SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1-16
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Contention Management in Federated Virtualized Distributed
Systems: Implementation and Evaluation

Mohsen Amini Salehi'*, Adel Nadjaran Toosi?, and Rajkumar Buyya?

L Electrical and Computer Engineering Department, Colorado State University, Fort Collins, USA
2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information
Systems, The University of Melbourne, Australia

SUMMARY

The paper describes creation of a contention-aware environment in a large-scale distributed system where
the contention occurs to access resources between external and local requests. To resolve the contention,
we propose and implement a preemption mechanism in the InterGrid platform, that is a platform for large-
scale distributed system and uses virtual machines for resource provisioning. The implemented mechanism
enables the resource providers to increase their resource utilization through contributing resources to the
InterGrid platform without delaying their local users. The paper also evaluates the impact of applying
various policies for preempting user requests. These policies affect resource contention, average waiting
time, and imposed overhead to the system. Experiments conducted in real settings demonstrate efficacy of
the preemption mechanism in resolving resource contention and the influence of preemption policies on the
amount of imposed overhead and average waiting time.

Copyright © 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Resource Contention, Preemption mechanism, Lease-based resource provisioning,
Virtual Machine (VM).

1. INTRODUCTION

Federated large-scale distributed systems [1], such as InterGrid, enable sharing, selection, and
aggregation of resources across several Resource Providers (RPs). These RPs (e.g., Clusters
or sites) are usually connected through high bandwidth network connections. Nowadays, heavy
computational requirements, mostly from scientific communities [2], are supplied by these RPs.

The main objective of InterGrid is to provide a software platform for interconnecting disjoint
RPs. The RPs motivation for contributing resources to a resource sharing environment is to increase
their utilization and revenue. However, they would like to ensure that the requirements of local
(organizational) requests are met. Therefore, resource provisioning within such RPs is carried out
for two types of user requests, namely: local requests and external requests. Local requests are
submitted by local users to the Local Resource Management System (LRMS) of the RP whereas
external requests are submitted by users in other RPs that tend to access larger amount of resources
through InterGrid.

The mixture of local and external requests within RPs leads to a resource contention between
requests to access resources. Typically, in these situation local requests have priority over external

*Correspondence to: Electrical and Computer Engineering Department, Colorado State University, Fort Collins, USA.
Email: amini @engr.colostate.edu

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

requests [3]. Indeed, the organization that owns the resources welcomes external requests to use
resources if they are available. Nonetheless, the external requests should not delay the execution of
local requests.

Similar to many current distributed systems, InterGrid [4] provides resources in the form of
VM-based leases. A lease is an agreement between an RP and a resource consumer whereby the
provider agrees to allocate resources to the consumer according to the lease terms presented by the
consumer [5]. Virtual Machine (VM) technology is a suitable vehicle for implementing lease-based
provisioning model [5]. VM capabilities in getting suspended, resumed, stopped, or even migrated
(when there is enough bandwidth) have been extensively studied and shown to be useful in resource
provisioning without major utilization loss [3, 5, 6]. InterGrid creates one lease for each user request.
Leases in InterGrid are contiguous and must be served within resources of a single RP.

The current implementation of the InterGrid platform does not recognize the resource contention
between local and external requests and treats them equally. In fact, the current implementation
of InterGrid suffers from lack of proper resource management at the RP level that considers
the difference between local and external requests. Therefore, in this work, we extended the
InterGrid platform by introducing Local Resource Management System (LRMS) at the RP level
that recognizes the resource contention by differentiating local and external requests. The LRMS
employs preemption mechanism to resolve the contention between local and external requests. That
is, when there is not enough vacant resources to be allocated to an arriving local request, external
leases are preempted and relinquish resources for the arriving local request. The preempted external
leases are scheduled at a later time in the same RP to resume their execution.

Preempting VM-based leases entails the overhead time of suspending VMs of that lease (i.e.,
unloading memory contents of the VMs into the disk) and resuming them (i.e., loading VMs from
the disk image into the memory) at the scheduled time. Thus, the amount of imposed overhead time
for preemption depends on the VM characteristics, such as memory size, in that lease. Additionally,
preempting external leases and scheduling them at a later time increases the waiting time of external
leases.

For a local request that requires multiple VMs, possibly several external leases have to be
preempted to make sufficient vacant resources. Therefore, there are potentially several sets of
candidate external leases that can be preempted. In this paper, each set of the candidate leases is
termed a Candidate Set. Choosing different candidate sets for preemption affects the amount of
imposed overhead, and the average waiting time of external leases.

These issues raise another problem that is choosing the optimal candidate set for preemption
in a way that minimizes the side-effects of preempting leases (i.e., overhead and waiting time).
Therefore, as another contribution of this paper, we evaluate the impact of different preemption
policies on the side-effects of preemption.

In summary, this paper makes the following contributions:

1. It designs and implements local resource management system (LRMS) component for the
InterGrid platform (Section 3.2).

2. It recognizes resource contention between local and external requests in the InterGrid and
resolves it by preempting external leases in favor of arriving local requests (Section 4.3).

3. It implements different preemption policies that choose different candidate sets for
preemption (Section 4.3.1).

4. It evaluates the impact of the proposed policies upon key performance metrics in a real
environment (Section 5.2).

This work describes design and implementation details of the contention-aware scheduling in
the InterGrid platform. More specifically, the work realizes the architecture proposed in section 3,
and explains a system that enables provisioning of VM-based leases for different types of users.
Although the problem we investigate in this paper is in the InterGrid context, it can be applied to
other lease-based Grid/Cloud resource providers where requests with higher priority (such as local
or organizational requests) coexist with other requests.

The remainder of this paper is organized as follows: In the next section we provide an overview of
the related work. Then, in Section 3 the InterGrid architecture is described. After that, in Section 4

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 3

we explain design and implementation details. Performance evaluations are mentioned in Section 5.
Finally, conclusion and future works are provided in Section 6.

2. RELATED WORKS

As presented in Figure 1, different mechanisms that have been employed in interconnected
distributed systems to resolve the resource contention are preemption, partitioning, and using
multiple queues.

. Full
Preemptlon-[

i Partial
Resolving o Static
contention Partitioning ————

Multiple queues ——Dynamic

Figure 1. Approaches for resolving resource contention in interconnected distributed systems.

Preemption mechanism, which is also the mechanism we employ in this research, stops the
running request and free resources for another, possibly higher priority or urgent, request. If
checkpointing is supported in a system (e.g., [7]), then the preempted request can resume its
execution from the preempted point. Otherwise, the preempted request has to be killed (canceled)
or restarted its execution. For parallel requests (i.e., those need more than one processing element
at the same time), full preemption is generally performed, in which the whole request leaves the
resources. However, some systems support partial preemption (e.g., [8]), in which a portion of
resources allocated to a parallel request is preempted.

In the Partitioning mechanism, resources are reserved for different request types (e.g., local and
external requests). Boundaries of the reservations (partitions) can be fixed (static partitioning) or can
be flexible, based on the demand of each request type (dynamic partitioning). For instance, in [9] the
local and external partitions can borrow resources from the other one when there is a high demand
of either.

In the Multiple queues mechanism (e.g., [10]), requests are classified in distinct queues upon
arrival. Each queue operates independently and has its own policy for the requests within the queue.
There is a higher level scheduling policy that determines the appropriate queue for dispatching a
request to the resources.

In systems that function based on VMs, preemption mechanism is preferable to resolve resource
contention, because it removes the burden of partitioning or managing several queues from a
resource management system. Although preemption mechanism has not been studied extensively
in the distributed computing systems previously [11], dominance of the VM technology as the
provisioning model has led to undertaking several studies in this area [12, 13, 14, 15]. In this section,
we review recent studies that have applied preemption mechanism to resolve the contention between
requests.

NDDE [16] is a platform that utilizes VMs to exploit idle cycles for Grid or Cluster usage in
corporations and educational institutions. This system is able to utilize idle cycles that appear even
while the user is interacting with the computer. In this system the guest and the owner applications
are executed concurrently. This approach increases the harvested idle cycle to as many as possible
with minor impact on the interactive user’s applications. NDDE, has more priority than the Idle
process in the host operating system, therefore, it is executed instead of the Idle process. When a
new request from the resource owner arrives, the VM and all the processes belong to NDDE are
preempted and changed to “ready-to-run” state.

Cluster-on-Demand (COD) [17] is a resource management system for shared Clusters. COD
supports lease-based resource provisioning in the form of virtual Clusters where each Virtual Cluster
is an isolated group of hosts inside a shared hardware base. It is equipped with a protocol that

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

4 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

dynamically resizes Virtual Clusters in cooperation with middleware components. It uses group-
based priority and partial preemption scheme to manage request-initiated resource contention.
Specifically, when resource contention takes place, COD preempts nodes from a low-priority
Virtual Cluster. For preemption, the selected Virtual Cluster returns those nodes that create minimal
disruption to the Virtual Clusters (i.e., an instance of partial preemption).

VioCluster [18], is a VM-based platform across several Clusters. It uses lending and borrowing
policies to trade VMs between Clusters. VioCluster is equipped with a machine broker that decides
when to borrow/lend VMs from/to another Cluster. Machine broker also has policies for reclaiming
resources by preempting a leased VM to another domain. Machine property policy monitors the
machine properties that should be allocated to the VMs such as CPU, memory, and storage capacity.
Location policy in the VioCluster proactively determines if it is better to borrow VMs from another
Cluster or waiting for nodes on a single domain.

Snell et al. [11] applied preemption on the backfilling scheduling strategy. They provide policies
to select the set of requests for preemption in a way that the requests with higher priority are satisfied
and, at the same time, the resource utilization increases. The preempted request is restarted and
rescheduled in the next available time-slot.

Scojo-PECT [19] provides a limited response time for several job classes within a virtualized
Cluster. They propose a coarse-grained preemption and suspending VMs on the disk to cope with
the resource contention. The preemptive scheduler aims at creating a fair-share scheduling between
different job classes of a Grid.

A preemptive scheduling algorithm is implemented in MOSIX [20] to allocate excess (unclaimed)
resources to users that require more resources than their share. However, these resources will be
released as soon as they are reclaimed. MOSIX also support situation that there are local and guest
jobs and can consider priority between them.

3. INTERGRID ARCHITECTURE

The architecture of InterGrid, as illustrated in Figure 2, presumes that each Grid is composed of
several Resource Providers (RPs). RPs can be in form of a Cluster, Symmetric Multi Processor
(SMP), or a combination of these resources. Each RP is managed independently and has its own
local users while contributes resources to InterGrid. The Local Resource Management System
(LRMS) of an RP handles resource provisioning for local and external requests within that RP.
It is worth noting that current implementation if InterGrid suffers from lack of LRMS within RPs
and creation of this component is one contribution of this paper.

Utilization and revenue enhancement are the main motivations for RPs to contribute resources to
InterGrid. However, external requests should not delay the execution of local requests. Therefore, in
this work we consider external requests as best-effort whereas local requests should not be delayed
and have to be served within their requested interval. Best-effort allocation means that if there is
not sufficient resources to start an external request, it is scheduled in the earliest available time-
slot. However, in situation that there is not adequate resources for an arriving local request, LRMS
should preempt external requests and makes the resources available for the arriving local request. It
is worth noting that if all resources are occupied by other local requests, or the amount of resources
released by preempting external requests are not sufficient for the local request, then the arriving
local request is rejected.

In the InterGrid platform, sharing resources amongst different Grids is achieved through
predefined arrangements that are known as peering arrangements (see Figure 2). Such arrangement
was initially inspired from principles of the Internet policy-based routing. Similar idea is applied to
interconnection of Grids to offload and redirecting resource requests from one Grid to another [21].
Peering arrangement between two Grids coordinates adoption of resources between the two Grids
based on policies on how resources are allocated to users of peering Grids. For instance, in Figure 2,
Grid B has chosen a unidirectional peering arrangement with Grid A. In this case, Grid B can
redirect resource requests to Grid A whereas the opposite is not possible. Peering between Grids are

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 5

External
User

Figure 2. High-level architecture of InterGrid. Grid B has unilateral and Grid C has bilateral peering
arrangements with Grid A.

formed based on monetary contracts between these Grids (e.g., certain amount of resources from a
particular Grid during a month).

Peering arrangements with other grids are handled by InterGrid Gateways (IGG). An IGG is
aware of the peering terms between the Grids. When a user requires resources from other Grids, IGG
chooses the suitable Grid that can provide the required resources based on the peering arrangements
with other Grids. An IGG also replies to resource requests from other peer IGGs through allocation
of resources to them. In fact, provisioning rights over RPs within a Grid are delegated to the IGG
that enable it to schedule arriving external requests on the RPs.

Distributed Virtual Environment Manager (DVE Manager) is a user level tool in the InterGrid
architecture. Users willing to access InterGrid level resources (i.e., external users) utilize this tool
to interact with IGG and acquire resources. The DVE Manager also handles monitoring of the
resources that are allocated to the user.

3.1. InterGrid Gateway (IGG) Structure

IGG is the core part of the InterGrid platform that has been implemented in Java. A high-level view
of the IGG components is depicted in Figure 3.

The main component of the IGG structure is the Scheduler that implements provisioning policies
and peering with other IGGs. Specifically, the peering part of the scheduler selects an appropriate
peer in order to redirect a request to another Grid. The provisioning part of the scheduler in an IGG,
maps arriving external requests to the available RPs within the Grid. Provisioning decisions of the
scheduler are enacted on the RPs through the Virtual Machine Manager (VMM) interface.

Generic implementation of the VMM enables an IGG to interact with diverse platforms used
as LRMS in the RPs. Therefore, to enable an IGG to interact with a new platform in an RP, the
interface for interacting with that platform has to be developed. So far, several interfaces have been
developed in IGG. As it is shown in Figure 3, these interfaces have enabled IGG to interact with
OpenNebula [22] and Eucalyptus [23] to manage the resources in RPs. Moreover, interfaces have
been developed for IGG that enable it to interact with Grid’5000 as a Grid middle-ware and Amazon

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

6 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

(\ 4)

Communicator

N)\ S— B

Persistence
(Java Derby)

Amazon
Cloud

i open i
Emulator i Nebula = Eucalyptus

Figure 3. Components of the InterGrid Gateway (IGG).

EC2' as a Cloud Infrastructure as a Service (IaaS) provider. In addition to these, an emulated
interface has been developed for testing and debugging purposes.

In Figure 3 The Persistence database is used for storing information needed by IGG, such as
information of peering arrangements with other Grids. The Management and Monitoring module
provide command-line tools to configure and manage an IGG. This module has been implemented
based on Java Management eXtensions (JMX) technology. The Communication Module provides
an asynchronous message-passing mechanism between IGGs that makes IGGs loosely coupled and
fault-tolerant.

3.2. Local Resource Management System (LRMS)

Due to the flexible architecture of IGG, each RP in a Grid can have its own local management
platform. In this paper, the local management platforms of RPs are called Local Resource
Management System (LRMS). The current implementation of InterGrid does not have LRMS and
implementation of this component is one of the contributions of this paper.

According to Figure 4, an LRMS is mainly comprised of a virtual infrastructure manager (VIM)
(e.g., OpenNebula [22]) that performs operations such as creating, starting, and stopping VMs.
VIM enacts its operations through hypervisors (e.g., Xen, KVM) installed on the worker nodes of
an RP. A Local Scheduler determines how resources are allocated to the arriving local or external
requests on the RP’s nodes. The scheduler considers VM as the provisioning unit and is able to
preempt external lesaes in favor of an arriving local request. The local scheduler employs aggressive
backfilling as the scheduling strategy of RP’s resources.

The Communicator module has comprized of a part that receives lease requests from local
users and another part that interacts with IGG. The latter, is in charge of advertising and updating
availability information of the RP on the IGG. Additionally, it receives external lease requests from
the IGG. Any received request is delivered to the scheduling module of the LRMS.

4. SYSTEM DESIGN AND IMPLEMENTATION
This section provides details on how we implemented the contention-aware scheduling within the
InterGrid platform. In this regard, first, the model we proposed for resource allocation of local and
Thttp://aws.amazon.com/ec2

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 7

f Communicator \

Local
GG
SChedUIGr LOCaI (External
L ser User) /)

4 Virtual Infrastructure Manager)
(OpenNebuIa)

XEN

A

KVM | EVMWare

ESSESEeeS 4

&

Figure 4. Architectural view of Local Resource Management System (LRMS) that is used within each

resource provider (RP).

external requests in InterGrid is described. Then, design and implementation details of the proposed
resource allocation model is discussed.

4.1. Design of Contention-aware Resource Allocation Model

In this part, we describe resource acquisition steps for a user request in InterGrid. The steps are
different for external and local users’ requests. The workflow for resource acquisition for external
requests in InterGrid is illustrated in Figure 5, and is described as follows:

1.

An RP advertises its resources availabilities periodically in the registry of an IGG. This
advertisement also implies delegation of the provisioning rights of the RP’s resources to the
IGG.

Using a DVE Manager, an external user initiates a lease request by specifying details of its
request. A lease request describes required resources to be deployed and has the following
characteristics:

VM template (describes specifications of the requested VMs).
Number of VMs.

Lease duration (also known as lease wall time).

Lease deadline (this is optional for external requests).

the DVE Manager forms a lease request and passes that to its correspondent IGG to acquire
resources through InterGrid.

Provisioning unit of the IGG scheduler first tries to schedule the lease request on RPs within
its Grid. However, if the Grid cannot provide the required resources, possibly because of
oversubscription, then the IGG uses its peering arrangements with other Grids (e.g., IGG; in
Figure 5) to provide resources for the lease request. It is worth mentioning that, the peering
policy decides which peering Grid should be selected amongst several candidates Grids.

. Once the peering Grid (e.g., IGG; in Figure 5) receives a lease request, its provisioning unit

allocates resources for the lease request on its RPs. Then, the requestor IGG (e.g., IGG; in
Figure 5) is informed about the allocation details.

Requestor DVE Manager is given a permission and other deployment information (e.g., IP
address) to deploy the VMs from the allocated RP at the scheduled time.

. At the scheduled time, the DVE Manager is connected to the LRMS of the destination RP and

deploys the requested VMs.

Resource acquisition procedure for local users of an RP is as follows:

1.

Local users send lease requests to the LRMS of their RP. This is achieved using any user-level
interface provided by the LRMS of an RP.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

8 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

1. Delegate
Provisioning Rights,

1. Delegate
Provisioning Rights

InterGrid
Gateway
(IGG,)

\
1 5. Allocation
\ Details

4. Allocate Resources
Based on Peering
arrangements

‘l 7. Deployment
1
1
1

InterGrid
Gateway
(IGG,)

3. Resource
Request

1. Delegate
Provisioning Rights

DVE
Manager

S
6. Allocation
Details

Q
A

Figure 5. Resource allocation steps for external user requests in InterGrid.

2. LRMS tries to serve (i.e., schedule) local lease requests during their requested interval using
its available resources.

3. If resources are free during the requested interval, then resource allocation is performed.

4. If during this interval resources are occupied by other local requests (i.e., contention with other
local leases), then the lease cannot be allocated and it will be rejected. In this situation, the
local user may re-submit its lease request to InterGrid in order to access resources elsewhere
for the requested duration.

5. If resources of an RP are occupied by external requests during the requested interval
(contention with external leases), then LRMS preempts some or all of external leases in order
to serve the local request. The preempted external lease is scheduled in the next available
time-slot.

4.2. Implementation of Resource Allocation for External Requests

Resource allocation workflow for external requests that was described in Figure 5 is implemented
within IGG. The sequence diagram of invoking the IGG classes to accept and allocate an external
request is shown in Figure 6. For the sake of clarity, this figure just shows parts of the whole
provisioning process that take place within IGG.

When a message is received by an IGG, it is handled by a central component, called Post Office,
which spawn one thread to handle each message. In the case that the received message is an external
request received through peering arrangement with another IGG, the spawned thread invokes the
scheduler in the Request Scheduler class. At this stage, the scheduling is carried out by invoking
handleRequest method that extracts the request from the message and allocates it to an appropriate
RP. The scheduling of external requests on an appropriate RP is carried out in a proactive manner
with the aim of reducing the number of contentions within resource providers. Interested readers
can refer to [24] for more details on the rationale of the scheduling methods within IGG. Allocation
of the scheduled external request starts with calling submit method that is a method in Virtual
Machine Management interface (see Figure 3). This method is implemented by different classes
that implement the Virtual Machine Management interface-OpenNebula in our setting. In the last
step, the OpenNebula interface in IGG calls assign method to send the external request to the LRMS
of the selected RP. The way an external request is handled in the LRMS of an RP is explained in the
next subsection.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 9

Post Office ReqgScheduler OpenNebula LocalManager
rcvMsg(msg) i i : i
. | | o
enableSched(msg) | i
L |
|
|
|
]
handleReq(req) |
I
I
|
|
|

submit(req)

assign(req)

acknowledge

:
|
|
|
Figure 6. Scheduling external user requests in IGG.

4.3. Implementation of Contention-aware Scheduling within LRMS

The critical part of a contention-aware LRMS is a scheduler that allocates resources across an RP.
The local scheduler should be aware of the contention between local and external requests within
an RP.

Another component of LRMS is a virtual infrastructure manager that offers an on-demand
provisioning model in form of VMs (we employed OpenNebula [22] as the virtual infrastructure
manager that is explained in Section 4.3.2). However, on-demand provisioning of VMs is not
sufficient for resource provisioning in InterGrid. Specifically, lease requests in InterGrid have the
following requirements:

e Priority between local and external users
e Capacity reservation at specified times for local requests
e Preemption throughout VMs’ lifetime

The local scheduler that operates on top of the virtual infrastructure manager has to cover these
requirements. Haizea is an open source scheduler developed by Sotomayor et al. [25] that employs
VM-based leases for resource provisioning. The advantage of Haizea is enabling VM preemption
(i.e., suspending and resuming) and considering overheads of deploying and preempting VMs in the
scheduling.

We adopt and customize Haizea to be the local scheduler component of LRMS in RPs. This
scheduler operates on top of virtual infrastructure manager and enables recognition of the contention
between local and external requests that occurs within an RP. More importantly, adopting Haizea
as the local scheduler enables leasing resources to external requests in a best-effort manner while
allocating resources to the local requests within their requested time interval. When a resource
contention occurs (i.e., a local request arrives and resources are occupied by external leases), the
local scheduler resolves it through preempting the external lease(s) and vacating resources to serve
the local request. In this way, the local scheduler operates as the scheduling back-end of virtual
infrastructure manager (i.e., OpenNebula). The local scheduler also employs aggressive backfilling
scheduling strategy [11] along with VMs’ abilities (i.e., suspend and resume) to efficiently schedule
leases and to increase resource utilization.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

10 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

The sequence diagram of invocations between the local scheduler classes is shown in Figure 7.
The scheduling process in the local scheduler starts by receiving a lease request either from local or
external user (through IGG) in the LocalManager class.

The manager requests the LeaseScheduler class to schedule the lease request. Then, the schedule
method in the VMScheduler class is called which schedules local and external requests. For local
requests VMs are scheduled based on the requested time interval. External requests are allocated in
the first vacant space. The map function in the mapper class maps requested resources to the physical
resources based on their availability times. When the mapper class handles a local request, if there is
not enough resources, then the mapper calls the PreemptionPolicy to determine the preferred order
of preempting external leases. The order is determined based on the preemption policy. That is, the
preemption policy determines the proper set of external leases to be preempted from a set of possible
external leases that their preemption creates enough room for allocation of an arriving local request.
More details on preemption policies can be found in Section 4.3.1 In the next step, in Figure 7, the
mapper performs the mapping and returns the mapping list to the VMScheduler.

Using the mapping information, VMScheduler calls the VMRsrv and updates the scheduling
information of the resources. After that, the lease can be started by calling the startVMs method
in the ResourcePool class. Additionally, the LeaseScheduler is informed to update all of the affected
leases in the scheduling table.

4.3.1. Preemption Policies The local scheduler described in the previous part enables recognition
of the contention between local and external requests and resolves it using the preemption technique.
However, preemption technique implies side-effects that should be taken into account. Overhead
imposed for suspending and resuming VMs is one side-effect of the preemption technique. The
second side-effect is the waiting time of preempted leases. In fact, preempted leases are re-scheduled
in a later time-slot which increases the overall waiting time of the leases.

Time overhead of preemption is a factor that the resource owner wants to minimize (i.e., instance
of a system-centric metric) whereas minimum waiting time of external request is a factor that end
users expect from the system (i.e, a user-centric metric). However, administrator of an RP may
want to make a balance between these factors. Therefore, a combinatorial policy is also needed to
consider both of these factors.

In this work, we have proposed and implemented the following preemption policies in the local
scheduler that proactively detect the resource contentions and try to minimize their side-effects.

o Minimum Waiting Time (MWT): This policy tries to minimise the average waiting time of
external lease requests through selecting leases for preemption that have minimum waiting
time. For this purpose, leases with the minimum waiting time are given higher preemptibility
score. In the event that all requests have the same waiting time, ties are broken by selecting
younger leases. That is, leases that have been submitted more recently receive higher
preemptibility score. This policy disregards the time overhead imposed for preempting leases.

e Minimum Overhead (MOV): This policy tries to minimize the overall overhead time
imposed to the system by preempting VMs. Implementation of the policy is based on selecting
set of leases for preemption that result in the minimum overhead time. For that purpose,
we calculate the overhead imposed by suspending and resuming a lease with n VMs as

follows [26]:

1
score = ——————— (1)
n

()
where mem is the amound of memory requested by VMs of a lease; s is the rate of transferring
megabytes of VM memory to disk per second; and r is the rate of re-allocating megabytes of
VM memory per second. Similar to MWT, in the event that all requests have the same waiting
time, ties are broken by selecting younger leases.

e Combinatorial Preemption Policy (CP): This policy considers both waiting time and
overhead in selecting leases for preemption. In this policy, preemptibility score is calculated
based on Equation 2, where v indicates the amount of overhead imposed by preempting a

lease based on Equation 2 and w is the waiting time of the lease.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 11

score = a-v+ (1 —a) w ()

Performance of this policy depends on the value of «. The current value of « is worked out
experimentally through sweeping different values for that. Details of optimally determining
the value of « is discribed in Section 5.1.

LocalManager LeaseSched VMsched Mapper PreemptionPolicy ResourcePool
assign(Req) i i E }' i
‘ regLease(req) L E i i
schedule(req) : } :
e | 3
|
|
|

sortLeases()

preemptOrder

mapping

|

|

|

|

1 :
VMRsrv(req) |
| |
|

startVMs(req) :

i

|

|

|

|

|

|

|

|

|
|

|

;

. |
reservation |
|

|

|

|

|

|

K—-------- T

L
I
I
I

Figure 7. Scheduling local requests in the local scheduler.

4.3.2. Virtual Infrastructure Manager We utilize OpenNebula [22] as the virtual infrastructure
manager to handle the VMs’ lifecycle across an RP. OpenNebula provides a software layer between
a service and hypervisor, and enables dynamic provisioning of resources to services.

The architecture of OpenNebula has been designed to be flexible and modular to be able to
support various hypervisors and infrastructure configurations within an RP (e.g., cluster). It enables
dynamic resource partitioning and provides web and command-line interfaces that allows local users
to conveniently request leases. For each user request, OpenNebula starts, monitors, and stops VMs
according to the provisioning policies in place. OpenNebula architecture includes 3 main elements:

e Core which is responsible for managing the VMs’ life-cycle by performing basic operations
such as start, migrate, monitor, and terminate [27].

e Capacity manager consists of pluggable policies that determine the VM placement across
an RP. Default capacity manager in OpenNebula provides a simple VM placement and load
balancing policies. In particular, it uses an on-demand provisioning model, where virtualized
resources are allocated at the time they are requested, without the possibility of requesting
resources at a specific future interval.

o Virtualizer access drivers provide the abstraction for the underlying virtualization layer by
exposing the general functionalities of the hypervisor (e.g. start, migrate, terminate). As a
result of this component, OpenNebula is able to work with various hypervisors such as Xen,
KVM, and VMware.

OpenNebula is equipped with databases for storing VM templates [22]. A template file consists of a
set of attributes that defines a VM, such as number of processing elements, amount of memory, and
disk. OpenNebula uses a shared storage to store VM images. The shared storage model requires the
head node (where LRMS and OpenNebula reside) and hosts (where hypervisors and VMs reside)
to share the VM image repository. Typically these storage areas are shared using a distributed file
system such as NFS [28] and GlusterFS [29]. A shared storage reduces VM deployment times

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

12 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

and enables live-migration, but it can also become a bottleneck in the infrastructure and degrade
the VMs performance specially for executing disk-intensive workloads. We used GlusterFS as the
shared storage in our configuration.

For the following reasons we used GlusterFS:

e It provides a scalable, shared replicated storage across hosts over Ethernet

e In compare to other centeralized shared storage approaches, such as NAS, GlusterFS does not
suffer from single point of failure. That is, due to its distributed nature, even if a host fails the
storage and data will remain available

o GlusterFS is highly scalable, as I/O operations are distributed across hosts

e As data are replicated, VMs have local data access that remarkably improves the 1I/O
performance

4.3.3. Virtualization Infrastructure Along with the virtual infrastructure manager, a virtualization
infrastructure (i.e., a hypervisor) is required in each host of an RP to manage VMs. Specifically,
utilizing OpenNebula as a virtual infrastructure manager enables us to deploy various hypervisors
within an RP.

In our implementation, we use Kernel-based Virtual Machine (KVM) [30] as the hypervisor
within each host of the RPs. KVM is a hardware-assisted, fully virtualized platform for Linux
on X86 hardware that has virtualization extensions. By installing KVM, multiple execution
environments (guest VMs from different disk images) can be created on top of physical machines.
Each of these VMs has private and virtualized hardware that includes a network card, storage,
memory, and graphics adapter.

5. PERFORMANCE EVALUATION

The testbed for performance evaluation of the implemented system is as follows:

e A four-node cluster as the RP. Hosts are 4 IBM Systems X3200 M3 machines, each with
a quad-core Intel Xeon x3400, 2.7 GHz processor with a 4 GB memory. The head node,
where LRMS resides, is a Dell Optiplex 755 machine with Intel Core 2 Duo E4500, 2.2 GHz
processor and 2 GB memory.

e The hosts’” operating system is CentOS 6.2 Linux distribution. The operating system in the
head node is Ubuntu 12.4.

o All the nodes are connected through a 100 Mbps switched Ethernet network.

e The RP’s LRMS is comprised of OpenNebula 3.4, as the virtual infrastructure manager, and
Haizea version 1.1, as the the local scheduler.

e Qemu-KVM 0.12.1.2 installed as the hypervisor on each host.

o GlusterFS is used as the cluster file system. It aggregates commodity storages across a cluster
and forms a large parallel network file system [29]. The disk images needed by the VMs
and the memory image files (created when a VM is suspended) are stored on the shared file
system.

The scenario we consider in our experiment involves an InterGrid with 3 IGGs with peering
arrangements established between them, as illustrated in Figure 8. IGG1 has the cluster as the RP
and users from IGG2 and IGG3 request external leases through their DVE managers. Based on
the peering arrangements IGG1, provides resources for requestors. IGG1 receives these requests in
form of external requests and they are allocated resources through LRMS of the RP. However, the
RP has its own local requests that have more priority than the external ones.

To have a realistic evaluation, the experiments are carried out based on real traces from the Blue
Horizon cluster [31] in San-Diego Supercomputer Center (SDSC). We consider the first 60 requests
in this workload as the external requests received by IGG1. Local lease requests received by LRMS
of IGG1 are explained in the Table I.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 13

¢ External
User v 1GG3

.................... \%

Figure 8. Evaluation scenario based on 3 InterGrid Gateways.

Table I. Characteristics of lease requests used in the experiments.

Request ID | Arrival Time | No. Nodes [Memory (MB) | Start Time | Duration (s)

1 01:00:00 4 1024 01:15:00 00:45:00
2 02:00:00 4 2048 02:15:00 01:00:00
3 03:00:00 8 512 03:15:00 02:40:00
4 04:00:00 4 1024 04:15:00 00:10:00
5 05:00:00 2 1024 05:15:00 00:35:00
6 06:00:00 8 2048 06:15:00 01:12:00
7 07:00:00 8 1024 07:15:00 02:10:00
8 08:00:00 4 512 08:15:00 00:32:00
9 09:00:00 4 1024 09:15:00 01:00:00
10 10:00:00 4 2048 10:15:00 03:10:00
11 11:00:00 4 1024 11:15:00 01:00:00
12 12:00:00 4 2048 12:15:00 02:35:00
13 13:00:00 8 1024 13:15:00 01:40:00

According to the table, 13 local lease requests are submitted to the RP. Each row of the table
shows the arrival time, number of requested processing elements, amount of memory, start time,
and the duration of local requests. The reason that we consider few requests is that all times are in
real. Also, we wanted to demonstrate the feasibility of the implementation and be able to trace the
order events taking place in the system. We consider 00:00:00 as the start of the experiment and the
arrival time of other requests are proportional to the start time of the experiment. All of these lease
requests use a ftylinux disk image located on the shared storage.

5.1. Mananging Trade-off Between Waiting Time and Overhead

To implement the CP policy we need to determine the value of «. In fact, this value determines
the behaviour of this policy. System administrator can use this parameter to adjust behaviour of
the system. According to Equation 2, if a = 0, then the policy becomes MWT whereas a =1
transforms the CP policy to the MOV policy.

In order to determine an appropriate value for a, we swept 100 possible values of a (i.e.,
0 < o < 1 with step = 0.01) and the result is shown in Figure 9. Each point in this figure shows the
overhead and waiting time resulted from applying a specific value of « in the CP policy.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

14 M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

420001
410001
40000
390001
38000
37000)
36000 !
350001 |
34000 |

1000 1200 1400 1600 1800 2000 2200 2400
Overhead (s)

Average Waiting Time (s)

Figure 9. Variations in the overhead and average waiting time when « paremeter in Equation 2 changes from
0to 1.

Figure 9 shows that the behaviour of the CP policy does not change entirely linearly by changing
«. In other words, there are points where we can comprize a little bit of one parameter and receive
a huge gain on the other parameter. Nonetheless, selecting a proper value for « is defined based on
the administrative policies in an RP. For instance, if the administrative policy is giving more weight
to user-centric metrics (i.e., lower average waiting time), the lower values on the waiting time axes
should be selected that results into a high overhead. In our case, we selected values of o = 0.31 (the
dashed point in Figure 9). We can see that at this point a huge gain on the average waiting time can
be attained by compromizing a little bit on the overhead.

5.2. Evaluation Results

In the first experiment, we demonstrate how our implementation enables InterGrid to resolve the
contention between local and external requests. It shows the effect of preempting existing external
leases on a virtualized physical testbed to satisfy the requirements of an arriving local request. For
that purpose, we only compare situation that there is not any preemption policy (NOP) against
situation that the CP preemption policy is applied. In the former, all the local requests were rejected,
whereas in the latter, when there is no sufficient resources, external leases are preempted and vacate
resources for the local requests. We notice that all of the local requests are served without being
delayed. Additionally, the RP could utilize its resources more efficiently by leasing them to the
external requests.

Various contention resolution policies (preemption policies) preempt different leases. These
policies lead to different amount of overhead and average waiting time. In the second experiment,
we evaluate the efficacy of the implemented policies from the overhead, average waiting time, and
overall makespan time aspects. The overhead imposed to the system is imposed by suspension
and resumption operations on the preempted leases. Calculation of suspension and resumption
operations are worked out based on the read/write throughput of our Gluster file system, whic is
40MB/s [29].

In Table II the amount of overhead, makespan, and average waiting time resulted from MWT,
MOV, and CP policies are shown. As we can see the MWT policy results in less waiting time and
more overhead time in compare with MOV. The MOV policy which aims at minimizing the overall
preemption overhead. Therefore, it preempts leases that impose minimum overhead to the system
and based on the amount of memory should be de-allocated and snapshot on the disk.

We can also see that CP can make a trade-off between overhead (as a system-centric metric)
and waiting time (as a user-centric metric). In other words, it results in a good waiting time and
makespan while imposing overhead just a little bit more than MOV.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

CONTENTION-AWARE RESOURCE ALLOCATION IN INTERGRID 15

Table II. Total imposed overhead, average waiting time, and makespan results from applying different
preemption policies.

Policy | Overhead (s) | Average Waiting time (s) | Makespan (s)

MWT 1912 36520.33 190665
MOV 1028 39984.44 195971
CP 1476 36621.6.03 194686

The comparison of the results from different policies indicates that the selection of different
preemption policies is effective on the side-effects of resource contention. Additionally, CP policy
can be used by a system administrator to manage the trade-off between user-centric and system-
centric metrics in an RP based on the administrative policies and priorities.

6. CONCLUSION

We presented the real implementation and evaluation of the preemption mechanism in InterGrid
where local and external leases coexist in resource providers. We also designed, implemented,
and incorporated LRMS component of the InterGrid platform that adheres to the flexible and
diverse nature of large-scale distributed systems. The system prototype demonstrates how a resource
provider (RP) can contribute resources to InterGrid and accepting external requests without affecting
the local requests. The provided implementation also implements several preemption policies for
the resource providers. Evaluation of the preemption policies indicated how the average waiting
time and overall makespan time, and amount of imposed overhead are affected by these policies.
Specifically, such policies can be used by the system administrator to make a trade-off between
diverse parameters based on administrative policies of an RP.

REFERENCES

1. A. Tosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-operating grids through delegated
matchmaking, in: Proceedings of the ACM/IEEE conference on Supercomputing, SC 07, ACM, New York, NY,
USA, 2007, pp. 13:1-13:12.

2. R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling parameter sweep applications on global grids: a
deadline and budget constrained cost-time optimization algorithm, Software Practice and Experience 35 (5) (2005)
491-512.

3. J.S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, S. E. Sprenkle, Dynamic virtual clusters in a grid site manager, in:
Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, Washington,
DC, USA, 2003, pp. 90-98.

4. M. De Assuncdo, R. Buyya, S. Venugopal, InterGrid: A case for internetworking islands of Grids, Concurrency and
Computation: Practice and Experience 20 (8) (2008) 997-1024.

5. B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing using virtual machines, in: Proceedings
of the 17th International Symposium on High Performance Distributed Computing, ACM, New York, NY, USA,
2008, pp. 87-96.

6. M. Zhao, R. Figueiredo, Experimental study of virtual machine migration in support of reservation of cluster
resources, in: Proceedings of the 3rd International Workshop on Virtualization Technology in Distributed
Computing, ACM, 2007, pp. 5-11.

7. C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, F. Cappello, Blocking vs. non-blocking
coordinated checkpointing for large-scale fault tolerant mpi, in: Proceedings of the ACM/IEEE conference on
Supercomputing, ACM, 2006, p. 127.

8. T. Sandholm, K. Lai, S. Clearwater, Admission control in a computational market, in: Eighth IEEE International
Symposium on Cluster Computing and the Grid, IEEE, 2008, pp. 277-286.

9. M. D. Assunc¢do, R. Buyya, Performance analysis of multiple site resource provisioning: effects of the precision
of availability information, in: Proceedings of the 15th international conference on High performance computing,
HiPC 08, 2008, pp. 157-168.

10. B. Lawson, E. Smirni, Multiple-queue backfilling scheduling with priorities and reservations for parallel systems,
ACM SIGMETRICS Performance Evaluation Review 29 (4) (2002) 40-47.

11. Q. Snell, M. J. Clement, D. B. Jackson, Preemption based backfill, in: Job Scheduling Strategies for Parallel
Processing (JSSPP), Springer, 2002, pp. 24-37.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOLI: 10.1002/spe

16

15.
16.
17.

18.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.
31.

M. AMINI SALEHI, A. N. TOOSI, AND R. BUYYA

M. Amini Salehi, B. Javadi, R. Buyya, Resource provisioning based on leases preemption in InterGrid, in:
Proceeding of the 34th Australasian Computer Science Conference (ACSC’11), Perth, Australia, 2011, pp. 25—
34.

M. A. Salehi, B. Javadi, R. Buyya, Preemption-aware admission control in a virtualized grid federation, in:
Proceeding of 26th International Conference on Advanced Information Networking and Applications (AINA’12),
2012, pp. 854-861.

M. A. Salehi, B. Javadi, R. Buyya, Performance analysis of preemption-aware scheduling in multi-cluster grid
environments, in: Proceedings of the 11th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP’11), 2011, pp. 419-432.

M. A. Salehi, P. R. Krishna, K. S. Deepak, R. Buyya, Preemption-aware energy management in virtualized
datacenters, in: Proceeding of 5th International Conference on Cloud Computing (IEEE Coud’12), 2012.

R. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. Jornada, W. Cirne, Non-dedicated distributed environment:
A solution for safe and continuous exploitation of idle cycles, Scalable Computing: Practice and Experience 6 (3).
J. Moore, D. Irwin, L. Grit, S. Sprenkle, J. Chase, Managing mixed-use clusters with cluster-on-demand, Tech. rep.,
Duke University Department of Computer Science (2002).

P. Ruth, P. McGachey, D. Xu, VioCluster: Virtualization for Dynamic Computational Domain, in: IEEE
International on Cluster Computing (Cluster’05), Burlington, USA, 2005, pp. 1-10.

A. Sodan, Service control with the preemptive parallel job scheduler scojo-pect, Journal of Cluster Computing
(2010) 1-18.

L. Amar, A. Mu’Alem, J. Stober, The power of preemption in economic online markets, in: Proceedings of the
5th international workshop on Grid Economics and Business Models, GECON ’08, Berlin, Heidelberg, 2008, pp.
41-57.

M. De Assungdo, R. Buyya, Performance analysis of allocation policies for intergrid resource provisioning,
Information and Software Technology 51 (1) (2009) 42 — 55.

J. Fontan, T. Vazquez, L. Gonzalez, R. S. Montero, I. M. Llorente, OpenNebula: The open source virtual machine
manager for cluster computing, in: Open Source Grid and Cluster Software Conference — Book of Abstracts, San
Francisco, USA, 2008.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The eucalyptus open-
source cloud-computing system, in: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID’09), 2009, pp. 124-131.

M. Amini Salehi, B. Javadi, R. Buyya, Qos and preemption aware scheduling in federated and virtualized grid
computing environments, Journal of Parallel and Distributed Computing (JPDC) 72 (2) (2012) 231-245.

B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Resource leasing and the art of suspending virtual machines,
in: Proceedings of the 11th IEEE International Conference on High Performance Computing and Communications,
Washington, DC, USA, 2009, pp. 59-68.

F. Hermenier, A. Lebre, J. Menaud, Cluster-wide context switch of virtualized jobs, in: Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing (HPDC *10), USA, 2010, pp. 658-
666.

B. Sotomayor, R. Montero, I. Llorente, 1. Foster, Capacity leasing in cloud systems using the opennebula engine,
in: Workshop on Cloud Computing and its Applications, Vol. 3, 2008.

Network file system., http://www.ibm.com/developerworks/linux/library/l-nfsv4d/
index.html/.

R. Noronha, D. K. Panda, IMCa: A High Performance Caching Front-End for GlusterFS on InfiniBand, in:
Proceedings of the 37th International Conference on Parallel Processing, ICPP ’08, Washington, USA, 2008.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, KVM: the Linux Virtual Machine Monitor, in: Linux
Symposium, 2007, pp. 225-232.

Parallel workloads archive., http://www.cs.huji.ac.il/labs/parallel/workload/.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.ibm.com/developerworks/linux/library/l-nfsv4/index.html/
http://www.ibm.com/developerworks/linux/library/l-nfsv4/index.html/
http://www.cs.huji.ac.il/labs/parallel/workload/

	1 Introduction
	2 Related Works
	3 InterGrid Architecture
	3.1 InterGrid Gateway (IGG) Structure
	3.2 Local Resource Management System (LRMS)

	4 System Design and Implementation
	4.1 Design of Contention-aware Resource Allocation Model
	4.2 Implementation of Resource Allocation for External Requests
	4.3 Implementation of Contention-aware Scheduling within LRMS
	4.3.1 Preemption Policies
	4.3.2 Virtual Infrastructure Manager
	4.3.3 Virtualization Infrastructure

	5 Performance Evaluation
	5.1 Mananging Trade-off Between Waiting Time and Overhead
	5.2 Evaluation Results

	6 Conclusion

