpreted because of the higher order polynomial terms 
with the negative  values. The model becomes quite sen-
sitive for the large instance configuration, especially for 
the characteristics of RAM and network. One of the rea-
sons is that AWS may insert a volume discount mecha-
nism for the large instances. The other possible reason is 
AWS does not give the resource-level permission to re-
boot, start, delete, detach EBS volume etc. for cloud cus-
tomers to specify a resource in every instance action, in 
order to maintain control of its cloud infrastructure re-
source pool.  

As noted in AWS 2017 catalog, AWS offers a wide va-
riety of configurations for its computing instances such as 
cc1.4xlarge (cluster compute quadruple extra-large VM), 
cg1.4xlarge (GPU VM), and m1.small (general purpose 
small resource VM). To predict a cloud price of an aver-
age configuration resource in AWS 2017 catalog, we used 
the m4.10xlarge instance, which is one of the general pur-
pose instances and provides a balance of computing 
memory and network resources. It is designed to support 
different computing environments such as web applica-
tions or line of business or LoB (The letter “m” stands for 
“general purpose,” “4.10” means the size of computing 
and network resources, “xlarge” stands for extra- large.) 
The detail configuration of this instance is RAM=160, 
ECU =124.5, vCPU=40, CPU=3.112, storage=0, Network 
Performance=10, EBS.O= 4000.  

Based on this configuration, we can predict the price of 
the m4.10xlarge instance as $2.925 (linear form) or $2.961 
(semi-log form). The real price for m4.10xlarge instance is 
$2.155 (see Table 7). Although this prediction value is 
within 95% of the confidence interval, the predicted fitted 
value is about 36% higher than the real price value, and 
the price range between low and upper bound is high, 

but the linear form is slightly better than the semi-log. 
This might be due to many factors, such as different func-
tion forms, sample size, and skew dataset. Moreover, we 
have not taken consideration of time impact. Based on 
Moore’s law, the price of computer resource should de-
crease about -50% per annum. This issue leads to our next 
topic of analysis, namely time dummy variable. 

5.2.2 AWS Panel Data Test with Time Dummy 
Variables 

If we consider the time variables, the total number of 
data points (instances) of an unbalanced panel dataset is 
837 between 2008 and 2017. The number of explanatory or 
intrinsic variables is almost identical either using vCPU 
or ECU. However, ECU is AWS long-term measurement 
for CPU resource. The time dummy variables are 9 (10 
years, T-1 time dummy variable, Table 8). The linear Q-Q 
plot shows that it is highly skewed, but after a semi-log 
transformation of instance prices, the Q-Q plot appears to 
be much better (see Fig. 4). 

The main objective of the semi-log transformation is 
for time dummy variables inference. The initial linear 
model test only shows 7 variables including four-time 
dummy variables (2017, 2016, 2015 and 2014) are signifi-
cant. It means that we can only inference four years. The 
R-squared and adjusted R-squared value are 0.8271 and 

TABLE 6 
The Semi-log Form of Hedonic Function for 2014 

 

TABLE 7 
Predicting Price of a Cloud Instance with m4.10xlarge In-

stance Configuration 
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Fig.4: Log Transformation model and Residual Errors Plots Compari-
son between Linear and Semi-Log-Transformation 2008-2017 

Semi-log Transformation Model

Linear form residual Semi-log form residual

Coefficients Estimated  Std. Error t-value Pr(>|t|) EXP(i)

Intercept -5.04E+00 2.14E-01 -23.483 < 2e-16 *** 0.01

RAM 8.71E-03 1.64E-03 5.307 4.82e-07 *** 1.01

RAM^2 -1.02E-05 2.32E-06 -4.402 2.25e-05 *** 1.00

RAM^3 3.81E-09 8.07E-10 4.726 5.98e-06 *** 1.00

VCPU 7.87E-02 1.23E-02 6.414 2.55e-09 *** 1.08

VCPU^2 -6.83E-04 2.14E-04 -3.194 0.00177 ** 1.00

storage 1.99E-05 7.13E-06 2.792 0.00605 ** 1.00

network performance 1.28E+00 9.45E-02 13.571 < 2e-16 *** 3.60

network performance^2 -9.40E-02 7.29E-03 -12.882 < 2e-16 *** 0.91

EBS.O -1.22E-04 4.18E-05 -2.913 0.00423 ** 1.00

Residual standard error: 0.4793 on 125 degrees of freedom
Multiple R-squared:  0.9118, Adjusted R-squared:  0.9055
F-statistic: 143.6 on 9 and 125 DF,  p-value: < 2.2e-16

With 95% 

confidence interval

Fitted 

Value

Real 

price

Price 

difference Accuracy Lower Upper

Predicted Value by 

Linear form 
$2.925 2.155 $0.77 64.3% 1.716 4.134

Predicted value by 

semi-log form
$2.961 2.155 $0.806 62.9% 1.110 7.898
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0.8235 respectively.  
If we take the semi-log transformation, more time 

dummy variables become highly significant. The R-
squared and adjusted R-squared values drop slightly to 
0.8148 and 0.8109 respectively. If we add high order pol-
ynomial terms into the semi-log form, the test result is 
promised (see Table 8). There are two additional consid-
erations to transfer hedonic function from linear to semi-
log form:  

1) Price of cloud infrastructure is closely associated with 
computer hardware. According to Moore’s law, the 
hardware price depreciation rate is exponential in the 
time domain.  

2) Previous experiences [42], [43] suggested the adoption 
of the semi-log model if a test is designed for a longer 
term comparison.      
Based on the above test result with the time dummy, 

we can calculate Annual Growth Rate (𝐴𝑡) and Average 
Annual Growth Rate (AAGR) by the following two equa-
tions: 

𝐴𝑡 =
(𝑒𝛿𝑡 − 𝑒𝛿𝑡−1)

𝑒𝛿𝑡−1
   (12) 

𝐴𝐴𝐺𝑅 =

(

 
 

(

 √∏(1 + 𝐴𝑡)

𝑇

𝑡=2

𝑇−1

)

 − 1

)

 
 
× 100   (13) 

Note:  

1)𝛽0= - 0.021, It is a combination of all explanatory variables. 

The value appears to be close to zero. It is a good indicator. 

2)The coefficient values 𝛿1 is relative to 2008. It is emerged 

into 𝛽0 value. Subsequently, “t” starts from 2. 

3)There were no price changes between 2015 and 2016 after a 

significant discount in 2013 and 2014. 

4)We use the geometric mean method to compute AAGR for 

the years 2008 to 2017, the rate of depreciation is -19.98% -

20% 

Overall, AWS AAGR or price reduction rate is far less 
than what Moore’s law prediction [38], which is about 
50% per annum in general. The gap between AWS AAGR 
and Moore’s law prediction is 50%- 20 %=30%. To a cer-
tain extent, this price gap indicates why cloud customers 
are willing to pay more than what the benchmark price of 
computer hardware (see Fig. 5). We also see that AWS 
made a substantial price discount in 2013 and 2014. It 
may indicate a seven year’s life cycle of computer asset if 
we consider AWS bought its cloud hardware assets in 
2006. This is actually in align with Walker’s [39] conclu-
sion.    

The logic for this comparison can be justified by the 
following reasoning if we assume that the cloud instance 
configuration is ceteris paribus. Moreover, we assume 
that the independent time dummy variables do not inter-
act with other independent variables, then, we should 
have the following two equations: 

ln((1 + 𝑟)𝑡𝑝) = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ 𝛿𝑡𝑑𝑡 + 𝜀  (14) 

ln((1 + 𝑟)𝑡−1𝑝) = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ 𝛿𝑡−1𝑑𝑡−1 + 𝜀 (15) 

where, r = depreciation rate. Subtract (14) with (15) we 
should have the following equation (16). 

𝑟 + 1 = 𝑒𝛿𝑡−𝛿𝑡−1  (16) 
 

𝑟 =
𝑒𝛿𝑡 − 𝑒𝛿𝑡−1

𝑒𝛿𝑡−1
,    𝑟 = 𝐴𝑡 

Based on the proof, we can derivate our conclusion 
that the AWS AAGR is around -20.0%/per annum in 
comparison with Moore’s law.  

By taking consideration of the impact of the time-
dummy variable, the predicted price can be further 
updated. Alternatively, we can also use Compound Av-
erage Growth Rate (CAGR) to estimate the time impact, 
which is approximately close to AAGR. The CAGR for-
mula is:  

𝐶𝐴𝐺𝑅 = 𝐶𝑡 = (
𝑉𝑒

𝑉𝑠
)

1
𝑇−1

− 1  (17) 

where 𝐶𝑡is the compound average growth rate, 𝑉𝑒  is the 
end value of the time period of “T” and 𝑉𝑠 is the start val-

TABLE 8 
AWS Panel Data Regression Test with Time Dummy Variables 

(2008-2017) 
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Fig.5: Comparison of AWS AAGR Price and Hardware Value 
Depreciation Rate via Moore’s Law 

AWS AAGR =-20.0%

Moore's Law 
Depreciation Rate 
= 50% / per annum
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Coefficients Estimated , Std. Error t-value Pr(>|t|)
Annual Rate CAGR 

intercept -3.87E+00 1.42E-01 -27.167 < 2e-16 ***

RAM 2.46E-03 1.99E-04 12.315 < 2e-16 ***

ECU 4.48E-02 1.93E-03 23.287 < 2e-16 ***

ECU^2 -2.47E-04 1.59E-05 -15.578 < 2e-16 ***

ECU^3 3.29E-07 3.23E-08 10.202 < 2e-16 ***

Storage 2.26E-05 2.77E-06 8.159 1.27e-15 ***

Net Perf 6.08E-01 2.77E-06 9.983 < 2e-16 ***

Net Perf ^2 -6.46E-02 7.01E-03 -9.218 < 2e-16 ***

Net Perf ^3 1.95E-03 2.27E-04 8.592 < 2e-16 ***

bit 4.95E-02 2.17E-03 2.17E-03 < 2e-16 ***

d17 -2.70E+00 1.62E-01 -16.709 < 2e-16 *** -1.49%

d16 -2.69E+00 1.54E-01 17.479 < 2e-16 *** 0.00%

d15 -2.69E+00 1.54E-01 -17.479 < 2e-16 *** -9.15%

d14 -2.59E+00 1.55E-01 -16.769 < 2e-16 *** -44.07%

d13 -2.01E+00 1.64E-01 -12.261 < 2e-16 *** -77.71%

d12 -5.08E-01 1.21E-01 -4.196 3.02e-05 *** -14.10%

d11 -3.56E-01 1.24E-01 -2.859 0.00435 ** -6.69%

d10 -2.87E-01 1.25E-01 -2.366 0.01822 * -18.54%

d9 -8.16E-02 1.25E-01 -0.65 0.51563 -7.83%

d8 0.00E+00 baseline baseline baseline

AAGR -20.0 %

Compound Average Growth Rate -25.9%

Residual standard error: 0.4913 on 817 degrees of freedom
Multiple R-squared:  0.902,     Adjusted R-squared:  0.8999 
F-statistic:   418 on 18 and 817 DF,  p-value: < 2.2e-16
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ue of the time period. Using the above prediction price in 
Table 7 as an example, we can correct the prediction re-
sult with CAGR in the following formula. 

𝑃𝑓 = 𝑃𝑝 × (1 + 𝐴𝑡)
(𝑡𝑓−𝑡𝑝)  (18) 

where 𝑃𝑓 is for the future price and 𝑃𝑝 is the present price, 

𝑡𝑓 is the future year value and 𝑡𝑝is the present year.  

In order to predict future price accurately, we have to 
exclude the future year from our dataset when we calcu-
late AAGR. In our case, it is 2017 data points. Subsequent-
ly, the value of 𝐴𝐴𝐺𝑅2008−2016 ≈ −17%. 

If we use this 𝐴𝐴𝐺𝑅2008−2016  to predict the instance 
price of m4.10xlarge in 2017 based on the 2014 price cata-
log, we should have the following result (see Table 9) 
and, the price difference between the real price and the 

predicted price (p) becomes negative.  

Now, the question is why consumers should be willing 
to pay more than the predicted price. The possible answer 
is non-market characteristics of cloud services. From a 
CSP perspective, it is a part of CSP’s marketing strategy 
to lead the cloud market. The common term is product or 
service differentiation. It leads to our next topic – cross-
sectional dataset test, which is to examine the cloud in-
stance price that is contributed by extrinsic variables. 

5.2.3 Cross-Sectional Data Test 

 Based on the five CSPs’ product catalogs, we con-
structed a dataset that consists of the entire 199 cloud in-
stances. The initial linear model shows that R-squared 

and adjusted R-squared values are about 0.8077 0.7885 
respectively and the Q-Q plot shows the data is highly 
skewed. According to the above five principles of trans-
formation (discussed in Section 4.2), we can transfer it 
into semi-log form. Once the transformation is done, the 
Q-Q plot shows a better result (see Fig. 6) in comparison 

with the linear form. 
By a combination of semi-log transformation, adding a 

high order of polynomial terms and excluding just a few 
highly outlier points, the R-squared and adjusted R-
squared values are increased more than 10% up to 0.913 
and 0.904 respectively (see Table 10). A discussion of 
these elements is noted below:  

1) Our analysis selected 5 intrinsic variables for cross-
sectional data. Some intrinsic variables, such as a stor-
age feature of Enterprise Block Store (EBS) optimized 
excluded from this test because it is insignificant for the 
regression analysis.  

2) Based on the available dataset, we can make inference 
for 7 extrinsic variables (p-value is less than 0.05) with 
respect to a baseline characteristics of instance 
configuration (including, API, PAYG, Web interface, 
auto-scaling, resource usage monitoring, free transfer 
in, Free IP, load balancing, firewall, backup storage, 
credit card payment, volume discounts, free entry-level 
service and etc.). 

3) The value of 𝜁1 that represents the baseline characteris-
tics have been emerged into the 𝛽0  value. Different 
baseline configurations will result different 𝛽0 values. It 
is dependent on the cross sectional dataset. Ideally, the  
𝛽0 value should be zero. However, it can only approach 
to zero in the reality. 

4) Dedicated servers can be considered as extra re-
sources.  

5) Similar, free transfer to a dedicated location will give 
cloud customer mobility. 

6) Burstable CPU can save the CPU price. If you do not 
use your specified capacity, CSP will give you credit so 
that you can withdraw when you need.   

7) The price of GPU Instance is much higher than the 
baseline instance with the configuration of Intel CPU. 
AWS, GCP, and Azure provide the option of NVIDIA 
Tesla K80 GPU (launch price $3,169/per unit in 2017. 

TABLE 9 
Estimate AWS Instance Price by Leveraging Time Dummy 

Variable 
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TABLE 10 
Cross-Section Data Analysis Results with the Semi-log 

Transformation 

 

  

Fig.6: Semi-log transformation Form 

Semi-log form

Coefficients Estimated ,  Std. Error t-value Pr(>|t|) EXP(Z)
Above the 

baseline

Intercept : -2.68E+00 9.29E-02 -28.806 < 2e-16 ***

RAM 2.50E-02 3.08E-03 8.122 8.14e-14 ***

RAM^2 -1.14E-04 1.73E-05 -6.56 5.92e-10 ***

RAM^3 1.47E-07 2.51E-08 5.875 2.10e-08 ***

VCPU 1.98E-01 2.43E-02 8.154 6.72e-14 ***

VCPU^2 -6.03E-03 9.76E-04 -6.18 4.41e-09 ***

VCP^3 5.55E-05 1.02E-05 5.458 1.64e-07 ***

Storage 2.68E-04 6.57E-05 4.073 7.03e-05 ***

Storage^2 -2.53E-08 7.13E-09 -3.551 0.000494 ***

Storage^3 4.20E-13 1.22E-13 3.428 0.000758 ***

Network Performance 1.77E-05 2.70E-04 2.479 0.014257 *

Arch -7.67E-02 1.13E-02 -6.786 1.73e-10 ***

Arch^2 1.19E-03 1.75E-04 6.826 1.40e-10 ***

Free Transfer to dedicated location 2 5.49E-01 1.68E-01 3.275 0.001292 ** 1.732 73.2%

GPU instance 3 3.43E-01 1.63E-01 2.104 0.036771 * 1.409 40.9%

Burstable CPU 4 5.33E-01 2.19E-01 2.44 0.015692 * 1.704 70.4%

Dedicated servers5 3.20E-01 1.29E-01 2.48 0.014097 * 1.377 37.7%

One account for all locations6 2.45E-03 3.33E-04 7.342 9.66e-12 *** 1.002 0.2%

Data Center Global Foot Print (AUS)7 2.82E-01 1.29E-01 2.19 0.029850 * 1.326 32.6%

Collocation 8 4.00E-01 1.25E-01 3.194 0.001666 ** 1.491 49.1%

48 Baseline Extrinsic Characteristics 0 Baseline Baseline Baseline 1 -

Average Extrinsic Price Value (AEPV) 43.4%

Residual standard error: 0.4607 on 173 degrees of freedom
Multiple R-squared:  0.9128,    Adjusted R-squared:  0.9042 
F-statistic: 106.5 on 17 and 173 DF,  p-value: < 2.2e-16

Within 95% 

confidence 

interval

Fitted 

Value

Real 

Price

Price 
difference 

Accuracy Lower Upper

Predicted value

(semi-log)
$1.693 2.155 -$0.46 78.59% 0.635 4.516
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In comparison with Intel Xeon E5-2673 V3 2.4-GHz 
chip, it costs $700/ per unit Jul 2017). 

8) The value 6 of one account for allocation is minimal. 
It is basically submerged into the baseline characteris-
tics, which all CSPs provide this feature without extra 
cost. 

9) As Griliches indicated, the resulting of regression is 
sometimes unstable. It could be varied along with dif-
ferent circumstances. In the above case, if we change 
the configuration of the baseline extrinsic characteris-
tics, the result will be totally different. 
Now, we can answer the question that is raised before: 

“why cloud consumers are willing to pay nearly more 
than the predicted price.” If we use Table 9 to further re-
vise our price prediction by taking consideration of cloud 
extrinsic variables, we can find the predicted price is very 
close to the real price (see Table 11). 

5.2.4 Predict Cloud Prices for Different Instances 

Notice that we can generalize the equation 18 as the 
equation 19 for future price prediction.  

𝑃̂𝑓(𝑋, 𝑌) = (1 + 𝐴𝐴𝐺𝑅)
𝑌−𝑌0 × (𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

)

± 1.96√
𝑃̂𝑓(𝑋, 𝑌)(1 − 𝑃̂𝑓(𝑋, 𝑌))

𝑛
  (19) 

where 𝑋 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑙 , 𝑌〉, Y= future year, 𝑌0 = current 
year or present year, n= size of population for a dataset. 
(We adopt 95% Wald confidence intervals or first approx-
imation). Furthermore, if we take the semi-log form, the 
equation can be presented as following: 

𝑙𝑛𝑃̂𝑓(𝑋, 𝑌) = (𝑌 − 𝑌0) × 𝑙𝑛(1 + 𝐴𝐴𝐺𝑅)

+ (𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

)

± 1.96√
𝑃̂𝑓(𝑋, 𝑌)(1 − 𝑃̂𝑓(𝑋, 𝑌))

𝑛
  (20) 

We use this equation to estimate the future price of dif-
ferent cloud instances. The comparison of different AWS 

cloud instance produces the following prediction results 
(shown in Table 12).  

We highlight three points for the prediction results: 
1)The predicted prices usually are less than the real price. 

It means that AWS holds the price reduction pace due 
to its extrinsic values of a cloud instance.   

2)For the standard instance, the predicted accuracy is ap-
proximately higher than 70% without consideration of 
extrinsic characteristics. (With one CSP, the extrinsic 
value cannot be compared) 

3)For the latest generation cluster, the prediction accura-
cy is below 70%. It might be due to more extrinsic val-
ues that AWS has built into its price catalog.  
Overall, once the predicted cloud price emerges, it can 

underpin the CIO to make a right strategic investment 
decision for IT infrastructure. Of course, he or she has to 
take consideration of other factors, such as business risks, 
workload growth, and volume discount and workload 
portability issues (or cloud vendor lock-in syndrome: 
“free to come and pay to leave”).  

6 ANALYSIS AND DISCUSSION 

We have illustrated how to use the hedonic analysis to 
predict the cloud instance price. From the unbalanced 
panel data, we can calculate the AWS’ AAGR is 
approximate -20.0% per annum. Statistically, the time 
dummy variable is the same as a fixed effect. The net ef-
fect is the hedonic function to be shifted downwards (see 
Fig. 7) 

In comparison with Moore’s law prediction, the AWS 
price change rate (deflation) is at much less slow pace 
than what Moore’s law has predicted (-50% per annum). 
The reason that AWS can move beyond the competition 
just on price is its extrinsic characteristics that AWS can 
differentiate its cloud service from its competitors. AWS 
has developed more than 1,000 different cloud character-
istics or features since 2006. Although we would not be 
able to analyze all extrinsic characteristics here, we can 
highlight some of the extrinsic characteristics among 5 
leading CSPs (shown in Fig. 8). The characteristic of GPU 
instance is about 40.9% of cloud extrinsic value and data 
center global footprint (Australia) is 32.6% in comparison 
with the baseline configuration. 

Ultimately, the impact of the extrinsic variable is simi-
lar to the time dummy variable (or fixed effect). It only 
shifts the hedonic function either up or down. This means 

TABLE 11 
Predicted Price Including Extrinsic Values 

 

 

Fig.7: Impact of Time Dummy Variable on AWS Cloud Instance Price 
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TABLE 12 
Predicted AWS Cloud Prices with Different Instance 

 

Cloud instance price 

=2.1550)

AAGR= -20.0%

Assume  Hedonic Function 
with single Intrinsic 

Characteristic

=0.819, ( = 2.2682)

Instance 

types 
API name

Fitted Value 

with 95% CI
Real price

Price 
difference 

Accuracy Lower Upper

Standard m1.medium 0.0842 $0.120 -0.036 70.2% 0.031 0.225

Standard m4.10xlarge $1.693 $2.155 -$0.462 78.6% 0.635 4.516

3rd Gen.

Cluster
i3.8xlarge $1.69 $2.496 -$0.808 67.6% 0.553 4.85

4th Gen. 

Cluster
c4.8xlarge $0.979 $1.591 -$0.612 61.6% 0.252 3.197

With 95% confidence 

interval
Fitted Value

Real 

price

Price 
difference Accuracy Lower Upper

Predicted Price with 

Ave Extrinsic Value
$2.428 2.155 $0.273 87.32% 0.911 6.476

Predicted Price with

particular cloud 

extrinsic characteristic

$2.245 2.155 $0.09 95.81% 0.842 5.988
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in order to avoid an estimated bias we should include the 
required cloud characteristics not only intrinsic variables. 
If we just compare the cloud instance prices based on the 
intrinsic variables alone (for average configuration), AWS 
price is not the cheapest in comparison with top 30 global 
leading CSPs. Its price is just slightly above the median 
one (The market median price is $146 marked as a notch. 
AWS instance price is $149 is marked by a dashed line 
shown in a boxplot, Fig. 9). However, AWS can still main-
tain over 31% of IaaS global market share and keep dou-
ble digits revenue growth year on year (YoY). This is 
mainly due to the contribution of AWS extrinsic values of 
its cloud services which cloud customers are willing to 
pay for.  

In this paper, we introduce the new concept of intrinsic 
and extrinsic variables that have been applied to the 
hedonic analysis of cloud pricing model. Moreover, we 
have mathematically proved that the time dummy or 
AAGR is equivalent to Moore’s law impact if ceteris pari-
bus. The AAGR plays a vital role in cloud price predic-
tion.  

In contrast to the previous studies that ignored the ex-
trinsic variables impact on the cloud prices, we have 
clearly demonstrated that many extrinsic variables have 
significant values or fixed effect on the cloud price. The 
effective combination (or bundle) of intrinsic and extrinsic 
values does not only allow CSPs to slow the price reduc-
tion pace but also underpin the cloud market leadership. 

Generally, the hedonic analysis is a practical or empiri-
cal approach to disclose the latent values of what custom-
ers are willing to pay for the quality changes. Ultimately, 
this research is to leverage the hedonic concept to discov-
er homogeneous cloud pricing patterns that are closely 
associated with heterogeneous cloud service characteris-

tics, which are often hidden behind the complicated cloud 
pricing structure. 

Our novel approach enables cloud customers to 
predict cloud service prices accurately based on their 
business application needs rather than purely on the cost 
of IaaS comparison. It means that cloud consumers can 
avoid many pricing estimation biases. 

Another important implication is that it allows many 
CSPs to establish the correct performance benchmark 
based on the true value proposition of cloud services to 
compete with their market leader not only just on the 
price. 

7 CONCLUSIONS AND FUTURE WORK 

The conclusion of this work is the cloud instance price 
cannot be just examined by its intrinsic characteristics 
(mainly cost components, such as RAM, CPU, network 
performance, storage, etc.) alone. It will inevitably lead to 
the pricing estimation bias because the cloud price predic-
tion is ultimately determined by three key factors or vari-
ables, namely, intrinsic, extrinsic and time dummy. Many 
traditional cloud pricing models cannot reflect cloud ex-
trinsic values (such as burstable CPU, dedicated server, 
data center global footprint, etc.). However, it does not 
mean we can ignore these extrinsic characteristics. In fact, 
they have a heavy influence on the cloud service price. 
Throughout this paper, we have shown the process of 
how to calculate and predict the cloud price accurately 
and how to avoid the price estimation bias. The novelty of 
our work is that we present and prove that the value of 
AAGR is equivalent to Moore’s law in cloud services. 

We argue that the hedonic pricing model is a better 
approach to estimate the cloud price accurately if we can 
establish the adequate hedonic function form based on 
the available dataset in hand. Furthermore, we exhibit the 
AWS cloud price has been declining over the last 10 years 
but at a much slower pace in comparison with Moore’s 
law prediction. One of the major influenced factors of this 
declining is due to the cloud of extrinsic values or charac-
teristics. They have become AWS competitive advantages 
to lead in the cloud (IaaS) market.  

We understand that some of our model assumptions 
can impact on the accuracy of cloud price prediction. 
However, if we can fully access many CSPs’ datasets, we 
can improve the prediction results. In the future, we plan 
to refine our estimations with the availability of new data. 
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