Cost Optimization for Dynamic Replication and
Migration of Data in Cloud Data Centers

Yaser Mansouri, Student Member, IEEE, Adel Nadjaran Toosi, Member, IEEE, and Rajkumar Buyya,
Fellow, IEEE

Abstract—Cloud Storage Providers (CSPs) offer geographically data stores providing several storage classes with different prices.
An important problem facing by cloud users is how to exploit these storage classes to serve an application with a time-varying
workload on its objects at minimum cost. This cost consists of residential cost (i.e., storage, Put and Get costs) and potential migration
cost (i.e., network cost). To address this problem, we first propose the optimal offline algorithm that leverages dynamic and linear
programming techniques with the assumption of available exact knowledge of workload on objects. Due to the high time complexity of
this algorithm and its requirement for a priori knowledge, we propose two online algorithms that make a trade-off between residential
and migration costs and dynamically select storage classes across CSPs. The first online algorithm is deterministic with no need of
any knowledge of workload and incurs no more than 2y — 1 times of the minimum cost obtained by the optimal offline algorithm,
where ~ is the ratio of the residential cost in the most expensive data store to the cheapest one in either network or storage cost. The
second online algorithm is randomized that leverages “Receding Horizon Control” (RHC) technique with the exploitation of available
future workload information for w time slots. This algorithm incurs at most 1 4- 2 times the optimal cost. The effectiveness of the
proposed algorithms is demonstrated through simulations using a workload synthesized based on characteristics of the Facebook
workload.

Index Terms—Cloud Storage, Dynamic Replication and Migration, Read, Write and Storage Costs, Cost Optimization, Online
Algorithm

4

1 INTRODUCTION

Mazon S3, Google Cloud Storage (GCS)! and Mi-
crosoft Azure as leading CSPs offer different types of
storage (i.e., blob, block, file, etc.) with different prices for
at least two classes of storage services: Standard Storage
(SS) and Reduced Redundancy Storage (RRS)*. Each CSP
also provides API commands to retrieve, store and delete
data through network services, which imposes in- and
out-network cost on an application. In leading CSPs, in-
network cost is free, while out-network cost (network cost
for short) is charged and may be different for providers.
Moreover, data transferring across DCs of a CSP (e.g.,
Amazon S3) in different regions may be charged at lower
rate (henceforth, it is called reduced out-network cost).
Table 1 summarizes the prices for network and storage ser-
vices of three popular CSPs in the US west region, which
shows significant price differences among them. This di-
versification plays a central role in the cost optimization of
data storage management in cloud environments. We aim
at optimizing this cost that consists of residential cost (i.e.,
storage, Put, and Get costs) and potential migration cost
(i.e., network cost).
The cost of data storage management is also affected
by the expected workload of an object. There is a strong
correlation between the object workload and the age of

e The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information
Systems, the University of Melbourne, Australia.

E-mail:yase@student.unimelb.edu.au,{anadjaran,rbuyya}@unimelb.edu.

1. Henceforth, Google (Azure) Cloud Storage and Google (Azure)
DC are summarized with G(A)CS and G(A)DC, respectively.

2.RRS (in Google Cloud Storage terminology is called Durable
Reduced Availability (DRA)) is an Amazon S3 storage option that
enables users to reduce their cost with lower levels of redundancy
compared to SS.

TABLE 1: Cloud storage pricing as of June 2015 in different
DCs.

CSP AmazonT Amazon? Google Azure
SS (GB/Month) 0.0330 0.030 0.026 0.030
RRS (GB/Month) 0.0264 0.024 0.020 0.024
Out-Network 0.09 0.09 0.12 0.087
Reduced Out-Network 0.02 0.02 0.12 0.087
Get (Per 100K requests)* 4.4 4 10 3.6
Put (Per 1K requests) 5.5 5 10 0.036

*The price of Put and Get is multiplicaton of 1072. All prices
are in US dollar.
1 Amazon’s DC in California. { Amazon’s DC in Ireland.

object, as observed in online social networks (OSNs) [1]
and delay-sensitive multimedia content accessed via mo-
bile devices [2], [3]. The object might be a photo, a tweet,
a small video, or even an integration of these items that
share similar read and write access rate pattern. The object
workload is determined by how often it is read (i.e., Get
access rate) and written (i.e., Put access rate). The Get
access rate for the object uploaded to OSNs is often very
high in the early lifetime of the object and such object is
said to be read intensive and in hot-spot status. In contrast,
as time passes, the Get access rate of the object is reduced
and it moves to the cold-spot status where it is considered
as storage intensive. A similar trend happens for the Put
workload of the object; that is, the Put access rate decreases
as time progresses. Hence, OSNs utilize more network
than storage in the early lifetime of the object, and as time
passes they use the storage more than network.

Therefore, (i) with the given time-varying workloads
on objects, and (ii) storage classes offered by different CSPs
with different prices, acquiring the cheapest network and
storage resources in the appropriate time of the object
lifetime plays a vital role in the cost optimization of the
data management across CSPs. To tackle this problem,

cloud users are required to answer two questions: (i) which
storage class from which CSP should host the object (i.e.,
placing), and (ii) when the object should probably be
migrated from a storage class to another owned by the
similar or different CSPs.

Recently, several studies take advantage of price dif-
ferences of different resources in intra- and inter-cloud
providers, where cost can be optimized by trading off
compute vs. storage [4], storage vs. cache [5], [6], and cost
optimization of data dispersion across cloud providers [7],
[8]. None of these studies investigated the trade off be-
tween network and storage cost to optimize cost of replica-
tion and migration data across multiple CSPs. In addition,
these approaches heavily rely on workload prediction. It
is not always feasible and may lead to inaccurate results,
especially in the following cases: (i) when the prediction
methods are deployed to predict workloads in the future
for a long term (e.g., a year), (ii) for startup companies that
have limited or no history of demand data, and (iii) when
workloads are highly variable and non-stationary.

Our study is motivated by these pioneer studies as
none of them can simultaneously answer the aforemen-
tioned questions (i.e., placements and migration times of ob-
jects). To address these questions, we make the following
key contributions:

o First, by exploiting dynamic programming, we formu-
late offline cost optimization problem in which the
optimal cost of storage, Get, Put, and migration is cal-
culated where the exact future workload is assumed
to be known a priori.

o Second, we propose two online algorithms to find
near-optimal cost as shown experimentally. The first
algorithm is a deterministic online algorithm with the
competitive ratio (CR) of 2y — 1, where 7 is the ratio of
the residential cost in the most expensive DC to the
cheapest one either in storage or network price. The
second algorithm is a randomized online algorithm with
the CR of 1 + I, where w is the available look ahead
window size for the future workload. We also analyse
the cost performance of the proposed algorithms in
the form of CR that indicates how much cost in the
worst case the online algorithms incur as compared to
the offline algorithm.

e In addition to the theoretical analysis, an extensive
simulation-based evaluation and performance analy-
sis of our algorithms are provided in the CloudSim
simulator [9] using the synthesized workload based
on the Facebook workload [10].

2 RELATED WORK

We contrast our work in this paper with existing work in
the following five main categories.

Using multiple cloud services. Reliance on a single
cloud provider results in three major obstacles: availability
of services, data lock-in, and non-economical use [11]. To allevi-
ate these obstacles, one might use multiple cloud providers
that offer computing, persistent storage, and network ser-
vices with different features such as price and performance
[12]. Being inspired by these various features, automatic
selection of cloud providers based on their capabilities and
user’s specified requirements are proposed to determine
which cloud providers are suitable in the trade-offs such
as cost vs. latency and cost vs. performance [13].

2

Several previous studies attempted to effectively lever-
age multiple CSPs to store data across them. RACS [14]
utilized erasure coding to minimize migration cost if ei-
ther economic failure, outages, or CSP switching happens.
Hadji [15] proposed several replica placement algorithms
to enhance availability and scalability for encrypted data
chunks while optimizing the storage and communica-
tion cost. None of these systems explore minimizing cost
by exploiting pricing differences across different cloud
providers with several storage classes when dynamic mi-
gration of objects across CSPs is a choice.

Contribution of our work to the state of the art. We
here clarify the motivation behind doing this work via
investigation of the state-of-the-art studies focused on the
cost optimization of data in cloud-based data stores.

FCFS framework [6] used two storage services (i.e.,
a cache and a storage class) in a single data store. In
FCFS, two online algorithms were used to optimize the
deployment cost of cloud file systems. This framework did
not leverage pricing differences across data stores offered
several storage classes. The solution deployed in FCFS is
not applicable for our cost optimization problem. This is
because (i) FCFS need not to deal with latency constraint,
potential migration cost, and optimizing writing cost in
the case of eventual consistency setting, and (ii) it makes a
decision just on the time while we require to make a two-
fold decision on time and place dimensions.)

SPANStore [7] optimized cost by using pricing dif-
ferences among CSPs while the required latency for the
application is guaranteed. It used a storage class across
CSPs for all objects without respect to their read/write
requests, and consequently it did not require to migrate
objects between storage classes. SPANStore also leveraged
algorithms relying on workload prediction. Different from
SPANStore, our work utilizes two storage classes offered
by different CSPs to save more cost based on the objects
workload. This causes object migrations between storage
classes owned in the same/different CSPs. Moreover, our
two algorithms rely on a limited /no knowledge of objects
workload.

Cosplay [16] optimized the cost of data management
across DCs— belonging to a single cloud- through swap-
ping the roles (i.e., master and slave) of data replicas
owned by users in the OSN. Similar to SPANStore, it did
not leverage object migration across storage classes. This
work can be orthogonal to our work. Chen et al. [17] in-
vestigated the problem of placing replicas and distributing
requests (issued by users) in order to optimize cost while
meeting QoS requirement in a Content Delivery Network
(CDN) utilizing cloud storage offered by a single CSP. In
contrast to our work, their solution addressed only read-
only workloads.

Online algorithms and cost trade-offs. A number of
online algorithms have been studied to figure out different
issues such as dynamic provisioning in DCs [18], energy-
aware dynamic server provisioning [19] and load balanc-
ing among Geo-distributed DCs [20]. All these online algo-
rithms are derived from ski-rental framework to determine
when a server must be turned off/on to reduce energy
consumption, while we focus on the cost optimization
of data storage management which comes with different
contributing factors like data size and read/write rates. In
FCFS [6], the same framework is used to optimize data

management cost in a single cloud storage DC that offers
cache and storage with different prices.

The ski-rental deployed in the above studies is not
applicable in our model because it makes a decision on
time (e.g., when a server is turned off/on or when data are
moved from storage to cache), while we need to make a
two-fold decision (time and place) to determine when data
should be migrated and to which DC(s). To make this deci-
sion, we propose a deterministic online algorithm that uses
Integer Linear Programming (ILP) to optimize cost. We
also design a randomized online algorithm based on Fixed
Receding Horizon Control (FRHC) [19][21] to conduct
dynamic migration of objects. In [21], the authors proposed
online and offline algorithms to optimize the routing and
placement of big data into the cloud for a MapReduce-
like processing, so that the cost of processing, storage,
bandwidth, and delay is minimized. They also considered
migration cost of data based on required historical data
that should be processed together with new data generated
by a global astronomical telescope application. Instead, our
work focuses on optimizing replicas placement of objects
transiting from hot-spot to cold-spot. Our optimization
problem takes different settings as compared to [17]. These
settings are (i) replicas number, (ii) latency Service Level
Objectives (SLO) for reads and writes, and (iii) variable
workloads (in terms of reads and writes) on different
objects. These objects demand a dynamic decision on when
their replicas are migrated between two DCs, when they
are moved between two storage classes in a DC, or both.
These differences in settings make our optimization prob-
lem different in the cost model (read, write, migration, and
storage) and the problem definition as well.

Some literature focused on trade-offs between different
resources cost. The first is compute vs. storage trade-off
that determines when data should be stored or recom-
puted, and can be applicable in video-on-demand services.
Kathpal et al. [4] determined when a transcoding on-the-
fly solution can be cost-effective by using ski-rental frame-
work. They focused neither on Geo-replicated systems nor
theoretical analysis on the performance in terms of CR.
The second trade-off is cache vs. storage as deployed in
MetaStorage [5] that made a balance between latency
and consistency. This study has a different goal, and fur-
thermore it did not propose a solution for the cases in
which the workload is unknown. FCFS [6] also made this
trade-off as already discussed. The third trade-off can be
bandwidth vs. cache as somehow simulated in DeepDive
[22] that efficiently and quickly identifies which virtual
machine (VM) should be migrated to which server as
workload changes. This study is different in the objective
and scope.

Computation and data migration. Virtualization parti-
tions the resources of a single compute server into multiple
isolated environments which are called virtual machines
(VMs). A VM can be migrated from one host to another
in order to provide fault tolerance, load balancing, system
scalability, and energy saving. VM migration can be either
live or non-live. The former migration approach ensures
almost zero downtime for service provisioning to the
hosted applications during migration, whereas the latter
one suspends the execution of applications before trans-
ferring a memory image to the destination host. Interested
readers are refereed to survey papers [23], [24] for detailed

discussion on VM migration techniques.

Similarly, data migration is classified into two ap-
proaches. The first approach is live data migration. This
approach allows that while data migration is in progress,
the data is accessible to users for reads and writes. Al-
though live data migration approach minimizes perfor-
mance degradation, it demands precise coordination when
users perform read and write operations during the migra-
tion process [25]. Recently, live data migration approaches
have been exploited for transactional databases in the
context of cloud [26], [27].

The second approach is non-live data migration. This
approach is classified into stop and copy and log-based
migration techniques [25]. In both techniques, while the
data migration is in progress, the data is accessible to users
for reads. But, these techniques differ in their capability
to handle writes. In the former, the writes are stopped
during data migration, while in the latter the writes are
served through a log which incurs a monetary cost. Thus,
stop and copy and log-based migration techniques are
respectively efficient in monetary cost and performance
criteria. Non-live data migration approaches is often used
in non-transantional data stores that do not guarantee
ACID properties, e.g., HBase® and ElasTraS [28].

There are several factors affecting data migration: the
changes to cloud storage parameter (e.g., price), optimiza-
tion requirements, and data access patterns. In response
to these changes and requirements, a few existing stud-
ies discuss data migration from private to public cloud
[29], and some study object migration across public cloud
providers[8], [30]. In [8], authors focused on predicting
access rate to video objects and based on this observation,
dynamically migrate video objects (read-only objects). In
contrast, our study attempts to use pricing differences and
dynamic migration to minimize cost with or without any
knowledge of the future workload of objects in terms Gets
and Puts. Write requests on an object raise cost of consis-
tency as a mater. In [30], Mseddi et al. designed a scheme
to create/migrate replicas across data stores with the aim
of avoiding network congestion, ensuring availability, and
minimizing the time of data migration. While we designed
several algorithms to minimize cost across data stores with
different storage classes.

Deploying cloud-based storage services in CDN. With
the advent of cloud-based storage services, some literature
has been devoted to utilize cloud storage in a CDN in
order to improve performance and reduce monetary cost.
Broberg et al. [31] proposed MetaCDN which exploits
cloud storage to enhance throughput and response time
while ignoring the cost optimization. Papagianni et al. [32]
went one step further by optimizing replica placement
problem and requests redirection, while satisfying QoS for
users and considering capacity constraints on disks and
network. In [33], there is another model that minimizes
monetary cost and QoS violation, while guaranteeing
SLA in a cloud-based CDN. In contrast to these studies
proposing greedy algorithms for read-only workloads, we
exploit the pricing differences across CSPs for time varying
writable workloads and propose ffline and online algo-
rithms with a theoretical analysis on the CR.

3. https:/ /hbase.apache.org/book.html

3 SYSTEM MODEL AND PROBLEM DEFINITION

We briefly discuss challenges and objectives of the system,
and then based on which we formulate a data storage
management (data management for short) cost model.
Afterwards, we define an optimization problem based on
the cost formulation and system'’s constraints.

3.1 Challenges and Objectives

We assume that the data application includes a set of
geographically distributed key-value objects. An object
is an integration of items such as photos or tweets that
share a similar pattern in the Get and Put access rate.
In fact an object in our model is analogous to the bucket
abstraction in Spanner [34] and is a set of contiguous keys
that show a common prefix. Based on the users’ needs,
the objects are replicated at Geo-distributed DCs located in
different regions. Each DC consists of two types of servers:
computing and storage servers.

A computing server accommodates various types of
VM instances for application users. A storage server pro-
vides variety of storage forms (block, key/value, database,
etc.) to users charged at the granularity of megabytes to
gigabytes for very short billing periods (e.g., hours). These
servers are connected by high speed switches and network,
and the data exchange between VMs within DC is free.
However, users are charged for data transfer out from DC
on a per-data size unit as well as a nominal charge per a
bulk of Gets and Puts. We consider this charging method
followed by most commercial CSPs in the system model.

The primary objective of the system is to optimize cost
using object replication and migration across CSPs while it
strives to serve the Gets and Puts in the latency constraint
specified by the application. Providing all these objectives
introduces the following challenges. (i) Inconsistency be-
tween objectives: for example, if the number of replicas
decreases, then the Gets and Puts latency can increase
while storage cost reduces, and vice versa. (ii) Variable
workload of objects: when the Gets and Puts access rate
is high in the early lifetime of an object, the object must be
migrated in a DC with a lower network cost. In contrast,
as Gets and Puts access rate decreases over time, the
object must be migrated in a DC with a lower storage
cost. (iii) Discrepancy in storage and network prices across
CSPs: this factor complicates the primary objective, and we
clarify it in the below example.

Suppose, according to Table 1, an application stores an
object in Azure’s DC when the object is in hot-spot because
it has the cheapest out-network cost. Assume that after a
while the object transits to its cold-spot and it must migrate
to two new DCs: Amazon’s DC (Ireland) and Google’s
DC. The object migration from Azure’s DC to Amazon’s
DC (Ireland) is roughly 4 times (0.02 per GB vs. 0.0870
per GB) more expensive than as if the object was initially
stored in Amazon’s DC (California) instead of Azure’s DC.
The object migration from Azure’s DC to Google’s DC is
roughly the same in the cost (0.087 per GB vs. 0.09 per
GB) as if the object was initially stored in Amazon’s DC
(California) instead of Azure’s DC. This example shows
that the application can benefit from the reduced out-
network price if the object migration happens between
two Amazon DCs. In one hand, as long as the object is
stored in Azure’s DC, the application benefits from the
cheapest out-network cost, while it is charged more when

TABLE 2: Symbols definition

[Symbol [[Meaning

D A set of DCs

K A set of regions

S(d) The storage cost of DC d per unit size per unit time

O(d) Out-network price of DC d per unit size

ty(d) Transaction price for a bulk of Get (Read)

tp(d) Transaction price for a bulk of Put (Write)

T Number of time slots

v(t) The size of the object in time slot ¢

rF (1) Read requests number for the object from region k in
time slot ¢

wk (t) Write requests number for the object from region k in
time slot ¢

r Number of replicas stored across DCs for each object
The number of DCs in destination set, excluding the
intersection of the source and destination sets

¥ The ratio of the residential cost in the most expensive
DC to the cheapest one in time slot ¢ € [1...7]]

A The ratio of the reading volume of the objects to the
objects size

ad(t) A binary variable indicates whether the object is in DC
d in time slot ¢ or not

BFA(t) A variable indicates the fraction of requests from region
k directed to DC d hosting a replica of an object in time
slot ¢

Cr(.) Residential cost

Chr(.) Migration cost

L A upper bound of delay on average for Gets and Puts to
receive response

Tip Time complexity of linear programming

o The set of all r-combinations of DCs

w The size of available look-ahead window for the future
workload information

the object is migrated to a new DC. On the other hand,
if the object is stored in Amazon’s DC (California), the
application saves more cost during migration but incurs
more out-network and storage costs. Thus, in addition to
storage and out-network costs, the reduced out-network
cost plays an important factor in the cost optimization for
time-varying workloads.

3.2 Preliminaries

In this section, we give some definitions, which are used
throughout the paper. The major notations are also sum-
marized in Table 2.

Definition 1. (DC Specification): The system model is
represented as a set of independent DCs D where each DC
d € D is located in region k € K. Each DC d is associated
with a tuple of four cost elements. (i) S(d) denotes the
storage cost per unit size per unit time (e.g., bytes per
hour) in DC d. (ii) O(d) defines out-network cost per unit
size (e.g., byte) in DC d. (iii) t4(d) and t,(d) represent
transaction cost for a bulk of Get and Put requests (e.g.,
per number of requests) in DC d, respectively.

Definition 2. (Object Specification): Assume the appli-
cation contains a set of objects during each time slot
t € [1...T]. Let r*(t) and w*(t), respectively, be the number
of Get and Put requests for the object with size v(t) from
region k in time slot .

The objective is to choose placement of object replicas,
and the fraction of r¥(¢) (not the fraction of w*(t) since
each Put request must be submitted to all replicas) that
should be served by each replica so that the application
cost including storage, Put, and Get costs for objects as well
as their potential migration cost among DCs is minimized.

We thus define replication variable, requests distribution vari-
able, and application cost as follows.

Definition 3. (Replication Variable): a?(t) € {0,1} indi-
cates whether there is a replica of the object in DC d
in time slot ¢t (a?(t) = 1) or not (a?(t) = 0). Thus,
>aep @?(t) = 7. We denote d(t) as a vector of a’(t)s
which shows if a DC d hosting a replica or not in the slot
time ¢.

Definition 4. (Request Distribution Variable): The fraction
of Get requests issued from region k to DC d hosting the
object in time slot ¢ is denoted by %< € (0,1). Thus,

> Y pRA(t) = 1. We denote 3(t) as a matrix of
KEK d|ad(t)=1

| K| x r which represents the fraction of Get requests issued
from region k € K to each replica.

Definition 5. (Storage Cost): The storage cost of an object
in time slot ¢ is equal to the storage cost of all its replicas
in DCs d in time slot ¢. Thus, we have

> S(d) x (). 1)
dlad(t)=1
Definition 6. (Get Cost): The Get cost of the object in time
slot ¢ is the cost of Get requests issued from all regions
and the network cost for retrieving the object from DCs.
Therefore,
Yo D BN x (ty(d) +o(t) x O(d). (@)

k€K djad(t)=1

To keep replicas consistent, we use a simple policy that
leverages the primary advantages of eventual consistency
setting, which is appropriate for OSNs [7]. Thus, first,
to capitalize on the network services cost, we select DC
dla?(t) = 1 with the minimum network cost O(d) so
that the upper bound of delay for Put requests is met®*.
Then, Put requests issued for the object are sent to this
DC and the application incurs only Put transaction cost
as in-network cost is free (called initial Put cost). Second,
the other replicas are kept consistent by either DC d or
another DC, hosting the replica, with the lowest network
cost without considering delay constraint. This DC is re-
sponsible for data propagation and is called propagator DC,
thatis, d, = X (O(d")) (called consistency cost). Note

d'la® (t)=1
that if any otlr‘1er %D)C rather than the initial selection (i.e.,
d) is selected as the propagator DC, then the application
incurs one extra cost of out-network between these two
DCs. Thus, in addition to the cost of Put transactions, the
application is charged for the network cost of data from the
propagator DC. For example, as illustrated in Fig.1, assume
that the object has been already replicated at four DCs in
the European region. Let the user issue a Put request into
GDC (i.e., DC d). Based on the above strategy, ADC in the
Netherlands is selected as the propagator DC (i.e., DC d),)
because it has the cheapest network cost among these four
DCs and is responsible of updating objects in two other
DCs. Based on the discussed policy, we formally define
the Put cost as below.
Definition 7. (Put Cost): The Put cost of the object in time
slot t is the cost of Put requests issued by all regions and

4. From this point onward, whenever the migration or data transfer
happens between two Amazon DCs, the reduced network cost is
considered rather than the network cost.

ADC(0.0875/GB) GDC(0.125/GB)

L BN
$3(0.090$/GB!

® ./

“séf*v---f:’.'
33(0:145/GB) \
SN Japan !

% N E
Destinatio

ser [6Dct0.128/G8)

v-""\‘\:[awydn
‘: \!iﬂg@pdfé \\\

Get
-
“Source Set \ :
) $3(0.14PS/GB)
ool 13ss/se
Fig. 1: Object updating in Europe region and the object migra-
tion in Asia-pacific region.

the propagation cost for updating replicas of the object.
Thus,

ed, dy) + D [(w*(t) x ty(d)+

keK

>

d'|ad’ ()=1\{d,dy }

(1) x (1) + ot) x O],

where (i) ¢(d, dp) is the transfer cost between d and d,, and
is equal to Y, w*(t) x (v(t) x O(d) + t,(dp)), and (ii) &’
is a DC, excluding d and d,,, that hosts a replica. Note that
if d = d,, then c(d, d,) = 0. In Equation 3, w*(t) x t,(d) is
initial Put cost and the second sigma is the consistency cost.

Definition 8. (Residential Cost): The residential cost of the
object in time slot ¢ is the summation of its storage, Get, and
Put costs (Equations 1-3) and is denoted by Cr(a(t), 5(t)).

The best set of DCs to replicate an object can differ in ¢
and ¢t — 1. In other words, &(t — 1) and &(¢) are different.
This happens because the object size, the number of re-
quests, and the source of requests to conduct Gets or Puts
would change in different time slots. Thus, if the object is in
hot-spot, it is more cost-effective to replicate it at a DC with
a lower network cost as long as the object is in this state.
In contrast, if the object transits from hot-spot to cold-spot
and grows in size, it is more profitable to migrate the object
to DC(s) with a lower storage cost. Object replication based
on the status of the object across DCs imposes a migration
cost on the application. To minimize it, the object should
be migrated from the DC with the lowest network cost. We
thus consider two sets of DCs: one set contains DCs that
the object must be migrated from (called source set), and
the other set that the object must be migrated to (called
destination set). The policy, first, determines the DC with
the lowest network cost in each set and the first replica
migration happens between these two selected DCs. For
other replicas, replication is carried out from the cheapest
of these two.

To clarify this simple policy, we describe an example as
shown in Fig. 1. Assume the object must be migrated from
DCs in the source set to those in the destination set. Since
ADC in Singapore has the cheapest network price among
DCs in the source set, it is responsible to send the object to
GDC in Taiwan. This is because this GDC has the lowest
rate in the network price in the destination set. Then, S3
in Japan receives the object from GDC since it is cheaper
than ADC in Singapore. Based on the above discussion, the
migration cost is defined as below.

Definition 9. (Migration Cost): If &(t) # d(t — 1), the ap-
plication incurs the migration cost in time slot ¢ that is the
multiplication of the object size and the out-network cost
of the DC hosting the object in time slot ¢—1. The migration
cost of object denoted by Cp(d(t — 1),d(t)) includes

the migration cost from the DC d, = min O(d) to
dla?(t—1)=1
dq = min O(d) and the object is then replicated from

dja?(t)=1
the DC‘ cll(m)1 = min(O(ds),O(dy)) to all remaining DCs
in the destination set if they are not in the source set.
We denote by p as the number of DCs in destination set,
excluding the intersection of the source and destination
sets. Thus,

Crr(@(t—1),a(t)) = v(t) x (O(ds)+O(dpm) x (p—1)). (4)

The discussed policy uses the stop and copy technique,
in which the application is served by the source set for
Gets and destination set for Puts during migration [26].
This technique is used by the single cloud system such
as HBase’ and ElasTraS [28], and in Geo-replicated sys-
tem [25]. As we desire to minimize the monetary cost of
migration, we use this technique in which the amount of
data moved is minimal as compared to other techniques
leveraged for live migration at shared process level of
abstraction®. We believe that this technique does not affect
our system performance due to (i) the duration of migra-
tion for transferring a bucket (at most 50MB, the same as
in Spanner [34]) among DCs is considerably low, and (ii)
most of Gets and Puts are served during the hot-spot status,
and consequently the access rate to the object during the
migration, which is happening in the cold-spot status, is
considerably low based on the access pattern. We point
out this with more details in Section 6 7.

Now, we define the total cost of the object in time slot ¢
based on Equations (1 - 4) as:

C(a), 8(t) = Cr(.) + Cm(.) ®)
Besides the cost optimization, satisfying the low latency
response to Put/Get requests is a vital performance mea-
sure for the application. Our model respects the latency
Service Level Objective (SLO) for Get/Put requests, and
the latency for a Get and Put request is calculated by
the delay between the time a request is issued and the
time acknowledgement is received. Since the Get and Put
requests time for small size objects is dominated by the
network latency, similar to [7] and[35], we estimate latency
by the Round Trip Time (RTT) between the source and
destination DCs. Let I(k,d’) denote this latency, and L
define the upper bound of delay for Get and Put requests
on average to receive response. We generally define the
latency constraint for Get and Put requests as a constraint
I(d,d") < L, where d stands for the associated DC in the
region k. This performance criterion will be integrated in
the cost optimization problem discussed in the following
section.
We also make some assumptions in the case of occur-
ring failure and conducting Put and Get requests in the

5. https:/ /hbase.apache.org/book.html

6. In transactional database in the context of cloud, to achieve
elastic load balancing, techniques such as stop and copy, iterative state
replication, and flush and migrate in the process level are used. The
interested readers are refereed to [26] and [27].

7. Note that our system is not designed to support database trans-
actions, and this technique just inspired from this area.

1. Cloud storage services price

DCs Specifications
2. Inter-DC latency

Replica placement with
optimization cost

Replica Placement
Manger (RPM)

Fig. 2: Overview of systems’s inputs and output.
system. It is assumed that DCs are resistant to individual
failures and communication links between DCs are reliable
due to using redundant links [34]. In our system, a Put
and Get is considered as a complete request once the request
successfully conducted on one of the replicas. For the
Put, this assumption suffices due to durability guarantees
offered by the storage services. During migration process,
if either source or destination DC fails, then the system
can either postpone data migration for a limited time or
re-execute the algorithms without considering the failed
DC(s).

2. Replicas number
3. Application workload per object

Application Requirements
1. LatencySLO

3.3 Optimization Problem

Given the system’s input and the above cost model, we
define the objective as the determination of the value of
@(t) and f(t) in each time slot so that the overall cost for
all objects during ¢ € [1...T] is minimized. We define the
overall cost minimization problem as:

i C(a), Bt
i 22070 ©

s.t. (repeated for V¢ € [1...T],Vd € D and Vk € K)
@) Y gepa’(t) =r, ad(t) € {0,1}

0) Yher Lajaap=r B4 =1, 54(t) € (0,1)
@©B"4(t) < at(t),
(d) EkeK ZdeDO‘ (t)><'r‘k><l(k,d) S L,

ek TF
(e) l(k,d) < L]:GdI;: min O(d) and ¥V Put request.
dla®(t)=1

In the above optirr‘dzz;tion problem, constraint (a) indi-
cates that only r replicas of the object exist in each time slot
t. Constraint (b) ensures that all requests are served, and
constraint (c) guarantees that each request for the object is
only submitted to the DC hosting the object. Constraints
(d) and (e) enforce the average response time of Get and
Put requests in range of L respectively.

To solve the above optimization problem, we propose
three algorithms as a part of the Replica Placement Man-
ager (RPM) system (Fig. 2) to optimize cost based on two
inputs: DCs specifications and application requirements.

4 OPTIMAL OFFLINE ALGORITHM

To solve the Cost Optimization Problem, we should find
values of &(t) and it (t) so that the overall cost in Equation
(6) is minimized 8. So, we propose a dynamic program-
ming algorithm to find optimal placement of replicas (i.e.,
a*(t)) and optimal distribution of requests to replicas (i.e.,
B*(t)) for all objects during ¢ € [1..T]. Based on the
above problem definition, 3(t) in time slot ¢ can be simply
determined using a linear programming once the value of
a(t) is fixed.
- IV i (Pl

Let @ = {a%a?..,a,.., a7)} denote all r-

combinations of distinct DCs can be chosen from D (i.e,

8. Note that the constraints (a-e) in Equation (6) is repeated for all
cost calculation equations, unless we mentioned.

12 t1t 11, 7 » Time
-1 - gl
a a,z\
@’ @
=Y Al
at a‘L_?
71dl -1
a a
v

Data centers

att =1)
Combinations

Fig. 3: The description of P(&(t)) calculation in Equation (7)

|| = (‘?‘)). Suppose that the key function of the dynamic
algorithm is P(d(t)) that indicates the minimum cost in
time slot ¢ if the object is replicated at a set of DCs that is
represented by &(t).

The corresponding P(d(t)) to each entry of table in
Fig. 3 should be calculated for all ¢ € [1...T] and for
all elements of &. In the following, we derive a general
recursive equation for P(d(t)).

As illustrated in Fig. 3, to calculate P(d(t)) we first
need to compute residential cost (i.e., Cg(.)) and migration
cost (i.e.,, Cpr(.)) between @(t — 1) and @(t). Second, to
obtain this migration cost, we enumerate over all possible
a(t — 1) containing the object in time slot ¢ — 1. Thus,
the cost P(d(t)) is the minimum of the summation of the
cost C(a(t), 5(t)) in Equation (5) and P(@(t — 1)). The
termination condition for the recursive equation P(&(t))
is P(a(t)) = 0 for t = 0, meaning there is no placement
for the object. Combining all above discussions, we obtain
the general recursive equation as:

Pla(t)) =)
LLmin_ [P@E(E-1) + @@ A0 >0)
0 t=0

Once P(d(t)) is calculated for all &(t) € & during ¢ €
[1...T], the minimum cost for the object is {n)ln P(a(t))
a(t)ea

in time slot ¢ = T. The optimal placement of replicas
for the object in time slot ¢ € [1...T], @*(t), is the corre-
sponding &(t) on the path leading to the minimum value
of P(d(t)) in time slot t = T. The request distribution
related to @*(t) in time slot ¢ is determined by *(t) using
a linear programming. Since this algorithm requires the
exact knowledge of workload and demands high time
complexity,” we design the following online algorithms.

5 ONLINE ALGORITHMS

The optimal offline algorithm as its name implies is opti-
mal and can be solved offline. That is, with the given work-
load, we can determine the optimal placement of objects in
each time slot t. However, offline solutions sometimes are
not feasible for two main reasons: (i) we probably do not
have a priori knowledge of the future workload especially
for start-up firms or those applications whose workloads

9. The time complexity of all algorithms in this paper is discussed
in Appendix C.

Algorithm 1: Optimal Offline Algorithm

Input : RPM’s inputs as illustrated in Fig. 2
Output: @*(t), §*(t), and the optimized overall cost
during t € [1...T]
1 & ¢ Calculate all r—combinations of distinct DCs
from D.
Initialize: V@(0) € &, P(&(0)) =0
fort < 1toT do
forall d(t) € & do
forall G(t — 1) € d do
| Calculate P(d(t)) based on Equation (7).

7 end

N

[N

8 end
9 end

10 Find a sequence of @(t) and j(t) such that leading to
I(n)in (P(@(t)) in time slot t = T'as the optimized
a(t)ea
overall cost (Equation 6). This sequence of d(t) and
B(t) are @*(t) and B*(t).

11 Return a*(t), 5*(t), and the optimized overall cost.

are highly variable and unpredictable; (ii) the proposed
offline solution suffers from high time complexity and
is computationally prohibitive. Thus, we present online
algorithms to decide which placement is efficient for object
replicas in each time slot ¢ when future workloads are un-
known. Before proposing online algorithms, we formally
define the CR that is widely accepted to measure the
performance of the online algorithms.

Definition 10. (Competitive Ratio): A deterministic
online algorithm DOA is c-competitive iff VI,
Cpoa(I)/Copr(I) < ¢, where Cpoa(I) is the total
cost for input I by DOA, and Copr(I) is the optimal
cost to serve input I by the optimal offline algorithm
OPT. Similarly, a randomized online algorithm ROA is
c-competitive iff VI, E[Croa(I)]/Copr(I) < c.

5.1 The Deterministic Online Algorithm

We propose an online algorithm based on the total cost
ca), 5(t) consisting of two sub-costs: residential and
migration costs. These two sub-costs of the object can poten-
tially appear as an overhead cost for the application if the
migration of the object happens at inappropriate time(s).
Frequent migration of the object causes the object to be
moved much more than the optimal number of migrations
between DCs. Thus, the total cost of application exceeds its
optimal cost. An upper bound of this cost happens when
the optimization problem is solved in time slot ¢ without a
priori knowledge of the future workload and considering
the location of the object in previous time slot t — 1. In
contrast, a lower number of migrations leads to stagnant
objects that they might not be migrated even to a new
DC imposing a lower cost to the application. Thus, the
residential cost surpasses the optimal residential cost. The
upper bound of the residential cost happens when there is
no migration.

To avoid these issues, the algorithm makes a trade-off
between two costs, residential and migration, in the ab-
sence of the future workload knowledge. The intuitive idea

DCname: 4 A A Time
I D U
v=t t—1v=t N
"Residential cost in t: Cz (&(v — 1), B (v))
(a)
DCname: 4 A B Tim
[T 1 e |
v=ty t—1v=t
Residential cost in t: Cp (&(U),ﬁ(v))

DCname: 4

V=tp

Time

b
™

eeee |

V=01 V=1n
Migration c?s;: Cu(@(tm-1), @(ty))
C
Fig. 4: The description of Deterministic online algorithm. The
residential cost of the object as if the requests on the object
in slot v = t are served by (a) the determined DCs in time
slot v — 1 and (b) the determined DCs in time slot v. (c) The
migration cost of the object between the determined DC in
time slot v = tp,—1 and ¢,

behind this algorithm is that 1) migration only happens
when it causes cost saving in the current time slot and
2) the summation of the lost cost savings opportunities
from the last migration (i.e., ¢,,) is larger or equal to the
migration cost. This intuition causes to strike a balance
between frequent and rare migration.

Assume that ¢,, denotes the last time of migration for
the object. Let the migration cost between two consecu-
tive migrations times (i.e., ¢,,—1 and t,,) be defined by
Crr(@(tm—1), @(tm)). For each time slot ¢, we calculate the
residential cost of the object in v € [t,,,t) for two cases: (i)
the residential cost of the object as if it is in the DCs that
are determined in time slot v — 1 and the requests issued to
the object in time slot v are served by these DCs. This cost
is defined by Cg(d@(v—1), B(v)) (see Fig. 4a'), and (ii) the
residential cost of object as if the object is migrated to new
DCs that are determined in time slot v and the requests
for the object are served by the chosen new DCs. This cost
is termed by Cg(&@(v), 5(v)) (see Fig. 4b). Now, for each
of the following time slot v, we calculate the summation
of the difference between the above residential costs (i.e.,
(i) and (ii)) from time v = ¢, to v = t — 1, which is
Yo, [Cr(@(v—1), B(v))— Cr(d(v), A(v))]. Based on the
above calculated residential cost and migration cost (i.e.,
Crr(&(tm—1),d(tm))- see Fig. 4c), in the current time slot ¢,
the algorithm makes a decision whether the object should
be migrated to new DCs or not. The object is migrated to
new DCs in time slot ¢ if the two following conditions are
simultaneously met.

1) The object has the potential to be migrated to a new DC

if
Cur(@(tm-1), d(tm)) <

> [Cr(@(v = 1), B(v)) = Cr(@(v), B(v)]

V=t

®)

Otherwise, the object certainly stays in the previous DCs
determined in time slot ¢ — 1.

2) As earlier noted, to avoid migrating the object back and
forth between DCs, we enforce the following condition:

10. In this figure, without loss of generality, we consider only one
DC that hosts an object (i.e., r = 1).

8

Cu(a(tm), a(t)) + Cr(a(t), (1)) < Crlalt —1), 5(1))
©)
This constraint means that the overall cost of the object in
the new DCs in time slot ¢ including the residential and
migration costs should be less than or equal to the cost of
the object if it stays in the chosen DCs in time slot ¢ — 1.

Based on the above discussion, Algorithm 2 formulates
the deterministic online algorithm. The algorithm first
finds all r—combinations of distinct DCs that can be chosen
from D (line 2). Then, for each object in time slot t = 1,
it determines the best placement of replicas of the object
and also the proportion of requests that must be served
by these replicas so that Cr(@(t), 3(t)) is minimized (line
3). After that the migration time ¢, is set to 1 (line 4).
For all t € [2..T] (line 5), @(t) and j(t) are calculated for
all @(t) € @ so that the residential cost Cr(@(t), 3(t)) is
minimized (lines 6-9). Based on Equations (8) and (9), if
the new DC chosen in time slot ¢ is different with that of
time slot ¢ — 1, the object migration happens (lines 10-13).
Otherwise, the object stays in the DC that is selected in
time slott — 1, i.e., @(t) = @(t — 1) (line 15).

We now analyze the performance of the deterministic
algorithm in terms of CR. The key insight behind the
algorithm lies in Equations (8) and (9) to make trade
off between frequent and infrequent migrations of objects
among DCs. According to these equations, we first calcu-
late the upper bound for the migration cost in [1...t] and
then derive the CR of the algorithm.

Lemma 1. The upper bound of the migration cost between two
consecutive migration times (ty,—1,ty) during [1,] is ~y times
of the minimum residential cost in this time period. -y is the ratio
of the residential cost in the most expensive DC to the cheapest
oneinv € [1...4].

Proof. See Appendix A. O

Theorem 1. Algorithm 2 is (2y — 1)—competitive. Formally,
for any input, Cpoa/Copr < 27 — 1.

Proof. See Appendix A. O

The value of ~ is the ratio of the residential cost
between the most expensive DC to the cheapest one in
the network cost in hot-spot or storage cost in cold-spot
during its lifetime. Thus, if the object is read intensive
(i-e., it is in hot-spot), the value of v = Idr;aglc O(d)/O(d").

Otherwise, if object is storage intensive (i.e., it is in cold-
spot), then v = max S(d)/S(d'). Generally, if the volume
d#d’

of the object to be read is A times of the object size, then

V= gﬁ(s(d) +20(d))/(5(d) + AO(d)).

5.2 The Randomized Online Algorithm

It is expected that the randomized algorithms typically im-
prove the performance in terms of CR to their deterministic
counterparts. In the following, we design a randomized
online algorithm based on the subclass of Reducing Hori-
zon Control (RHC) algorithms, which is called Fixed RHC
(FRHC) [19]. RHC is a classical control policy that is used
for dynamic capacity provisioning in a DC [18] [19], load
balancing on a DC [20], and moving data into a DC [21].
In our algorithm, the time period T' is divided into
[T /w] frames, where each frame has a size of w time slots.
It is assumed that in the first time slot (i.e., t5) of each

Algorithm 2: Determinstic Online Algorithm (DOA)

Input
Output: @(t), A(t), and the overall cost denoted Ciye
1 Cope + 0

2 @ ¢ Calculate all r—combinations of distinct DCs
from D.

: RPM’s inputs as illustrated in Fig. 2

3 Cyye + Determine @(t) and 3(t) by minimizing
Cr(@(t), B(t)) for all @(t) € @ in time slot ¢ = 1.

4 t, 1

5 fort <~ 2toT do

6 forall &((t) € @ do
7 Cg(.) + Determine (t) an () by
minimizing Cr(&(¢), 8 (t))

8 Co’ue — Co’ue + CR()

9 end

10 | if (Equations (8) and (9), and &t — 1)! = a(t))
then

11 tm <1

12 Cr(.) + calculate Cpg (G (tm—1), G(tm))

13 Cove < Cope + Crr(-)

14 else

15 | a(t) < a(t—1)

16 end

17 end
18 Return &(t), g(t), and Cyye.

Full frame

Partial fram .
< f > Partial fram

A
A

——==(1=2) —— (=3
Fig. 5: Illustration of Fixed Reduced Horizontal Control

frame, the workload in terms of Get and Put requests, and
data size is known for the next t, + w time slots. Due to
available future workload knowledge for the time frame
[ts, ts + w], we can calculate the optimal cost for this time
frame. To do so, we re-write the cost optimization problem
based on Equation (6) for the time frame [t,,ts + w] (ie.,
Equation 10) and solve it by using Algorithm 1 to calculate
the optimal cost.

ts+w

min ZC’a

a(t), B(t) t=tq

(10)

The first time slot (i.e., t5) of the first frame can be started
from different initial time ! € [1,w], which indicates
different versions of the FRHC algorithm. For each specific
FRHC algorithm with value /, an adversary can determine
an input with a surge in Get and Put requests and pro-
duce a large size of data. These can result in increasing
migration cost and degrading the cost performance of the
algorithm. A randomized FRHC defeats this adversary
with determining the first time slot of the first frame by
a random integer 1 <[< w.

Thus, the first slot of the first frame falls between 1 and
w. The following frames are considered with the same size

9

of w time slots sequentially. Assuming T is divisible by
w, it is clear that if [# 1, then there are [T/w] — 1 full
frames and two partial frames that consist of [and w — !
time slots. Fig. 5 shows partial and full frames when the
algorithm randomly selects the first slot of the first frame
with the value of [= 2, where T' = 9 and w = 3 . It also
shows different versions of randomized FRHC for values
of 1 <1 <3.

Based on the above discussion, we design the random-
ized algorithm and solve the optimization problem, i.e.,
Equation (10) according to Algorithm 3 for partial and full
frames. In the randomized algorithm, first, we randomly
choose | € [1,w] as ts of the first frame. If [# 1, then
we calculate the residential cost over two partial frames
with the size of [and w — [time slots (lines 2-5). For the
full frames, we compute overall cost consisting residential
and migration costs for each full frame and migration cost
between consecutive full frames (lines 6-11). Finally the
migration cost between the last full frame and its next
partial frame is determined if [# 1 (lines 12-15).

We now analyse the performance of the randomized
online algorithm in terms of CR as follows.

Lemma 2. The upper bound cost of each frame is the offline opti-
mal cost plus the migration cost of objects from DCs determined
by randomized FRHC to those specified by the offline algorithm.

Proof. The proof is given in Appendix B. O

Theorem 2. Algorithm 3 is (1 + I)-competitive. Formally, for
any input Croa/Copr < (1 + w)

Proof. The proof is given in Appendix B. O

Based on computed v in Section 6.3.1, the randomized
algorithm leads to a CR of 1+ 122, depending on the value
of w, and achieves to better cost performance compared
with its counterpart.

6 PERFORMANCE EVALUATION

We evaluate the performance of the algorithms via simu-
lation using the CloudSim discrete event simulator [9] and
the synthesized workload based on the Facebook work-
load [10]. Our aims are twofold: we measure (i) the cost
savings achieved by the proposed algorithms relative to
the benchmark algorithms, and (ii) the impact of different
values of parameters on the algorithms’ performance.

6.1 Settings

We use the following setup for DC specifications, objects
workload, delay constraints, and experiment parameters
setting.

DCs specifications: We span DCs across 11 regions!! in
each of which there are DCs from different CSPs. There are
23 DCs in the experiments. We set the storage and network
prices of each DC as specified in June 2015. Note that we
use the price of SS and RRS during hot-spot and cold-
spot status of objects respectively. The object is transited
from hot-spot to cold-spot when about 3/4 of its requests
have been served [36]. These many requests are received
within the first 1/8 of the lifetime of the object, which is
considered as the hot-spot status for the object [36].

11. California, Oregon, Virginia, Sao Paulo, Chile, Finland, Ireland,
Tokyo, Singapore, Hong Kong and Sydney.

Algorithm 3: Randomized Online Algorithm (ROA)
with available future workload information for w
time slots

Input : RPM’s inputs as illustrated in Fig. 2

Output: @(t), 5(t), and the overall cost denoted C,,.
1 | « random number within [1, w], Coye < 0

2 if [#1 then

3 Cope solve Equation (10) over widows [1,]
and [T —]

4 tm =1+1

5 end

6 fort<—IltoT —1+1 do

7 Cove + Copet solve Equation (10) over widows
1+ w)

8 Cyr + solve Equation (4) for (t,,—1,tm)
9 | Cope & Cove + Oyt =1 +w+1

10 t—t+w

11 end

12 if [# 1 then

13 Cr + solve Equation (4) for (-1, tm)
1 | Cope < Cove +Cp

15 end

16 Return @(t), A(t), and Cype

Objects workload: It comes from the Facebook workload
[10] in three terms: (i) the ratio of Get/Put requests is
assigned to 30, (ii) the average size of each object retrieved
from the bucket (recall the definition of bucket in Section
3) is 1 KB and 100 KB on average'?[7], and (iii) the pattern
for Get rate to retrieve items follows long-tail distribution
such that 3/4 of those Gets happen during 1/8 of the initial
lifetime of the bucket [36]. We synthetically generate the
Get rate of each bucket based on Weibull distribution that
follows the above mentioned pattern. The number of Get
operations for each bucket is randomly assigned with the
average of 1250. The low and high Get rate implies that
the bucket contains the objects belonging to users whose
profiles are accessed frequently and rarely respectively
(i.e., this category of users has a low and high number
of friends respectively).

Delay setting: The round trip time delay between each
pair of DCs is measured based on the formula RRT (ms) =
5+ 0.02 x Distance(km) [37]. The latency L- a user can
tolerate to receive a response of Get/Put requests— is 100
ms (i.e., tight latency) and 250 ms (i.e., loose latency). A la-
tency higher than 250 ms deteriorates the user’s experience
on receiving Get/Put response [38].

Experiment parameters setting: In the experiments, we set
the following parameters. The overall size of objects is 1
TB and the size of each bucket is initially 1 MB, which
grows to 50 MB during the experiments. The number of
replicas is set to 1 and 2 [39]. The unit of the time slot
(as well w) is one day. We set w = 4 by default, where
the randomized algorithm is superior to the deterministic
algorithm in the cost saving, except for large objects with
two replicas under loose latency. We vary w to examine

12. Henceforth, the object with size 1 KB and 100 KB on average are
called small and large object respectively.

10

its impact on the cost saving. In all workload settings, we
compute cost over a 60-day period.

6.2 Benchmark Algorithms

We propose two benchmark algorithms to evaluate the
effectiveness of the proposed algorithms in terms of cost.
Non-migration algorithm: This is shown in Algorithm
4 and minimizes the residential cost C'r(.) with all con-
straints in Equation (6) so that objects are not allowed
to migrate during their lifetime. This algorithm, though
simple, is the most effective measure to show the impact
of object migration on the cost saving (see Section 6.3.5).
Local residential algorithm: In this algorithm, an object is
locally replicated at a DC located in the region that issues
most Get and Put requests for the object and also in the
closest DC(s) to that DC if the need for more replicas arises.
All the incurred costs are normalized to the cost of local
residential algorithm, unless otherwise mentioned.

Algorithm 4: The Non-migration Algorithm

Input : RPM’s inputs as illustrated in Fig. 2
Output: @(t), 5(t), and the overall cost

1 & < Calculate all r—combinations of distinct DCs
from D.

2 Calculate Z;‘ll Cr(a(t), B(t)) with all constraints in
Equation (6) for all &(t) € &, and then select &(t) as
the location of the object from ¢t = 1 to 7" so that the
above computed cost is minimized. This cost is the
overall cost.

3 Return @(t), 3(t), and the overall cost.

6.3 Results

We start by evaluating the performance of algorithms
relative to the above benchmark algorithms.

6.3.1 Cost Performance

The cost performance of all algorithms through simula-
tions is presented in Figs. 6 and 7, where the CDF of the
normalized costs'® are given for small and large objects
with r=1,2 under tight and loose latency. The general
observation is that all algorithms witness significant cost
savings compared with the local residential algorithm. As
expected, the results, in term of average cost saving (see
Table 3), show that Optimal outperforms Randomized,
which in turn is better than Deterministic (apart from the
above mentioned exception).

Fig. 6a illustrates the results for small objects under
tight latency. Optimal saves at most 20% of the costs for
about 71% of the objects, and the online algorithms cut
10% of the costs for about 60% of the objects. In contrast,
the results also show that the application incurs at most
10% more costs for about 20% of the objects by using
Deterministic, and likewise at most 20% more costs for
about 30% of the objects by using Randomized. Fig. 6b
depicts the results for large objects under tight latency. We
can observe that Optimal cuts costs for more than 95% of
the objects, while this value reduces to about 80% of the
objects in online algorithms. The cost savings for objects in
Optimal, Deterministic, and Randomized are respectively

13. Note that as normalized cost is smaller, we save more monetary
cost.

11

---------- Deterministic Randomized
8 — — 10 W
09 09 09 09
08 08 08 08
07 07 07 07
w06 %06 %06 06
Zos 0 8 §
70 205 2os 205
So4 3 [2
- So4 So4 Oo4
03
- 03 03 03
'1 g CR (DOA)=1.42 02 CR (DOA)=1.28 02 02
0 (R (ROA)=1.30 01 CR (ROA)=1.10 ot 01
07 08 09 10 11 12 13 14 v "’os =

06 07 08 09 10

Normalized Cost Normalized Cost

07 08 09

Normalized Cost

0.7 0.9
Normalized Cost

(a) Cost CDF (latency=100 ms,(b) Cost CDF (latency=100 ms, (c) Cost CDF (latency=250 ms,(d) Cost CDF (latency=250 ms,

object size=1 KB) object size=100 KB)

object size=1 KB) object size=100 KB)

Fig. 6: Cost performance of algorithms under tight and loose latency for objects with a replica. All costs are normalized to the
local residential algorithm. The values in boxes show the CR of DOA and ROA in the worst case.

—— Optimal

Deterministic

Randomized

Cost CDF
Cost CDF

CR (DOA)=1.30
CR (ROA)=1.19

CR (DOA)=1.32
CR (ROA)=1.10

1.0

Cost CDF

[CR (DOA)=1.10
- CR (ROA)=1.13

CR (DO)=1.07
CR (ROA)=1.10

0.7 0.8 0.9 1.0

Normalized Cost Normalized Cost

0.9 1.0 0.7 0.8 0.9

Normalized Cost

1.0 11

Normalized Cost

(a) Cost CDF (latency=100 ms,(b) Cost CDF (latency=100 ms, (c) Cost CDF (latency=250 ms,(d) Cost CDF (latency=250 ms,

object size=1 KB) object size=100 KB)

object size=1 KB)

object size=100 KB)

Fig. 7: Cost performance of algorithms under tight and loose latency for objects with two replicas. All costs are normalized to
the local residential algorithm. The values in boxes show the CR of DOA and ROA in the worst case.

TABLE 3: Average cost performance (Normalized to the local residential algorithm)

Latency=100 ms

Latency=250 ms

Replicas Object Size Optimal Deterministic =~ Randomized Optimal Deterministic Randomized
Number
=1 1 KB 0.9030 0.9694 0.9469 0.8778 0.9075 0.8974
100 KB 0.8561 0.8734 0.8657 0.7758 0.8369 0.7997
=2 1 KB 0.8879 0.9330 0.9181 0.8787 0.9045 0.8866
100 KB 0.8831 0.9045 0.9127 0.8440 0.8625 0.8636

15%, 14% and 13%. Based on comparison between results
in Figs. 6a and 6b, we realize online algorithms remain
highly competitive with the optimal algorithm in cost
savings for large objects. This happens due to the fact that
the migration of large objects in both online and offline
algorithms happens roughly at the same time.

Figs. 6¢c and 6d show the results for small and large
objects under loose latency. The algorithms cut the costs for
about 78% of the small objects (Fig. 6¢) and for about 100%
of large objects (Fig. 6d). On the average, from Table 3,
Optimal, Deterministic, and Randomized respectively gain
cost savings around 13%, 10% and 11% for small objects,
and correspondingly 23%, 17% 21% for large objects. From
these results in Figs. 6¢c and 6d to those in Figs. 6a and
6b, we observe that all algorithms are more cost effective
under loose latency in comparison to tight latency. The
reason is that: (i) there is a wider selection of DCs available
with a lower cost in storage and network resources under
loose latency in comparison to tight latency, and (ii) the
application can benefit from the large objects migration
more than the small objects migration).

The results in Fig.7 reveal that the cost performance of
algorithms for objects with two replicas. By using online

algorithms, the application witnesses the following cost
savings. As illustrated in Figs. 7a and 7c, the application
can reduce costs for about 90% and 95% of the small
objects under loose and tight latency respectively. For
these objects, Randomized and Deterministic under loose
latency (resp., under tight latency) reduce the cost by 7%
and 9% (resp., 10% and 12%) on average (see Table 3). As
shown in Figs. 7b, 7d and Table 3, for large objects, the
cost savings of two online algorithms become very close
while Deterministic is slightly better than Randomized in
average cost savings. Under tight latency, the application
receives 10% and 9% of cost savings by using Deterministic
and Randomized, respectively, while under loose latency,
the application saves the cost (around 14% on average)
by using each of online algorithm. This slight superiority
of Deterministic over Randomized shows that we need to
choose w > 4 in order to allow Randomized to outperform
Deterministic for this setting (i.e., r=2, for large objects
under tight latency). By using the optimal offline algorithm,
we observe the following results in Fig.7. The application
achieves cost savings for all objects with two replicas,
while it is not the same for all objects with one replica (see
Figs. 6a and 6¢). On average, the application using Optimal

—— Optimal (1k) Randomized (1k)
--------- Deterministic (1k) ----+-- Optimal (100K)

Deterministic (100k)
-—-- Randomized (100k)

1.00 0950
| T _._‘~~~~ .
L 095 TR o 0925{ g
8 8 S -
& 8 L .
9090 o - -~
g g 0.900 k\\ N
= s R N
. : —— g o
£08 £ 0475 N =
N, ~.
z z .\k_)
080 0850 Dt
T——A
S0 100 150 200 250 S0 100 15 200 250
Latency (ms) Latency (ms)

(a) Normalized cost vs. latency(b) Normalized cost vs. latency
for one replica for two replicas

Fig. 8: Normalized cost of algorithms when the latency is
varied. Legend indicates object size in KB for different al-
gorithms. All costs are normalized to the local residential
algorithm.

reduces cost for small objects (resp., for large objects) by
about 12% and 13% (resp., 12% and 16%) under loose and
tight latency respectively.

Besides the above experimental results, we are inter-
ested to evaluate the performance of online algorithms
in terms of CR values discussed in Appendix A and B.
For this purpose, we compare the value of CR obtained
in theory with that of the experimental results in Figs. 6
and 7. To calculate the theoretical value of CR, we require
the value of . Under the storage and network price used
in the simulation, the gap between the network prices is
more than that of between the storage prices of the same
DCs in this case. The highest gap is between GCS and ACS
with value 0.21 per GB and 0.138 per GB, respectively, in
the Asia- Pacific region, which results in y= 1.52. Thus, by
Theorem 1 and the value of v, the deterministic algorithm
will lead to at most 2.04 times the optimal offline cost.
And, by Theorem 2 and the value of 7, the randomized
algorithm incurs at most 1.38 (note that the value of w
is 4 in all experiments). The corresponding CR for each
experimental result in Figs. 6 and 7 is shown in a box at the
bottom of each figure. This value of the CR is the highest
among all objects incurred by the online algorithms. All CR
values obtained from experimental results are lower than
those theoretical values as the object migrations conducted
by the proposed algorithms does not necessarily occur
between DCs with the highest and the lowest price in the
network. Therefore, the online algorithms remain highly
competitive in comparison to the optimal offline algorithm
in the worst case in all experiments.

6.3.2 The Effect of Latency on Cost saving

In this experiment, we evaluate the cost performance of
algorithms when the latency is varied from 50 ms to 250
ms. First, as shown in Figs. 8a and 8b, the normalized cost
of all algorithms reduces when the latency increases. The
reason is that when the latency is 50 ms, most objects are
locally replicated at DCs; as a result normalized cost is
high. As latency increases, algorithms can place objects
in remote DCs which are more cost-effective, and hence
the normalized cost declines. For example in Fig. 8a, as
latency increases from 50ms to 250ms, the cost savings for
Optimal, Deterministic, and Randomized rises from 3-10%,
6-11% and 10-13%, respectively, for small objects, and like-
wise 13-17%, 14-22% and 15-23% for large objects. Second,
as we expected, Optimal outperforms Randomized, which

12

in turn is better than Deterministic in normalized cost
excluding the mentioned exception (see Fig. 8b for large
objects). This exception implies that we need to use w > 4
to achieve better performance of Randomized compared to
that of Deterministic. Third, we observe that the decline in
the cost savings for large objects is more steep than those
of small objects when latency increases (Fig. 8b).

6.3.3 The Impact of Read to Write Ratio on Cost Saving

We plot the effect of read to write ratio, varying from 1
(write-intensive object) to 30 (read-intensive object), on the
normalized cost for small and large objects under tight and
loose latency in Fig. 9. We observe the following results.
(i) There is a hierarchy among algorithms in the nor-
malized cost, where Optimal is better than Randomized,
which in turn, outperforms Deterministic, excepts for large
objects with two replicas. In this exception, Deterministic
saves 1% more cost than Randomized with w = 4, while
for w > 4 Randomized is better than Deterministic in
this criterion (next section). (ii) For small objects with
r = 1,2 under both latency constraints, the normalized
cost of all algorithms increases slightly as the ratio goes up,
excluding the normalized cost of Randomized for small
objects with one replica under tight latency (see Fig.9a).
The reason behind this slight increment is that when the
ratio increases, less volume of data is read and written;
hence the application has to leverage from less difference
between storage and network services and objects are
prone to stay in local DC(s). (iii) For large objects with
r = 1,2 under both latency constraints, the normalized
cost of all algorithms reduces as the ratio raises, particu-
larly for » = 1. For example, as shown in Figs. 9b and
9d, under loose latency (resp., under tight latency), the
normalized cost reduces by 10%, 9% and 6% (resp., 5%,
6% and 9%) for Optimal, Randomized and Deterministic,
respectively when the ratio increases from 1 to 30. The
main reason for the reduction in the normalized cost for
large objects is that when large objects are write-intensive,
the objects migrate to the new DC(s) lately and utilize less
the difference between storage and network cost. In con-
trast, read-intensive large objects can better leverage the
difference between storage and network cost. (iv) Under
both latency constraints, small objects with two replicas
generate more cost savings than the same objects with one
replica, while the situation is reversed for the large objects.

6.3.4 The Impact of Window Size on Cost Saving of the
Randomized Algorithm

We investigate the impact of look-ahead window size into
the available future workload on the normalized cost of
the randomized algorithm. Fig. 10 shows the evaluation
of this effect when w varies from 2 to 6 units of time. As
expected, the larger the w value, the more reduction in
the normalized cost of the algorithm for small and large
objects with » = 1,2 under tight and loose latency. As
mentioned before, for the prediction window, we set w = 4
by default and results show that Randomized outperforms
Deterministic, excluding for large objects with two replicas
(see Fig.7d). For this setting, Fig. 10b represents the nor-
malized cost of Randomized which is lower than that of
Deterministic for w > 4. This indicates that the more future
workload information is available, more improvement in
the cost saving for the algorithm happens.

13

—— Optimal (1k) Randomized (1k) Deterministic (100k)
————————— Deterministic (1k) ------ Optimal (100K) --<-- Randomized (100k)
0.975 0.92 0.94 0.91
0.950 0.90 093] g X Moo o 0.90
20 1088 B 089
8 S 56 G092 S
50925 ER 3 088
I N 084 N 091 S
o [} m M 0.
£0.900 £ 0m E o0 E
S 2 ke S 0.86
2 Z080 z J E— e =
0.875 o8 0.89 T 0.85
et T e = '
— =
0.850 0.76 0.88 0.84
1 30 1 30 1 30 1 30

10 20 10 20
Read to write ratio Read to write ratio

10 20 10 20
Read to write ratio Read to write ratio

(a) latency=100 ms and replica(b) latency=250 ms and replica (c) latency=100 ms and replica(d) latency=250 ms and replica

number=1 number=1

number=2

number=2

Fig. 9: Normalized cost vs. read to write ratio under tight and loose latency for objects with one and two replicas. Legend
indicates object size in KB for different algorithms. All costs are normalized to the local residential algorithm.

1025 — (1))
095 (1,100)
L NS kel ¢ 2 L) | Y N '
. u M~ @D
g 0975 §o90 \.\—-~-- (2,100)
g 0550 3 e —
g L e S 1
£ =085
g 0.925 g
s £
S 0900 2080 i
0.875 -
[T " .
0.850 0.75 ‘

2 4 6 2 4 6
Look-ahead window size (day) Look-ahead windowsize (day)

(a) Normalized cost vs. win-(b) Normalized cost vs. win-
dow size for latency 100 ms ~ dow size for latency 250 ms

Fig. 10: Normalized cost of the Randomized algorithm when
the window size is varied. All costs are normalized to the local
residential algorithm. Legend indicates replicas number and
objects size in KB.

6.3.5 The Effect of Objects Migration on Cost Saving

We now show how much cost can be saved by migrating
objects in the proposed algorithms over Algorithm 4 as
a benchmark. Fig. 11a shows that when the latency is
tight, for about 11% of small objects, there is a saving of
at most 10% and 6% for » = 1 and r = 2 respectively.
For large objects, more improvements are observed in the
cost savings. In particular, the application saves 4-5% of
the costs for 88% of the objects with one replica and for
98% of them with two replicas. This is because that as
the object size increases, the objects are more in favor of
migration due to increasing in the imposed storage cost.
Fig. 11b shows the effect of migration on cutting the cost
when the latency is loose. For small objects, cost saving
is not significant (we did not plot here) because (i) in
their early lifetime, they find DCs that are competitive in
the cost of storage and network; and (ii) the objects do
not considerably grow in size requiring to be migrated to
new DCs in the end of their lifetime. Thus, the object is
replicated at DCs that are cost-effective in both resources
for its whole lifetime. In contrast, for 90% of the large
objects, the cost saving is around 4.5% and 2.5% when r=1
and r=2 respectively.

7 CONCLUSIONS AND FUTURE WORK

To minimize the cost of data placement for applications
with time-varying workloads, developers must optimally
exploit the price difference between storage and network
services across multiple CSPs. To achieve this goal, we
designed algorithms with full and partial future workload
information. We first introduced an optimal offline algo-
rithm to minimize the cost of storage, Put, Get, and poten-
tial migration, while satisfying eventual consistency and

L.07|—— optimal (1,1) == 1.0
----- Optimal (1,100) i
08 Optimal (2,1) i 0.8
—-—-- Optimal (2,100) [
w AT w
0.6 i !
8 . 8 0.6
ﬁ -
go4 § 04
;
0.2 0.2 :"
7 —— Optimal(1,100)
0.0 T 00] el Optimal(2,100)

090 092 094 09 098 1.00 0.95 0.96 0.97 0.98 0.9 1.00
Normalized Cost Normalized Cost

(a) Cost CDF (latency=100 ms)(b) Cost CDF (latency=250 ms)

Fig. 11: CDF of cost savings for objects due to their migration
under tight and loose latency. All costs are normalized to the
non-migration algorithm. Legend indicates replicas number
and objects size in KB.

latency. Due to the high time complexity of this algorithm
coupled with possibly unavailable full knowledge of the
future workload, we proposed two online algorithms with
provable performance guarantees. One is deterministic
with the competitive ratio of 2y — 1, where 7 is the ratio
of residential cost in the most expensive data center to
the cheapest one either in storage or network price. The
other one is randomized with the competitive ratio of 1+,
where w is the size of available look-ahead windows of
the future workload. Large scale simulations driven by
a synthetic workload based on the Facebook workload
indicate that the cost savings can be expected using the
proposed algorithms under the prevailing Amazon’s, Mi-
crosoft’s and Google’s cloud storage services prices. As
future work, we plan to propose algorithms in which the
requested availability of objects in terms of the number of
nines is also considered [40].

REFERENCES

[1] S. Muralidhar et al., “f4: Facebook’s warm blob storage system,”
in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). Broomfield, CO: USENIX Association,
Oct. 2014, pp. 383-398.

[2] G. Skourletopoulos et al., “An evaluation of cloud-based mobile
services with limited capacity: a linear approach,” Soft Comput-
ing, pp. 1-8, 2016.

[3] A.Bourdena et al., “Using socio-spatial context in mobile cloud
offload process for energy conservation in wireless devices,”
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1-1,
2016.

[4] A. Kathpal et al., “Analyzing compute vs. storage tradeoff for
video-aware storage efficiency,” in Proceedings of the 4th USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage’12).
Berkeley, CA, USA: USENIX Association, 2012, pp. 13-13.

[5] D. Bermbach et al., “Metastorage: A federated cloud storage
system to manage consistency-latency tradeoffs,” in Proceesdings
of IEEE CLOUD (CLOUD’11), 2011, pp. 452-459.

6]

(71

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

K. P. Puttaswamy et al., “Frugal storage for cloud file systems,”
in Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys’12). New York, NY, USA: ACM, 2012, pp. 71—
84.

Z. Wu et al., “Spanstore: Cost-effective geo-replicated stor-
age spanning multiple cloud services,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP’13). New York, NY, USA: ACM, 2013, pp. 292-308.

Y. Wu et al., “Scaling social media applications into geo-
distributed clouds,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp.
689-702, June 2015.

R. N. Calheiros et al., “Cloudsim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Softw. Pract. Exper., vol. 41,
no. 1, pp. 23-50, Jan. 2011.

B. Atikoglu et al., “Workload analysis of a large-scale key-
value store,” in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS'12). New
York, NY, USA: ACM, 2012, pp. 53-64.

A. N. Toosi et al., “Interconnected cloud computing environ-
ments: Challenges, taxonomy, and survey,” ACM Comput. Surv.,
vol. 47, no. 1, pp. 7:1-7:47, May 2014.

A. Li et al., “Cloudcmp: comparing public cloud providers,” in
Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement (IMC'10). New York, NY, USA: ACM, 2010, pp.
1-14.

A. Ruiz-Alvarez et al., “A model and decision procedure for data
storage in cloud computing,” in Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’12), 2012, pp. 572-579.

H. Abu-Libdeh et al., “Racs: a case for cloud storage diversity,”
in Proceedings of the 1st ACM Symposium on Cloud Computing
(S0CC’10). New York, NY, USA: ACM, 2010, pp. 229-240.

M. Hadji, Scalable and Cost-Efficient Algorithms for Reliable and Dis-
tributed Cloud Storage. Cham: Springer International Publishing,
2016, pp. 15-37.

L. Jiao et al., “Optimizing cost for online social networks on
geo-distributed clouds,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 99-112, Feb 2016.

F. Chen et al., “Intra-cloud lightning: Building cdns in the cloud,”
in INFOCOM, 2012 Proceedings IEEE, March 2012, pp. 433—441.
T. Lu et al.,, “Simple and effective dynamic provisioning for
power-proportional data centers,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 24, no. 6, pp. 1161-1171, June
2013.

M. Lin et al., “Online algorithms for geographical load balanc-
ing,” in Proceedings of Green Computing Conference (IGCC’12), June
2012, pp. 1-10.

M. Lin et al., “Dynamic right-sizing for power-proportional data
centers,” IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp.
1378-1391, Oct. 2013.

L. Zhang et al,, “Moving big data to the cloud: An online
cost-minimizing approach,” IEEE Journal on Selected Areas in
Communications, vol. 31, no. 12, pp. 27102721, December 2013.
D. Novakovic et al., “DeepDive: Transparently Identifying and
Managing Performance Interference in Virtualized Environ-
ments,” Tech. Rep., 2013.

V. Medina et al., “A survey of migration mechanisms of virtual
machines,” ACM Comput. Surv., vol. 46, no. 3, pp. 30:1-30:33, Jan.
2014.

R. W. Ahmad et al., “A survey on virtual machine migration and
server consolidation frameworks for cloud data centers,” Journal
of Network and Computer Applications, vol. 52, pp. 11 — 25, 2015.
N. Tran et al., “Online migration for geo-distributed storage sys-
tems,” in Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIXATC'11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 15-15.

A.]J. Elmore et al., “Zephyr: Live migration in shared nothing
databases for elastic cloud platforms,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD “11. New York, NY, USA: ACM, 2011, pp. 301-
312.

S. Das et al., “Albatross: Lightweight elasticity in shared storage
databases for the cloud using live data migration,” Proc. VLDB
Endow., vol. 4, no. 8, pp. 494-505, May 2011.

S. Das et al.,, “Elastras: An elastic transactional data store in
the cloud,” in Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing, ser. HotCloud'09. Berkeley, CA, USA: USENIX
Association, 2009.

[29]

(30]

[31]

[32]

[33]

(34]

[35]

[36]

(37]

(38]

[39]

[40]

14

X. Qiu et al., “Cost-minimizing dynamic migration of content
distribution services into hybrid clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3330-3345, Dec. 2015.

A. Mseddi et al., “On optimizing replica migration in distributed
cloud storage systems,” in Cloud Networking (CloudNet), 2015
IEEE 4th International Conference on. 1EEE, 2015, pp. 191-197.

J. Broberg et al., “Metacdn: Harnessing storage clouds for high
performance content delivery,” Journal of Network and Computer
Applications, vol. 32, no. 5, pp. 1012 - 1022, 2009, next Generation
Content Networks.

C. Papagianni et al., “A cloud-oriented content delivery network
paradigm: Modeling and assessment,” Dependable and Secure
Computing, IEEE Transactions on, vol. 10, no. 5, pp. 287-300, Sept
2013.

M. A. Salahuddin et al., “Social network analysis inspired content
placement with qos in cloud-based content delivery networks,”
CoRR, vol. abs/1506.08348, 2015.

J. C. Corbett et al., “Spanner: Google’s globally distributed
database,” ACM Transactions on Computing Systems, vol. 31, no. 3,
pp- 8:1-8:22, Aug. 2013.

Y. Wu et al, “Scaling social media applications into geo-
distributed clouds,” in Proceedings of the IEEE INFOCOM, March
2012, pp. 684-692.

D. Beaver et al., “Finding a needle in haystack: Facebook’s photo
storage,” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI'10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 47-60.

A. Qureshi, “Power-demand routing in massive geo-distributed
systems,” in PhD Thesis submitted to MIT, 2012.

R. Kuschnig et al., “Improving internet video streaming perfor-
mance by parallel tcp-based request-response streams,” in Pro-
ceedings of the 7th IEEE Consumer Communications and Networking
Conference (CCNC'10), Jan 2010, pp. 1-5.

C.-W. Chang et al., “Probability-based cloud storage providers
selection algorithms with maximum availability,” in Proceedings
of the 41st International Conference on Parallel Processing. Los
Alamitos, CA, USA: IEEE Computer Society, 2012, pp. 199-208.
Y. Mansouri et al., “Brokering algorithms for optimizing the
availability and cost of cloud storage services,” in Proceedings
of the 5th IEEE International Conference on Cloud Computing Tech-
nology and Science, (CloudCom’13). 1EEE, 2013, pp. 581-589.

Yaser Mansouri is a PhD student at
Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of
Computing and Information Systems, the
University of Melbourne, Australia. Yaser
was awarded International Postgraduate
Research Scholarship (IPRS) and Australian
Postgraduate Award (APA) supporting his PhD
studies. He received his BSc degree from
Shahid Beheshti University of Tehran and
his MSc degree from Ferdowsi University of

Mashhad, Iran in Computer Science and Software Engineering. His
research interests cover the broad area of Distributed Systems, with
special emphasis on data replication and management in data grids
and data cloud systems.

Adel Nadjaran Toosi is a post-doctoral re-
search fellow in the Cloud Computing and Dis-
tributed Systems (CLOUDS) Lab. at the Uni-
versity of Melbourne, Australia. He received his
BSc in 2003 and MSc in 2006 both in Com-
puter Science and Software Engineering from
Ferdowsi University of Mashhad, Iran. He has
done his PhD, supported by MIRS and MIFRS
scholarships, at the University of Melbourne in
2014. Adel’s thesis was nominated for CORE
John Makepeace Bennett Award for the Aus-

tralasian Distinguished Doctoral Dissertation and John Melvin Memo-
rial Scholarship for the Best PhD Thesis in Engineering. His current
h-index is 14 based on the Google scholar Citations. His research
interests include scheduling and resource provisioning mechanisms
for distributed systems. Currently he is working on data-intensive ap-
plication resource provisioning and scheduling in cloud environments.

Rajkumar Buyya is Professor and Future Fel-
low of the Australian Research Council, and Di-
rector of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the Univer-
sity of Melbourne, Australia. He is also serving
as the founding CEO of Manjrasoft, a spin-
off company of the University, commercializing
its innovations in Cloud Computing. He has
authored over 550 publications and four text
books including “Mastering Cloud Computing”
published by McGraw Hill and Elsevier/Morgan
Kaufmann, 2013 for Indian and international markets respectively.
He is one of the highly cited authors in computer science and
software engineering worldwide. Microsoft Academic Search Index
ranked Dr. Buyya as #1 author in the world (2005-2016) for both
field rating and citations evaluations in the area of Distributed and
Parallel Computing. For further information on Dr. Buyya, please visit:
http://www.buyya.com.

7//=

APPENDIX A
PROOF OF LEMMA 1 AND THEOREM 1

Lemma 1:

Proof. Based on Equations (8) and (9), the migration cost in
[1...t] consists of two sub migration costs in [1...t — 1] and
t. Thus, we have Zt - CM(¥ (tm—1), At))

—Zv o (Cr(@(w = 1), f(v)) ~ C w(@(0), A()))

< Ymh,, (CEO (@0 = 1), B(v) = O™ (@(v), B(v))).
Lety = Cg**(d@(v - 1), B(v)) /CE™(@(v), B(v)) for all

v € [1..f]. Substituting the value of -y in the above equation,
we have,

3ot =1 O (@(tm), @(tm—1)) <
(1=1/9) Zoep.q CR* (@(0), 5(v)). O

Theorem 1:

Proof. The total cost incurred by DOA is the summation of
rm%ranon and residential costs in [1...T]. Thus, Cpoa =
T, Cal@(t), A1)+ Car ((t — 1), @(t)). Since the upper
bound of the residential cost for DOA is y times the cost of
the offline algorithm, and according to the result of Lemma
(1) we have:TC'DOA = . . .
(1—1/7) 5L, Cpe(a), A1) + S5, Cr(@w), 3(t)
< (1 =1/vvCopr +~vCopr = (v —1)Copr +vCoprr
< (2y—-1)Copr. O

APPENDIX B
PROOF OF LEMMA 2 AND THEOREM 2

Lemma 2:
Proof. Based on Equation (10), the cost of object for
each frame by using randomized FRHC with value [is:
Clan(®), i) = Xy, Crl@u(®), Bi®) +

L Cur(@(t — 1), au(t)),
where o(t) indicates the location of the object based
on the randomized FRHC with value [. The value of
C(a(t),Bi(t)) is local optimal cost in the time frame
[ts,ts + w].

The cost incurred by the randomized FRHC in time
frame [t5,ts + w| should be smaller than (1) the migration
cost of the object from DCs chosen by the the randomized
FRHC in time slot t = t5 — 1 to those determined by the
optimal offline algorithm in time slot tg, i.e, Cpr(d;(ts —
1),8*(ts)), and (2) then following the optimal offline al-
gorithm to find optimal cost in this time slot, which is

(S On (@ (E=1),6%(8) + X5 Cr(@*(8), 67(1)).

15

We now find the upper bound of migration cost
Cr(@y(ts — 1),a*(ts)). This cost is upper bounded by the
following two sub migration costs. (i) The object is first
migrated from the DCs that are chosen by the randomized
FRHC in time slot ¢ = 5 — 1 to those determined by the
optimal offline algorithm in time slot ¢; — 1. This migration
cost is: Cpr(@y(ts — 1), a*(ts — 1)). (ii) The object is then
migrated from these DCs selected by the optimal offline
algorithm in time slot ¢, — 1 to DCs that are selected in time
slot t,. This cost is Cpr(@* (ts — 1), @*(ts))). We therefore
can bound the cost in the time frame as follows:

cla ()Bz()) < @ + () +

(Do Oa (@ (= 1), @ (1)) + 32,7, Cr(@*(t), 5*(1))
< @) + XigriCum@t - 1@ +

(o Cr(@ (), (1))

()+ZH“’ (@ (1), B*(1))-

The right side of the above inequality gives the upper-
bound of the cost for each time frame [ts,ts + w]. Hence
the proof of the lemma is concluded. O

Theorem 2:

Proof. By using Lemma (2), the upper bound of the total
cost incurred by the randomized FRHC is

Croa =24 crryuw [Cm(@i(ts — 1),a%(ts — 1)) +

ts+w .
“(1), B*(1))) = B (1) +

Yo Y c@

t.€[T/w] t=ts

ts+
ttw(

i s Copr
doterryw) Om(@i(ts — 1), 0% (ts — 1))]
The expected cost of Randomized is computed as:

E(Croa) =
SN (Corrt Y Carlailt — 1), (1)

=1 ts€[T/w]

= Copr + — Z Z Cu(a(ts —1),a

YIS e
Thus, the CR of the algorithm is
E(Croa)/Copr

1, 20m1 2 erryw) Cu(di(ts — 1),
:1+w(=1 Lut€[T/w]

“(ts — 1))

“(ts — 1))
Copr)

1,2 1220, e[T/w] Crte(a(ts —1),a

<1+ — (s _1)>)).

Copr

Based on the definition of v in Lemma 1, we have:
E(Croa)/Copr <

142 (Zz 1 Xt e[T/w] CM z(ts—l)@*(ts—l)))).
Since the coefficient of w] “is less or equal to one, we have
E(Croa)/Copr <1+ L. a
APPENDIX C
TIME COMPLEXITY AND RUN TIME OF
ALGORITHMS

Algorithm 1 time complexity:

We analyse the time complexity of Algorithm 1, which
comprises a r—combination computation and four nested
loops. The computation of combinations (line 1) takes
O(|D|?). The first loop repeated T' times (line 3). The last
two loops run for at most |a|? times where |&|=(|f|) is

a small constant because r is at most 2 or 3 [26] and the
number of DCs in the leading commercial cloud providers
is 8, for example Amazon and Google in year 2015. Thus,
the value of |@| can be ((3;8))= 276. In the last loop, we
need to solve a linear problem because we fix &(t) and
find variable 3(t), which takes Tj,. Since |D| < |@|, the
total running time of algorithm is O(|D|? + |@|*TT),) =
O(|al>TT,,).

Algorithm 2 time complexity:

To determine the time complexity of Algorithm 2, we
first need to compute all r-combinations of distinct DCs
that runs in O(|D|?). Second, @(t) and f(t) should be
calculated for all &(t) € & by using linear programming,
which takes O(|@|T},). This calculation is done for T' time
slots. Therefore, the algorithm yields a running time of
O(IDP? + |a|TT,,) = O(|a|TTi,).

Algorithm 3 time complexity:

To calculate the time complexity of the algorithm, it
suffices to calculate the time complexity of “for” loop.
Since this algorithm produces the results in each frame,
the time complexity of algorithm is O(|D|* + w|@|?T},) =
O(w|@|*Ty,) for w < T; otherwise it takes the time com-
plexity the same as that of the optimal offline algorithm.
The Run Time of Algorithms:

We measure the running time of algorithms by con-
ducting experiments on a Quad Core 2300MHz Machine
(AMD Opteron 63xx series with 512 KB cache) with 16 GB
RAM. Table 4 shows the running time for placing each
object in 23 DCs per each time slot. As it can be seen, De-
terministic has less running time than Randomized while
Optimal is the worst case especially for » = 2. The algo-
rithms are finished in less than a second when r = 1, while
for = 2 the running time increases to several seconds.
However, Deterministic stays more efficient because the
time complexity of this algorithm is linearly proportional

16

with the number of DCs.

The running time of the proposed algorithms may be
further decreased through (i) using more efficient linear
programming solver, for example CPLEX solver, instead of
LP solver used here, and (ii) reducing the number of DCs,
as the main factor contributing to the time complexity,
especially when the latency constraint is loose. As the
latency constraint is loose (i.e., is large), the application has
a wider selection of DCs with the same price or very close
price. Therefore, we can reduce the number of DCs when
we have similar choices. For example, in the European
region, we can have only one Amazon DC in Frankfort
instead of having Amazon DCs with the same prices in
both Frankfort and Ireland.

TABLE 4: Running time of algorithms on 23 DCs (in Second)

Algorithms r=1 r=2
Optimal 0.750 11.35
Deterministic 0.012 2.01
Randomized 0.368 8.45

