
AutoScaleSim: A Simulation Toolkit for Auto-scaling
Web Applications in Clouds

Mohammad S. Aslanpoura,c,∗, Adel N. Toosia, Javid Taherib, Raj Gairec

aDepartment of Software Systems and Cyberscurity, Faculty of Information Technology,
Monash University, Australia

b Department of Mathematics and Computer Science, Karlstad University, Sweden.
c CSIRO DATA61, Australia

Abstract

Auto-scaling of Web applications is an extensively investigated issue in cloud

computing. To evaluate auto-scaling mechanisms, the cloud community is fac-

ing considerable challenges on either real cloud platforms or custom test-beds.

Challenges include – but not limited to – deployment impediments, the complex-

ity of setting parameters, and most importantly, the cost of hosting and testing

Web applications on a massive scale. Hence, simulation is presently one of the

most popular evaluation solutions to overcome these obstacles. Existing simu-

lators, however, fail to provide support for hosting, deploying and subsequently

auto-scaling of Web applications. In this paper, we introduce AutoScaleSim,

which extends the existing CloudSim simulator, to support auto-scaling of Web

applications in cloud environments in a customizable, extendable and scalable

manner. Using AutoScaleSim, the cloud community can freely implement/eval-

uate policies for all four phases of auto-scaling mechanisms, that is, Monitoring,

Analysis, Planning and Execution. AutoScaleSim can also be used for evaluat-

ing load balancing algorithms similarly. We conducted a set of experiments to

validate and carefully evaluate the performance of AutoScaleSim in a real cloud

platform, with a wide range of performance metrics.

∗Corresponding author
Email addresses: mohammad.aslanpour@monash.edu (Mohammad S. Aslanpour),

adel.n.toosi@monash.edu (Adel N. Toosi), javid.taheri@kau.se (Javid Taheri),
gaire@data61.csiro.au (Raj Gaire)

Preprint submitted to Journal of LATEX Templates December 9, 2020

Keywords: Simulation, Cloud Computing, Auto-scaling, Elasticity, Resource

Provisioning, Web Application

1. Introduction

Cloud computing is currently playing a major role in the efficiency improve-

ment of businesses, industries and governments [1]. Such stakeholders are en-

thusiastic to take advantage of scalability and pay-per-use pricing model of

cloud. They tend to host their applications in clouds by renting virtual ma-5

chines (VMs), instead of buying physical servers with substantial costs [2]. Web

applications, such as online stores and online games, must responds to variable

request rates across different times of the day and week [3]. The adaptation of

a Web application to its incoming load can be solved using elasticity feature of

cloud resources, whereby auto-scaling mechanisms come into play.10

Auto-scaling mechanisms act on dynamically increasing or decreasing the

number of active VMs to adapt to the Web application resource needs [5, 7].

Given the growing popularity of VMs offered by CPs, the majority of APs are

now demanding efficient mechanisms for auto-scaling of resources, so that they

can maintain an application’s adaptation while guaranteeing its Quality of Ser-15

vice (QoS) [3]. To this end, one of the most technical challenges is how to

implement and evaluate the performance of the designed auto-scaling mecha-

nisms [8, 9, 10].

Evaluating the efficiency of auto-scaling mechanisms in production environ-

ments in clouds faces huge challenges. Challenges include – but not limited to20

– (1) deployment impediments, (2) the complexity of setting parameters, and

most importantly, (3) the cost of hosting and testing Web applications on a

massive scale [9]. For APs to evaluate their auto-scaling mechanisms, they have

to first deploy the application on the servers which can be a time-consuming

and tricky process. After the deployment, they have to configure the moni-25

toring system, as well as the load balancing, and overcome the complexity of

setting parameters. Setting parameters for components such as the monitor-

2

ing intervals, CPU thresholds, response time thresholds and cooldown time, to

name a few, becomes complex as their performance can influence others. This

complexity demands sufficient time for data profiling as well [11]. In addition,30

due to the associated cost of cloud resources, the evaluation of mechanisms in

cloud environments can become extensively costly. Therefore, the number of

tests should be significantly lowered before production. Given such limitations,

researchers cannot evaluate auto-scaling mechanisms for large-scale scenarios

with hundreds or thousands of hosting servers.35

As alternative approaches, custom test-beds and bench-marking frameworks

come into the picture. In a custom test-bed, the focus is on installing a virtual-

ization software that will manage both auto-scaling and load balancing. Open-

Stack is one of the most relevant tools as a test-bed for customized experiments.

With less deployment effort, there exist auto-scaler benchmarking frameworks40

(e.g., BUNGEE [6]) that allow to evaluate auto-scaling mechanisms as well.

APs could utilize such tes-beds and frameworks to avoid wasting money, but

the first two problems (i.e., deployment impediments and complexity of setting

parameters) remain unsolved [5]. Motivated by these limitations, simulation-

based studies have gained considerable attention in the community to evaluate45

auto-scaling systems [12].

Simulation not only reduces the cost of deployments and experiments, but

also eliminates the time consumed on the real-world implementation and eval-

uation of auto-scaling mechanisms [8]. Simulators are highly configurable and

allow users to gather information about system states or performance metrics50

with much less complexity. On the other hand, simulated environments are

still an abstraction of physical machine clusters. Hence, the reliability of their

results highly depends on the abstraction level considered by developers, and

most critically, the correctness and effectiveness of the simulator itself [10, 13].

To the best of our knowledge, existing simulators fail to provide an environ-55

ment for implementing and/or evaluating auto-scaling mechanisms for Web ap-

plications in clouds. The well-known and widely-used simulator, CloudSim [14],

is playing a central role for resource management purposes and many extensions

3

of which exist. Extensions for realization of a simulator for workflow scheduling

by WorkflowSim [12] and for network reconfiguration by CloudSimSDN [15] are60

of its examples. However, the auto-scaling as a major field of resource manage-

ment still lacks a proprietary simulation framework.

In this paper, we introduce a novel auto-scaling simulator, named “Au-

toScaleSim”, to study auto-scaling mechanisms for web applications in cloud

environments. AutoScaleSim answers the scalability and load management is-65

sues that are considered lacking in existing simulators. The design and imple-

mentation of a simulator which addresses such issues poses significant techni-

cal challenges. These challenges mainly include (1) identifying and classifying

key components of auto-scaling mechanisms which cloud providers and research

community are expecting in the real-world and (2) developing the simulator in70

a customizable, extendable and scalable manner. The former is fulfilled by em-

ploying MAPE-K (i.e., Monitoring, Analyzing,Planning and Execution) concept

which is a widely-used approach for self-adaptive mechanisms in cloud, fog and

edge computing [5, 16, 17, 3, 18, 19, 20]. The latter is fulfilled by employing OOP

(i.e., Object Oriented Programming) principles. AutoScaleSim also formulate75

and measure more than twenty low-level and high-level performance metrics

(e.g., response time, CPU utilization and cost) which makes it further easy to

evaluate the performance of implemented solutions. The original CloudSim [14]

core logic is used to simulate the basic compute elements that composes the

cloud infrastructure.80

The key contributions of this work are as follows:

• AutoScaleSim employs the widely-used MAPE-K concept and OOP prin-

ciples to realize auto-scaling and load management simulations for Web

applications in clouds,

• AutoScaleSim thoroughly models the performance of auto-scaling mecha-85

nisms under the test by formulating and measuring a wide range of per-

formance metrics,

• AutoScaleSim provides a customizable, extendible and scalable simulation

4

environment suitable for future research, and

• AutoScaleSim’s performance is validated through a real-world implemen-90

tation in an OpenStack cloud environment.

The rest of the article is organized as follows. Section 2 reviews related

works. Section 3 and 4 illustrate the architecture design and implementation

of AutoScaleSim, followed by the simulation process in an algorithmic view in

Section 5. In Section 6, AutoScaleSim performance is validated and evaluated95

through varied use cases in both a real cloud platform (an OpenStack cluster)

and the simulator, respectively. Observed results and limitations are discussed

in Section 7. Lastly, we draw our conclusions in Section 8.

2. Related Work

Several simulators covering different areas of cloud resource management100

have been developed. In this section, we briefly survey simulators which focus

on resource management in cloud computing.

SPECI [22] simulates the performance and behavior of data centers in clouds.

The SPECI fails to provide SLA, cost and VM start-up delay supports, regard-

less of the fact that its main functionality lies only in the low-level view of the105

computing system, that is the infrastructure.

CloudSim [14], pioneering work and the core of many cloud simulators, is

a discrete event-based cloud simulator which enables two main entities as data

center and broker to send and receive events. Despite its advantages, CloudSim

has several limitations, making researchers attempt to add new functionalities110

to repurpose it for different circumstances. The lack of support for auto-scaling

mechanisms, the SLA and cost, are the main reasons for CloudSim not being

appropriate for auto-scaling simulations.

NetworkCloudSim [23] is an extension of CloudSim, mainly applicable for

modelling scheduling mechanisms. This simulator differs from CloudSim and115

SPECI when it comes to consider performance metrics by measuring high-level

5

metrics such as response time as opposed to low-level ones such as CPU utiliza-

tion. However, it fails to support SLA and dynamic auto-scaling as well as the

VM start-up delay.

WorkflowSim [12], another CloudSim-based simulator, targets simulating120

and optimizing scientific workflows, not Web applications. WorkflowSim per-

forms one-off scheduling and does not require to perform continuous simulation

because workflow is executed akin to batch workload, whereas AutoScaleSim

workload is transactional.

PICS [24] provides a framework for simulating auto-scaling mechanisms in125

public clouds considering both cost and SLA parameters. PICS simulates cloud

resource management from end-user’s perspective, but it mainly simulates work-

flow, not transactional workloads. PICS does not allow for long-term simulations

and only can simulate in minutes, while auto-scaling mechanisms demand long

lasting experiments to produce a reliable evaluation.130

CloudSimSDN [15] proposes a framework for dynamic reconfiguration of

networks by extending CloudSim. It also measures the performance of network

elements and hosts capacity. Generally, CloudSimSDN is a toolkit for cloud

provider side of resource management, not application providers’ side, although

it attempts to use multi-tier Web application as its case study.135

ICARO [25] simulator is a useful tool to predict the pattern of workloads and

to apply the obtained knowledge to resource allocation mechanisms from cloud

providers’ view. However, ICARO, does not provide mechanisms for application

providers, brokers, or the target stakeholders like auto-scaling developers.

PEAS [26] simulator bases the performance evaluation on the scenario theory140

which manages to fairly measure probabilistic guarantees of the mechanism

under test. With a design focus on analyzing and planning, similar to our work,

PEAS is also validated through real cloud platforms. While PEAS precisely

measures low-level metrics such as over- and under-provisioning, it neglects

high-level metrics such as the number of failed requests as well as SLA and cost145

supports in evaluations in the interest of being generic.

ElasticSim [27] is a CloudSim-based toolkit for simulating workflows which

6

supports auto-scaling mechanisms. This simulator does not cover SLA supports,

and just considers high-level metrics. Also, it does not include start-up delay of

a VM in cloud, which can seriously affect the simulation results [28].150

ContainerCloudSim [7] is another extension to CloudSim for modelling con-

tainerized cloud environments. Other than VMs, it is beneficial to modelling

resource management mechanisms in containers. Contrary to AutoScaleSim, it

neither considers a dynamic delay for start-up time of each VM, nor is a tool

for assessing Web applications –although start-up delay for containers is not as155

significant as that of VMs.

Table 1 summarizes the features of all aforementioned simulators compared

to AutoScaleSim. The existing simulators do not support modeling and sim-

ulation of (1) auto-scaling of Web applications, (2) long-term simulation, (3)

SLA and cost constraints, (4) hybrid VM start-up delay (dynamic and static),160

(5) full implementation of MAPE-K control loops, and (6) both low-level and

high-level performance metrics in a cloud environment, simultaneously. More-

over, the performance of the majority of existing simulators are not validated

in a real cloud platform. In comparison, AutoScaleSim has been designed to

provide a single simulation tool that fulfils these gaps.165

3. Architecture Design

The architecture of AutoScaleSim, illustrated in Fig. 1, comprises three main

entities: End-user, Application Provider, and Cloud Provider. The rationale for

this design is to identify the position of auto-scaling mechanisms within cloud

computing environments and to identify the precise activities within the scaling170

flow. Each layer is implemented by an entity object. The original CloudSim

core that is an event-based simulator is used to compose the basic architecture

of the Cloud Provider layer and to manage the transmitting messages between

entities. We discuss the details of our architecture in the following sub-sections.

7

T
a
b

le
1
:

A
co

m
p

a
ri

so
n

st
u

d
y

o
f

si
m

u
la

to
rs

re
la

te
d

to
re

so
u

rc
e

a
n

d
ta

sk
m

a
n

a
g
em

en
t

in
cl

o
u

d
.

S
im

u
la

to
r

P
la

tf
o
rm

P
a
ck

a
g
e

S
L

A

S
u
p
-

p
o
rt

C
o
st

S
u
p
-

p
o
rt

S
im

u
la

ti
o
n

D
u
ra

ti
o
n

V
M

S
ta

rt
-u

p

D
el

ay

M
A

P
E

S
u
p
-

p
o
rt

C
o
n
si

d
er

ed

P
er

fo
rm

a
n
ce

M
et

ri
cs

R
ea

l

C
lo

u
d

V
a
li
-

d
a
ti

o
n

C
lo

u
d
S
im

[1
4
]

S
im

J
av

a
N

o
Y

es
S
ec

o
n
d
s

N
o

N
/
A

L
ow

-l
ev

el
N

o

N
et

w
o
rk

C
lo

u
d
S
im

[2
3
]

C
lo

u
d
S
im

N
o

Y
es

S
ec

o
n
d
s

N
o

N
/
A

H
ig

h
-l

ev
el

Y
es

P
IC

S
[2

4
]

N
/
A

Y
es

Y
es

M
in

u
te

s
D

y
n
a
m

ic
M

o
n
it

o
r

B
o
th

Y
es

C
lo

u
d
S
im

S
D

N
[1

5
]

C
lo

u
d
S
im

Y
es

N
o

S
ec

o
n
d
s

N
o

M
o
n
it

o
r

H
ig

h
-l

ev
el

N
o

IC
A

R
O

[2
5
]

N
/
A

N
o

N
o

N
/
A

N
o

M
o
n
it

o
r

B
o
th

N
o

P
E

A
S

[2
6
]

N
/
A

N
o

N
o

Y
ea

rs
Y

es
A

n
a
ly

ze
&

P
la

n
L

ow
-l

ev
el

Y
es

E
la

st
ic

S
im

[2
9
]

C
lo

u
d
S
im

N
o

Y
es

S
ec

o
n
d
s

N
o

M
o
n
it

o
r&

P
la

n
H

ig
h
-l

ev
el

N
o

S
P

E
C

I
[2

2
]

S
im

K
it

N
o

N
o

S
ec

o
n
d
s

N
o

A
n
a
ly

ze
L

ow
-l

ev
el

N
o

W
o
rk

fl
ow

S
im

[1
2
]

C
lo

u
d
S
im

N
o

Y
es

S
ec

o
n
d
s

N
o

A
n
a
ly

ze
H

ig
h
-l

ev
el

N
o

C
o
n
ta

in
er

C
lo

u
d
S
im

[7
]

C
lo

u
d
S
im

Y
es

N
o

S
ec

o
n
d
s

S
ta

ti
c

M
o
n
it

o
r&

P
la

n
L

ow
-l

ev
el

N
o

A
u
to

S
c
a
le
S
im

C
lo
u
d
S
im

Y
e
s

Y
e
s

M
o
n
th

H
y
b
ri
d

F
u
ll

B
o
th

Y
e
s

8

End-user

Application Provider

Cloud Provider

Cloudsim Simulator Core

EndUserEmulator Cloudlet

Application Provider

Auto-scaling Load Manging

Load Admission

Load Balancer

Monitor

Analyzer

Planner

Executor

Surplus Vm Selector

Knowledge-base

Analyzer History

Planner History

Executor History

Host Vm Allocation Policy Vm Cloud Provider Vm Scheduler Cloudlet Scheduler

Monitor History

Cloudlet SchedulerVm

Figure 1: The architecture of AutoScaleSim. The shaded objects exist in CloudSim by default.

9

3.1. End-user Entity175

The End-user entity is responsible for communicating with the Application

provider. In the real world, each end-user creates a session by opening a website

for searching, ordering, viewing, and more. Web requests can be emulated based

on the real traces collected from real web servers, whereby the End-user entity

continuously sends requests to the Application Provider (AP) entity over time.180

3.2. Application Provider Entity

The Application Provider entity simultaneously performs two main activi-

ties: auto-scaling and load managing.

3.2.1. Auto-scaling

As depicted in Fig. 1, the auto-scaling system derives from the well-known185

concept of MAPE-K introduced by IBM. The auto-scaling process is started by

running the monitor to collect both the application-level (e.g., incoming load)

and resource-level (e.g., CPU utilization) observations; the analyzer then at-

tempts to enrich the observations in a reactive or proactive manner; the planner

takes the analyzed observations to make a scaling decision; the executor per-190

forms the decision by making a connection to the cloud provider through APIs.

The surplus VM selection component is activated when the executor aims at

performing an scale-dwon decision and needs to pick a VM as the surplus; lastly,

all the four phases save their data into the knowledge-base component in their

corresponding history record. Note that in case of dealing with auto-scaling ser-195

vices provided by cloud providers, it is probable that the monitoring, analyzing

and executing functionalities will be handled by the cloud provider and the user

is only able to tune the planner’s parameters and configurations.

3.2.2. Load Manager

The load managing component is responsible for receiving the incoming load200

from the end-users (i.e., load admission), distributing them between available

VMs (i.e., load balancing) and returning back the corresponding response to

10

the end-users. This component is directly in connection with the end-users and

is a main source of application-level parameters for the monitoring phase of the

auto-scaling.205

3.3. Cloud Provider Entity

The cloud provider entity provides the underlying resources to the AP. It

is hosting the data centers and with the help of the virtualization techniques

can offer VMs in a pay-as-you-go pricing model. The Amazon EC2 is often

the reference pricing model for the research community [30, 16]. Regardless210

of the pricing, the administration of the resources including resource alloca-

tion, scheduling, placement and so on are of main responsibilities of the cloud

provider.

4. Implementation

The detailed implementation of AutoScaleSim for the three layers is elabo-215

rated in this section.

4.1. End-user Entity

The End-user entity continuously extracts and sends requests, in the form

of cloudlets, to the AP entity through events over time. The modified cloudlet

object of CloudSim is used to model the web application requests, where it220

captures processing requirements (such as million instructions per requests and

data size) and requests’ distribution available in the real datasets. Application

supported in the present version of AutoScaleSim are web applications, where

there is no dependencies between requests and it reflects the request/response

nature of the transactional web services. Regarding the datasets, the widely225

used datasets of NASA and Wikipedia [31] are utilized to emulate the Web re-

quests. Using AutoScaleSim, performing long experiments (e.g., 4 weeks), in just

few seconds is realized. The simulation duration is customizable by the SIM-

ULATION LIMIT variable in the ExperimentalSetup class. Another variable

11

is CLOUDLET LENGTH representing the MIPS (Million Instruction Per Sec-230

ond) each cloudlet has to be executed by VMs. This variable presently receives

a fix value for NASA dataset (e.g., 5000) because of unavailability of actual

length. However, we ran real experiments in OpenStack platform and captured

the requests length for each HTTP request in the Wikipedia datasets. Hence,

when using the Wikipedia datasets to generate the workload, AutScaleSim as-235

signs the actual length to each cloudlet after being normalized to an acceptable

rate. Overall, SIMULATION LIMIT and CLOUDLET LENGTH along with

PES NUMBER and the dataset file can be customized for the end-user entity

in the ExperimentalSetup class.

4.2. Application Provider Entity240

The Application Provider entity simultaneously performs two main activi-

ties: resource auto-scaling and load managing, each of which is implemented in

a distinct package of codes (see Fig. 2). To give a basic idea, this entity acts

as a broker and has two major methods for managing resources (autoScaling)

and loads (loadManager). It works with the coordinator that is in charge of245

controlling the simulation process.

4.2.1. Auto-scaling

When running AutoScaleSim, the ApplicationProvider class acts on initial-

izing the auto-scaling mechanism by creating a static instance for each phase

of MAPE (Monitor, Analyze, Planner and Executor classes) and subsequently250

each class instantiates its associated history class to record the data. In run-

time, the autoScaling method of ApplicationProvider class calls all four phases,

which are implemented in autoscaling package, and is responsible for controlling

this process. For extendibility, each phase is implemented in an isolated class,

which will be elaborated in the following paragraphs.255

Monitoring: the main method of the Monitor class is doMonitoring which

is called to gather the essential information from the cloud environment. The

gathered data are categorized into VM-, SLA- and end-user-related monitoring

12

applicationprovider

autoscaling

+loadManager()
+autoScaling()
+coordinator()

ApplicationProvider

-vmCount
-cpuUtilization
-responseTime
-delayTime
-slaViolation
-slaViolationPercentage
-slaViolationTime
-currentUserReq
-futureUserReq
-throughput

Analyzer
+execution()

Executor
+vmStatus()
+slaStatus()
+endUserStatus()
+reSetMonitorSensors()

Monitor
-plannerDecision
-purchaseType
-plannerStepSize
-configurationType

Planner

+random()
+theOldest()
+theYoungest()
+cloudletAware()
+loadAware()
+costAwareSimple()
+costAwareProfessional()

SurplusVmSelection

knowledgebase

loadmanager

+admission()
LoadAdmission

+dispatchNewRequests()
+dispatchCancelledRequests()

LoadBalancing

AnalyzerHistory ExecutorHistory

History

MonitorSLAHistory

MonitorEndUserHistory

MonitorVmHistory PlannerHistory

Figure 2: Class diagram for the Application Provider package

data. There are three separate methods for collecting monitored data in Monitor

class: (1) vmStatus, (2) slaStatus, and (3) endUserStatus. These methods store260

the gathered data into a new instance of monitorVmHistory, monitorSLAHis-

tory, and monitorEndUserHistory, respectively, by extending the History class,

which plays the K role in MAPE-K.

Precisely, the vmStatus method collects low-level parameters such such as

CPU utilization, CPU load, the number of VMs (initializing, running, and quar-265

antined), running cloudlets, VMs’ configuration type (micro, small, medium, or

large), VMs’ purchasing type (reserved, on-demand, or spot), and through-

put using cpuUtil, cpuLoad, vms, initialingVMs, runningVMs, quarantinedVMs,

runningCloudlet, vmsConfig, vmsPurchase, and throughput variables, respec-

tively. It is noticeable that the only deemed resource in CloudSim to evaluate270

is CPU. This is because CPU is the most demanded resource for many appli-

cations [32]. However, related classes for assessing other resources (i.e., mem-

ory, disk space, and network/bandwidth) are provided in AutoScaleSim. The

13

slaStatus method collects sensors’ high-level parameters as response time, de-

lay time, SLA violation (numbers, percent, and seconds), cancelled cloudlets,275

finished cloudlets, and failed cloudlets using avgResponseTime, avgDelayTime,

slavNumbers, slavPercent, slavSeconds, cloudletCancelled, cloudletFinished, and

cloudletFailed variables, respectively. The endUserStatus method collects sen-

sor’s high-level parameters as the number and length of users’ request using

requests and requestsLength variables, respectively. Having collected and stored280

all monitored data, doMonitoring method acts on resetting the sensors’ value

by calling the resetMonitorSensors method.

Analyzing: The Analyzer class is ran to make the monitored parameters

further accurate. The Analyzer, by calling its doAnalysis method, (1) gets mon-

itored data, (2) analyzes them, and then (3) stores the analyzed parameters’285

value into the analyzerHistory class. The doAnalysis method can analyze tens

of parameters. Each parameter is analyzed by calling a corresponding method;

for example, to analyze CPU utilization, the ANLZ CPUUtil() method is called.

Within the analyzing methods, there is a Switch Case to decide on which al-

gorithm should be used for analyzing of that parameter. The implemented290

algorithms are simple (just picking the latest monitored data for this param-

eter), moving average, weighted moving average, weighted moving average by

Fibonacci numbers, and Single Exponential Smoothing. At the beginning of the

experiment, in the ExperimentalSetup class, the analyzing algorithm for each

parameter (ten by default) is defined.295

When all of ten monitoring parameters in doAnalyzing method gathered

their values, a new instance of AnalyzerHistory class is created to receive such

values and produce a new record of analyzer history to be used by a planner.

While leveraging machine learning methods to analyze parameters is ex-

tremely effective [33], a widely used package, neuroph [34], is embedded in300

AutoScaleSim that enables developing artificial neural networks. Such solu-

tions have been implemented in the earlier versions of this simulator, where an

RBF (Radial Basis Function) neural network was used to analyze users’ request

patterns [17].

14

Note that there are two analyzer-related variables in ExperimentalSetup class305

that must pick their values. Firstly, the integer variable timeWindow denoting

how many recorded history items should be considered when using time-series

modalities like moving average and weighted moving averaged method. Sec-

ondly, the double type variable sESAlpha indicating the value of alpha index

when using Single Exponential Smoothing method, which can be between 0–1.310

Planning: The Planner receives the analyzed parameters from the analyzer

part of the knowledge-base (i.e., AnalyzerHistory), and tries to decide about

the application adaptation. Planner takes a detailed decision by calculating an

appropriate value for its fourfold parameters: (1) scaling decision using plan-

nerDecision, (2) the step-size using plannerStepSize, (3) the type of renting315

using purchaseType, and (4) the configuration type of the needed VM using

configurationType variables (see Fig. 2).

Precisely, the plannerDecision value can be PLANNER DO NOTHING,

PLANNER SCALING UP, or PLANNER SCALING DOWN ; the scaling type

is horizontal. The plannerStepSize by default equals to one, meaning that320

one VM will be added/removed by this decision. The purchaseType can be

VM PURCHASE ON DEMAND, VM PURCHASE RESERVED, or

VM PURCHASE SPOT ; the current version of AutoScaleSim considers the on-

demand pricing model, on which researchers focus mostly [5]. The configura-

tionType can be VM CONFIG T2MICRO, VM CONFIG T2SMALL,325

VM CONFIG T2MEDIUM, or VM CONFIG T2LARGE ; note, such VMs con-

figuration was selected based on T2 Instances type provided by Amazon EC2 [35].

Since there are diverse approaches to planning, the abstract class, (i.e. the

Planner), enables researchers to perform extendibility. Approaches include:

rule-based, analytical modelling, and reinforcement learning. To make the auto-330

scaling mechanism easy to run, we needed to implement the planner at least

once, so a rule-based planner, which has gained credence in the literature [3],

was developed. A Rule-based planner acts as a rule-engine which can accom-

modate multiple rules such as CPU-related or response time-related. This rule-

engine can perform independently in case appropriate input and outputs are335

15

provided. Technically, the planner in the current version of AutoScaleSim is ran

by calling doPlanning method of PlannerRuleBase class, overriding the one in

the Planner class. The doPlanning method functionality is to (1) get analyzed

parameters, (2) set aforementioned planner’s variables, (3) create a PlannerHis-

tory instance to store such variables, and (4) add the instance as a new record340

to the PlannerHistory list. The main action is setting the planner’s parameters.

Firstly, the pre-defined rule is selected in this method using a Switch Case. To

make AutoScaleSim customizable, disparate widely-used rules are already im-

plemented in PlannerRuleBase class as; they are RESOURCE AWARE [30],

SLA AWARE [16], HYBRID [17], UT–1Al, UT 2Al, LAT 1Al, and LAT 2Al345

[36]. One should indicate the preferred rule by attributing a corresponding

value to the ScalingRule variable in the ExperimentalSetup class. The scale-up

and scale-down thresholds for CPU utilization and delay time are also set by

attributing preferred values to cpuScaleUpThreshold, cpuScaleDownThreshold,

delayTimeScaleUpThreshold, and delayTimeScaleDownThreshold, respectively.350

CPU utilization threshold is a number between 0-100 and delay time is a num-

ber in seconds or millisecond.

Executing: The Executor class is ran to execute the taken decision. Execu-

tor class receives the planner’s decision by retrieving the planner’s latest stored

history and attempts to execute the decision.355

To begin with, the execution method of the Executor class is first called. The

method overall functionality is to get planner’s output, set executor’s output,

and save the output into the associated history (the ExecutorHistory class).

The method finally returns a list of actions to the ApplicationProvider class to

be performed. This delegation of authority is due to the fact that requesting a360

VM from the cloud provider in CloudSim demands cross-entity communication

which is applicable only through entities. In the real world, this action is done

using APIs.

To provide customizability, executor-specific variables are defined in the Ex-

perimentalSetup class to customize executor’s functionality. The variables in-365

clude executorType, surplusVMSelectionPolicy, COOLDOWN, maxOnDemandVm,

16

and minOnDemandVm. The executorType denotes the executor type (simple

or Suprex) to be utilized. The surplusVMSelectionPolicy variable comes to

play when the execution method aims to release a surplus VM. In this situa-

tion, the surplusVMSelectionPolicy acts on selecting a VM as the surplus. A370

diversity of policies has been developed in AutoScaleSim for this policy; they

are Random, theOldest [37], theYoungest [16], CloudletAware, LoadAware [17],

CostAware Simple [17], and CostAware Professional [28]. To implement a new

algorithm for surplus VM selection, first, the code should be implemented in

the SurplusVMSelection class as a new method, then its name as a new item of375

SurplusVMSelectionPolicy enum variable should be defined in the Experimen-

talSetup class and also the policy method of SurplusVMSelection class. The

COOLDOWN variable denotes the number of minutes the auto-scaler must

wait after a scaling decision. The Cool-down time, or the calm period, is an

approach to undermining overhead and to oscillation mitigation [5]. The latest380

variables are minOnDemandVm and maxOnDemandVm; they are limiting the

minimum and maximum number of VMs that the executor is allowed to re-

lease/rent from cloud provider, respectively. For instance, if maxOnDemandVm

value equals 10, it means that if the number of rented VMs at the time is 10

(currently under the authority), the scale-up executions are denied until a VM385

is released. This variable is to preserve auto-scaler from destructive actions,

resulting in inessential resource provisioning and wastage of cost. The maxOn-

DemandVm’s value have to be in accordance with defined datacenters’ capacity

in the ExdperimentalSetup class as well, so if quite a few VMs are required, new

datacenter entities can be added.390

4.2.2. Load Manager

The loadManager in the ApplicationProvider class is responsible for re-

ceiving, admitting and dispatching both new and cancelled Web requests (see

Fig. 2). To fulfill these duties, there is a package of codes, named loadManager,

containing the LoadAdmission class for admitting newly received requests and395

the LoadBalancing class for dispatching. The cloudlet cancellation might occur

17

when a VM containing cloudlets has already been released by an auto-scaling

mechanism, thereby moving the cloudlets back to the LoadBalancing class for

re-dispatching. The extendable abstract of the LoadBalancing class is presently

extended by a round-robin load balancer as LoadBalancingRoundRobin. New400

load balancing algorithms can be implemented as well, simply by overriding the

dispatchingNewRequests and the dispatchingCanceledRequests methods.

4.3. Cloud Provider Entity

The Cloud Provider entity provides the APs with the requested resources in

the form of VMs in a pay-as-you-go pricing model. The proposed pricing model405

in AutoScaleSim similar to what Amazon EC2 offers, that is, billing cycles which

are derived from the used hours. The partial hour usage is also considered as one

hour. This entity, furthermore, manages its data centers, employs scheduling

policies in VMs and also allocates resources to the requested VMs. Overall, the

Cloud Provider entity is the original DataCenter entity of CloudSim, augmented410

by features within the VM class indicating the operation status, that is, whether

it is in requested, started, quarantined or destroyed condition), lifetime and cost

status.

Technically, the process of allocating resources to the VM, launching the

VM, and deploying the application on the VM is rather time-consuming and415

is called the Start-up Delay. This delay for a VM lasts from the time it has

been requested by an AP to the time it is being fully instantiated. According

to various studies [38, 39], this delay is inherent in the cloud and is prone to

affect the performance of applications; hence, it should be inevitably taken into

account in simulation; an aspect that is currently either neglected [40] or deemed420

static [7] in all other available solutions. Unlike others, AutoScaleSim supports

both static and dynamic delay for initialing of a VM. The dynamic delay time

is determined by the factors such as VM size, time of the day, a datacenter’s

location, and the number of requested VMs [39].

18

5. Simulation Process in AutoScaleSim425

The modelling and simulation process performed in AutoScaleSim for run-

ning and auto-scaling Web applications in cloud is elaborated in this section,

followed by the directions for extending AutoScaleSim

The systematic communication between the three main entities (cloud provider,

application provider and end-user) during the simulation is illustrated in Fig. 3.430

The simulation process starts with renting initial VMs for hosting the appli-

cation. Afterwards, the end-user starts submitting emulated web requests to

the application and the VMs are responsible for processing the requests. The

Load Manager method of the AP class continuously simulates this process. In

parallel with load management, the auto-scaling mechanism regularly performs435

resource reconfiguration. Finally, once the simulation is finished, obtained re-

sults are printed in the terminal.

Taking a close look at the auto-scaling process (see Fig. 4), the monitor starts

getting information from cloud parameters such as VMs and load balancers.

We assume that the cloud provider provides APs with the low-level access to440

parameters such as CPU utilization, VMs’ lifetime, and the number of running

VMs. The collected parameters are added to monitor’s history records. Then, it

triggers analyzing the effective parameters to help the planner to make decisions.

To this end, the analyzer needs monitored parameters (either the last stored

item or a set of them). Afterwards, the analyzer adds the analyzed results as445

a new record into its history record. Next, the planner gets that result, makes

a decision (scale-down, scale-up or do nothing) and adds its decision to the

corresponding history. Lastly, the executor performs the execution of planner’s

decisions. The executor sends the decision to the application provider to be

executed as this action requires cross-entity communication.450

5.1. Algorithmic Perspective

The process of auto-scaling is demonstrated in Algorithm 1, representing the

pseudo-code for autoscaling method of ApplicationProvider class which plays

19

par

loop
[For every X min]

ref
Auto-Scaling

End-User

Experimental Setup

Cloud ProviderApplication provider

13: Print Results
12: Terminate All VMs

11: There is no User Request

1: Run AutoScaleSim

9.3: Acknowledgement

9.2: Execute The Cloudlet

7: Application Is Hosted
6: Host Web Application on Instantiated VMs

9.1: Call "loadManager" Method

9: Submit Users' request

5.1: Acknowledgements

5: Instantiate Reserved VMs

8: Read Data Set

4: Create Cloud Provider Entity

3: Create Application Provider Entity

2: Create End User Entity

10: Reconfiguration

Figure 3: The modelling and simulation process performed in AutoScaleSim for running and

auto-scaling Web applications in cloud.

20

<<flow of events>>
opt

alt

[If It Is Time To Auto-Scaling, (e.g., Time%Scaling Interval == 0)]

[If Scale Down is Needed]

[If Scale Up is Needed]

ExecutorPlanner

Cloud Provider

AnalyzerMonitor

Application Provider

6: Effector - Terminate Surplus VM(s)

5: Effector - Instantiate New VM(s)

4.4: Acknowledgement
4.3: Add To Executor's History

4.2: Set Executor's Parameters

4.1: Get Planner's History

4: Do Execution

3.4: Acknowledgement
3.3: Add To Planner's History

1.2: Set Monitor's Parameters

3.2: Set Planner's' Parameters

3.1: Get Analyzer's History

3: Do Planning

2.4: Acknowledgement
2.3: Add To Analyzer's History

2.2: Set Analyzer's Parameters Reactively/Proactively

2.1: Get Monitor's History

2: Do Analysis

1.4: Acknowledgement 1.3: Add To Monitor's History

1.1: Get Sensors' Values

1: Do Monitoring

Call Auto-Scaling Method

Figure 4: The modelling process of auto-scaling mechanisms in AutoScaleSim

21

the central role in AutoScaleSim. Briefly, this method continuously sends and

receives events to manage the execution of each phase of MAPE and coordi-455

nates continuity of the simulation. Each event, containing parameters (such as

receiver, delay, tag, and data) calls a specific phase of the auto-scaling. Having

received the event, the data (line 1) denotes which phase of the auto-scaling

must be evoked through a Switch Case statement (line 2-36).

The first receiver is VmsSynchronization where the latest VMs’ status re-460

ports are updated (line 3); here, the latest status of all VMs is sent to the Ap-

plicationProvider by calling the vmsSynchronization method, before triggering

the monitoring, making the monitoring parameters accurate. Then, monitored

parameters are obtained by calling the doMonitoring of the Monitor class, if the

event data refers to monitor (line 5). The cool-down time is also decreased by465

1 minute (line 6). The next action is conditional; if the next auto-scaling epoch

is to be done at this time (line 7), the auto-scaling method sends an event to

itself (line 8), calling analyzer. To negate the auto-scaling overhead, it is defined

that monitoring is done every one minute, while full auto-scaling is done every

X minute; the X equals the value for customizable variable scalingInterval. If470

auto-scaling epoch is not required, then if the leveraged executor is SUPREX

(line 9), the QuarantinedVMsUpdater part of SUPREX must be called (line

10) to check the latest status of quarantined VMs (for more information refer

to the work [28]). Also, there is a case in calling this part to perceive whether

any quarantined VM must be released (line 28-34). Finally, if the executor is475

SIMPLE, it calls the coordinator (line 12).

To run full auto-scaling, if it turns to the analyzing phase (line 14-16), the

doAnalysis method of Analyzer is called, and then, an event calling the planner

is created. If the receiver is planner, the planner case is ran (line 17-19), where

the doPlanning method of Planner class is called and followed by an event480

to create and send the executor. For case in which the executor is run (line

20-27), at first, the execution method of the executor is called. Afterwards,

as per the prepared scaling action by execution, either the effector performing

scale-up action, or the effector performing scale-down action is called. There

22

are two independent if-then conditions because it is possible that none of those485

actions are required. Then, an event calling the coordinator is created and sent

to the autoscaling method itself. The last case (line 35) calls the coordinator

method to examine the continuously of the simulation and to schedule the next

round of performing auto-scaling. This continuous process is stimulated until

the coordinator perceive that the SIMULATION LIMIT is met and acts on490

terminating the simulation.

5.2. Extending AutoScaleSim

Extending a particular phase (monitoring, analyzing, planning or execution)

or the whole mechanism is feasible in AutoScaleSim. In the following the in-

struction for doing so is provided.495

Monitor class is extendable, either to add some parameters into the existing

methods (e.g., SD for CPU load) or to add a new method (e.g., NewStatus). In

case of a parameter, it should be added into the corresponding monitor history

class enabling the analyzer to read. In case of adding a particular method

such as EnergyStatus, adding a history class such as MonitoringEnergyHistory500

is required to save the records of energy-related monitored parameters.

The Analyzer class is extendable in terms of both analyzing parameters

and algorithms. To extend parameters: (1) a variable is defined in doAnalysis

method as newParameter to be considered when running the analyzer phase.

This parameter should be implemented by adding a method into the analyzer505

class (e.g., ANLZ newParamter). This method uses a Switch Case to indicate

the appropriate analyzing solutions for the newly added parameters. Multi-

ple solutions such as instant analyzing, moving average and WMA are already

available in AutoScaleSim. The solution selection is set using ExperimentalSetup

Class using the analysisMethod array. Hence, the newly implemented parameter510

should be included in the array as a new item. On the other hand, to implement

new algorithms to analyze CPU utilization, for example, simply a new case to

the Switch Case statement of ANLZ CPUUtil needs to be added.

Planner is extendible in terms of implementing new rules and even new

23

Algorithm 1: The Auto-scaling process from algorithmic perspective:

autoscaling method
Input: A SimEvent object, ev (events contain receiver ID, delay, tag, and data)

1 receiver ← ev.data

2 switch receiver do

3 case VmsSynchronization do Call vmsSynchronization method; break;

4 case Monitor do

5 Call Monitor.doMonitoring method; break;

6 Executor.remainedCoolDownTime− = 1 minute;

7 if clock % (scalinginterval× 1 minute) == 0 then

8 Send an event to autoScaling method with the data ‘Analyzer’;

9 else if executorType == SUPREX then

10 Send an event to autoScaling method with the data

‘QuarantinedVMsUpdater’;

11 else

12 Send an event to autoscaling method with the data ‘Coordinator’; break;

13 end

14 case Analyzer do

15 Call Analyzer.doAnalysis method;

16 Send an event to autoScaling method with the data ‘Planner’; break;

17 case Planner do

18 Call Planner.doPlanning method; break;

19 Send an event to autoscaling method with the data ‘Executor’; break;

20 case Executor do

21 Call Executor.execution method and return the decision;

22 if decision is Scale-up then

23 Call effectorScaleUp method and hand in the list of required VM(s) to be

provisioned;

24 if decision is Scale-down then

25 Call effectorScaleDown method;

26 Wait until the acknowledge of releasing the VM(s) is received;

27 Send an event to autoscaling method with the data ‘Coordinator’; break;

28 case QuarantinedVMsUpdater do

29 Call Executor. quarantinedVMsUpdater method;

30 if there is/are VM(s) to be released then

31 Call effectorScaleDown method and wait until receiving acknowledge

32 else

33 Send an event to autoscaling method with the data ‘Coordinator’; break;

34 end

35 case Coordinator do Call coordinator method to check the continuation of

simulation;

36 end

24

planner classes. To implement a rule: (1) a new method (e.g., rule NEW)515

containing a new algorithm is coded; (2) a new case is added to the Switch

Case statement in doPlanning method; and (3) the case’s value must be added

to the ScalingRule variable in the ExperimentalSetup class to be in the loop.

To implement a new standalone planner, the inherited sub-class must override

the doPlanning method, so that it can assign a value to the fourfold planner’s520

parameters. If new parameters are to be implemented, the parameters must be

defined in the PlannerHistory class as well.

Executor can also host new parameters in current implemented executors

(e.g., simple and Suprex) and can be extended to a new executor. For the

former, it is sufficient to add a new parameter and include it in the history525

class of executed to be recorded. For the latter, a new executor class is to

inherit the abstract executor class. The inherited class needs to (1) override the

execution method, (2) add the name of the executor to ExecutorType variable

in ExperimentalSetup class and (3) add new executor-related parameters to the

associated history class, if added.530

6. Validation and Performance Evaluation

The aim of this section is to validate and evaluate the performance of Au-

toScaleSim. First, the experimental setup is elaborated in details. Then, the

performance metrics provided by the simulator are explained. The validation

of the simulator is performed using extensive use cases utilizing the Wikipedia535

traces, by drawing an analogy with our real cloud experiments using an Open-

Stack cluster in the Validation Section. Finally, a set of use cases to evaluate

the effectiveness and correctness of AutoScaleSim utilizing the NASA web traces

are studied in the Performance Evaluation Section.

6.1. Experimental Setup540

The ExperimentalSetup class in the main package of AutoScaleSim is where

the developers can assign specific values for experiment’s parameters to cus-

tomize their simulation. Parameters are related to three entities: End-User,

25

Application Provider and Cloud Provider and are listed in Table 2. The high

degree of customizability is obvious with the wide range of applicable values for545

parameters (the Proposed Values column in Table 2) mainly due to the diverse

algorithms already developed in AutoScaleSim.

To set up End-User entity, firstly, the simulation period can be set by the

SIMULATION LIMIT parameter, indicating how many days/hours the sim-

ulation of requests to the website will last. For example, if the NASA Web550

traces is selected, the simulation of up to 1 month is applicable, see Fig. 5.

The NASA dataset contains the logs regarding access to NASA Web servers

in July 1995, experiencing variable requests across the week. Another dataset

is the 4-hour Wikipedia access traces (see Fig. 6) collected in September 19th

2007, having by far more intensity. The Wikipedia traces contain the data re-555

quired for each HTTP request, modelled as a cloudlet, according to which we

assign the corresponding CLOUDLET LENGTH. The number of instructions

and required processing elements per HTTP request is denoted by setting the

CLOUDLET LENGTH and PES NUMBER, respectively. The data size is also

involved when we model the network delay time for each cloudlet. We assume560

that network delay is linearly correlated to that of the data size. Hence, a

cloudlet’s response time is a matter of data size and network delay. The NASA

traces lack the data size, so we set the CLOUDLET LENGTH parameter as

a constant value. In a real environment, Web requests to a Website have a

timeout time, so cloudletTimeout parameter is designed to play this role.565

The parameters related to Application Provider entity are twofold: (1) load

balancing and (2) auto-scaling. The load balancing (loadBalancing class) is im-

plemented based on a Round Robin [41] manner by default and task scheduling

method is TimeShared [40].

Turning to the auto-scaling parameters for each phase of MAPE-K, first of570

all, the number of initial VMs is indicated by initialVMs. The scaling interval

(scalingInterval) can be set on the scale of minutes. According to various stud-

ies [16, 32, 39], it is more efficient if we assign it between 2 to 15 minutes to

help agile alleviation of application maladaptation. Despite that, the monitor

26

is collecting observed data every one minute, enabling fine-grained analyzing.575

The slaContractOnDelayTime parameter is also the acceptable delay time for

running a cloudlet, meaning that if the delay time for a cloudlet went above this

limitation – this is called an SLA violation.

Analyzing phase needs to know which type of analysis (analysisMethod) be

carried out (simple or complex). In case Single Exponential Smoothing algo-580

rithm is selected, the alpha parameter for this method can be set using sESAl-

pha. In time-series analyzing methods, the number of monitored items involving

for parameters (e.g., CPU utilization) can be set using the timeWindow variable.

The developed planner is Rule-based [3], so the rule can be set by the scal-

ingRule variable. The upper and lower thresholds for parameters, such as CPU585

utilization, involved in the decision are also available to be set. If the RE-

SOURCE AWARE rule is selected, the planner decision is derived from CPU

utilization thresholds. If SLA AWARE rule is selected, the decision is made

according to delay time thresholds, and if HYBRID rule [28] is selected, the

planner considers both.590

Finally, the execution phase has some vital parameters to be set. The type

of executor (executorType) which can be SIMPLE [17] or SUPREX [28], the

surplus selection policy (surplusVMSelectionPolicy) for which there are a variety

of algorithms in AutoScaleSim, the cool-down time [38] (COOLDOWN), and the

limitation to the number of VMs (maxOnDemandVm and minOnDemandVm)595

that the auto-scaling mechanism is authorized to provision and deprovision.

The Cloud Provider is inherited from CloudSim with the following upgrades:

realizing the start-up delay time for VMs (startUpDelayType) to model a static

or dynamic start-up delay, considering vital factors such as OS type, time of

the day, the number of VMs, VMs configuration type, and servers’ geographical600

location. The BASIC STARTUP DELAY parameter plays two roles: (1) the

VM start-up delay in static mode and (2) the basic amount of delay in dynamic

mode, which is increased according to mentioned factors automatically.

At the end of the simulation, the results can be printed in console and/or

exported into a CSV file by customizing the report parameter which receives:605

27

0

50

100

150

200

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

U
se

rs
' R

e
q

u
e

st
s

Time (day)

NASA DataSet

Figure 5: The NASA dataset used to emulate the users’ requests to the Web application, the

requests from 1st to 28th of July, 1998. The first day is Saturday.

M VM, M SLA, M USER, ANALYZER, PLANNER and EXECUTOR values

indicating the data collected for monitored VMs, monitored SLA, monitored

end-users, analyzed, planned and executed activities, respectively. Besides the

final printed data, an audit of the auto-scaling mechanism, during the run-time,

is continuously printed on the console in details by the LogAutoScaler class.610

6.2. Performance Metrics

At the end of simulation process, AutoScaleSim collects a wide range of

metrics, categorized in Fig. 7, to evaluate major objectives: scalability, elas-

ticity and efficiency [50]. According to definitions [4], scalability refers to the

responsiveness of the auto-scaler (e.g., proportionally adding resources) to the615

increasing workload; elasticity is a matter of time and frequency which refers

to the time to make the application adapted again and the extent at which the

mechanism is able to avoid resource under- and over-provisioning; and efficiency

is a matter of effective utilization of resources which refers to the amount of re-

28

T
a
b

le
2
:

T
h

e
p

a
ra

m
et

er
s

to
b

e
se

t
a
t

th
e

E
x
p

er
im

en
ta

lS
et

u
p

cl
a
ss

fo
r

ru
n

n
in

g
A

u
to

S
ca

le
S

im
E
n
t
it
y

P
a
r
a
m

e
t
e
r

P
r
o
p
o
s
e
d

V
a
lu

e
(
s
)

D
e
fa

u
lt

V
a
lu

e
(
N
A
S
A
/
W

ik
ip

e
d
ia

)
C
o
m

m
e
n
t
s

E
n
d
-u

s
e
r

S
IM

U
L
A
T
IO

N
L
IM

IT
[1

−
2
8
]
×

1
4
4
0

(
N
A
S
A
)

7
×

1
4
4
0
/
4

×
6
0

M
in

u
t
e
(
s
)

[1
−

4
]
×

6
0

(
W

ik
ip

e
d
ia

)

C
L
O

U
D

L
E
T

L
E
N
G

T
H

[2
5
0
0
-1

0
0
0
0
]

5
0
0
0
/
v
a
r
ia

b
le

M
il
li
o
n

In
s
t
r
u
c
t
io

n

P
E
S

N
U
M

B
E
R

[1
-2

]
2
/
1

N
o

m
o
r
e

t
h
a
n

V
M

s
’
c
o
r
e
(
s
)

d
a
t
a
s
e
t
T
y
p
e

N
A
S
A

o
r

W
ik

ip
e
d
ia

N
A
S
A
/
W

ik
ip

e
d
ia

c
lo

u
d
le

t
T
im

e
o
u
t

[3
0
–
5
0
]

3
0
/
5
0

s
e
c
o
n
d

A
p
p
li
c
a
t
io

n

P
r
o
v
id

e
r

lo
a
d
B
a
la

n
c
in

g
L
o
a
d
B
a
la

n
c
in

g
R
o
u
n
d
R
o
b
in

L
o
a
d
B
a
la

n
c
in

g
R
o
u
n
d
R
o
b
in

c
lo

u
d
le

t
S
c
h
e
d
u
le

r
N
a
m

e
T
im

e
s
h
a
r
e
d

T
im

e
s
h
a
r
e
d

in
it
ia

lV
M

s
[1

-5
]

2
/
1

c
o
n
fi
g
u
r
a
t
io

n
T
y
p
e

m
ic

r
o
,
s
m

a
ll
,
m

e
d
iu

m
,
la

r
g
e

m
e
d
iu

m
/
s
m

a
ll

s
c
a
li
n
g
In

t
e
r
v
a
l

[1
-6

0
]

1
0
/
2

m
in

u
t
e

s
la

C
o
n
t
r
a
c
t
O

n
D

e
la

y
T
im

e
[0

.2
-2

]
1
.0

s
e
c
o
n
d

a
n
a
ly

s
is
M

e
t
h
o
d

S
IM

P
L
E
,

C
O

M
P
L
E
X

M
A
,

C
O

M
P
L
E
X

W
M

A
,

C
O

M
P
L
E
X

W
M

A
fi
b
o
,
C
O

M
P
L
E
X

S
E
S

S
IM

P
L
E

s
E
S
A
lp

h
a

[0
.1

-1
]
p
e
r

a
n
a
ly

z
in

g
p
a
r
a
m

e
t
e
r

0
.2

/
0
.1

fo
r

a
n
a
ly

z
in

g
p
a
r
a
m

e
t
e
r
s

b
y

S
E
S

t
im

e
W

in
d
o
w

[1
-6

0
]

E
q
u
a
l
s
c
a
li
n
g
In

t
e
r
v
a
l/

5
d
a
t
a

e
ff
e
c
t
iv

e
in

a
n
a
ly

z
in

g

s
c
a
li
n
g
R
u
le

R
E
S
O

U
R
C
E

A
W

A
R
E
,
S
L
A

A
W

A
R
E
,
H
Y
B
R
ID

S
L
A

A
W

A
R
E

c
p
u
S
c
a
le

U
p
T
h
r
e
s
h
o
ld

[5
0
-1

0
0
]

7
0

p
e
r
c
e
n
t
a
g
e

c
p
u
S
c
a
le

D
o
w
n
T
h
r
e
s
h
o
ld

[0
-5

0
]

4
0

p
e
r
c
e
n
t
a
g
e

d
e
la

y
T
im

e
S
c
a
le

D
o
w
n
T
h
r
e
s
h
o
ld

[0
-0

.5
]

0
.2

/
0
.1

3
0

×
s
e
c
o
n
d

E
x
e
c
u
t
o
r
T
y
p
e

S
IM

P
L
E

o
r

S
u
p
r
e
x

S
IM

P
L
E

s
u
r
p
lu

s
V
M

S
e
le

c
t
io

n
P
o
li
c
y

R
a
n
d
o
m

,
t
h
e
Y
o
u
n
g
e
s
t
,

t
h
e
O

ld
e
s
t
,

C
lo

u
d
le

t
A
w
a
r
e
,
L
o
a
d
A
w
a
r
e
,
C
o
s
t
A
w
a
r
e

S
im

p
le

,

C
o
s
t
A
w
a
r
e

P
r
o
fe

s
s
io

n
a
l

t
h
e
O

ld
e
s
t

C
O

O
L
D

O
W

N
[0

-s
c
a
li
n
g
In

t
e
r
v
a
l]

0
m

in
u
t
e

m
a
x
O

n
D

e
m

a
n
d
V
m

[0
-4

0
]

4
0
/
1
0

m
in

O
n
D

e
m

a
n
d
V
m

[1
-5

]
1

C
lo

u
d

P
r
o
v
id

e
r

s
t
a
r
t
U
p
D

e
la

y
T
y
p
e

S
t
a
t
ic

o
r

D
y
n
a
m

ic
S
t
a
t
ic

B
A
S
IC

S
T
A
R
T
U
P

D
E
L
A
Y

[0
-1

5
]

5
/
1

m
in

u
t
e

R
e
s
u
lt
s

r
e
p
o
r
t
s

M
V
M

,
M

S
L
A
,

M
U
s
e
r
,

A
N
A
L
Y
Z
E
R
,

P
L
A
N
-

N
E
R
,
E
X
E
C
U
T
O

R

-
p
r
in

t
s

r
e
p
o
r
t
s

t
o

a
C
S
V

fi
le

29

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

U
se

rs
' r

e
q

u
e

st
s

Timestamp (minute)

Wikipedia Dataset

Figure 6: The Wikipedia dataset used to emulate the users’ requests to the Web application,

the requests from 17th September in 2007.

sources which are actually utilized or wasted. The following metrics measures620

the above-mentioned objectives:

CPU Utilization is calculated as the average and standard deviation of all

VMs’ utilization [28]. Note that higher average CPU utilizations do not always

lead to more efficient auto-scaling; because, a high level of CPU utilization

might be a repercussion of load accumulation, stemming from inefficient load or625

resource management [28].

VM Load is a measurement for the number of processes using or waiting

for the CPU cores at a single point in time.

VM Lifetime, a measure of efficiency, shows how many minutes, on average,

the rented VMs are running [40]. The higher, the more efficient the auto-scaling630

mechanism will be.

Max. Run VM a measure of efficiency, shows the maximum number of

running VMs (both On-demand and Reserved) at the maximum load. The

lower, the more efficient and fluctuation-proof it is; although in some cases this

resistance may even usher in SLA violation [28].635

30

Max. Run On-Demand VM is similar to Max. Run VM metric with the

difference that it only considers On-Demand VMs.

Delay Time is the discrepancy between the desired and actual response

time for all processed cloudlets. The less delay time, the less violation of QoS

requirements.640

Response Time is the time taken from the submission of a cloudlet to its

completion. The average of this time for all cloudlets is computed.

Cancelled Cloudlet(s) calculates the aggregate number of cloudlets can-

celed during the runtime and are resubmitted to the load balancer for execution.

Failed Cloudlet(s) calculates the total cloudlets reached their timeout and645

subsequently returned to the user with no answer.

SLA Violation, as a measure of elasticity, determines both the aggregated

times (in seconds and hours) and the percentage of violation in meeting the SLA

requirements in terms of response time [28, 49]. A request execution is deemed

as SLA violaion if its execution time reaches a time higher than the expected650

time specified by the SLA, e.g. 1 second.

Users’ requests metric counts the aggregate of received user requests dur-

ing the simulation.

Analyzed CPU Util. is the average CPU utilization produced by analyzer.

To evaluate the accuracy of the developed analyzer, this value can be compared655

to the actual CPU Utilization.

Analyzed Delay Time is the average delay time estimated by analyzer

during the simulation, which can be compared to the actual delay time. Scale

Up Decisions shows the sum of scale up decisions made by planner. The more

the number of scale up decisions, the more provisioned resource and, hence,660

renting cost. Scale Down Decisions is the total number of scale-down decisions

made by planner.

Contradictory Scaling Decisions is the time the planner makes a scale

up decision and subsequently a scale down decision is performed, or vice versa,

in two subsequent scaling epochs [3, 28].665

Time to Adaptation, or Mean Time To Quality Repair [50], is the average

31

time taken from receiving the scaling decision to the time that the delay time

goes below expected value e.g., 1 Second. The lower time to adaptation, the

timelier reactions to variability in workload.

Provisioned VMs is a measure of efficiency, is the total rented VMs, pro-670

visioned by executor. The less provisioning, the less auto-scaling overload and

the more efficiency.

De-Provisioned VMs is the total released VMs, de-provisioned by execu-

tor.

Over-/Under-provisioned VMs is the quantitative normalized metric to675

measure the scalability of the auto-scaler. It shows how many times the auto-

scaler over-provisioned or under-provisioned the underlying resources according

to the incoming workload in percentage [47, 51]. The closer to zero, the better.

Scale Up/Down Precision is the qualitative normalized metric to measure

the elasticity of the auto-scaler. It indicates the amount of surplus resources680

imposed by scale up and scale down actions [48]. The resources are measured

at VM scale as recommended by the work [51].

Contradictory Scaling Actions is to measure how many times the scale

up and scale down actions are performed in two subsequent scaling intervals

throughout the simulation [28].685

Cost of Renting VMs is the cost of renting VMs based on an hourly-based

billing offered by Amazon EC2. Similar to Amazon EC2, the partial using (i.e.,

less that one hour) is deemed as one hour.

SLA Violation Penalty (cost), a measure of inability to maintain scal-

ability and elasticity, is the criterion to consider the SLA violations incurred690

by the poor performance of the auto-scaling mechanism [17]. To measure the

scalability and elasticity, the sum of the delay time in seconds in excess of the

SLA contract occurred for all cloudlets is firstly calculated; then the aggregate

seconds is changed into hour units. After rounding-up the number, the SLA

penalty cost is calculated by multiplying the obtained number by the renting695

cost for a VM.

Total Cost is the aggregate of renting and SLA Violation cost, which can

32

Figure 7: Performance Metrics collected by AutoScaleSim
Metrics

Monitor Analyzer Planner Executor Cost

CPU Util.

VM Load

VMs’ Lifetime

Max. Run VM

Response Time

Delay Time

Cancelled

Cloudlet(s)
Failed

Cloudlet(s)

SLA Violation

Analyzed CPU

Util.
Analyzed Delay

Time

Scale-up Deci-

sions
Scale-down

Decisions
Contradictory

Decisions
Time to Adap-

tation

Provisioned

VMs
Deprovisioned

VMsOver-

provisioned

VMs
Under-

provisioned

VMsScale Up Preci-

sion
Scale Down

Precision
Contradictory

Actions

Cost of Rent-

ing VMs
SLA Violation

Penalty

Total Cost

be a measure of efficiency. As the most comprehensive metric, it measures

efficiency (i.e., efficient provisioned resources through Cost of renting VMs) and

scalability and elasticity (i.e., the penalties imposed for inability in maintaining700

both).

6.3. Validation

The main concern about the reliability of a simulator’s performance is that

if the test results are aligned with the experiments in real environments. To ad-

dress the validation concern, we deployed a Web application on a cloud platform705

using OpenStack in the DisNet laboratory at Monash University (Australia). By

running experiments under rather the same conditions, we attempt to draw an

analogy with our simulator. In the end-user layer, the Wikibench tool is used

to send real traces of Wikipedia HTTP requests to the front-end load balancer.

A Linux-based VM holding the traces and having Wikibench installed (version710

3.2) is acting as the client. An HAProxy server (version 1.6) installed on an-

other VM acts as the load balancer. In the application layer, there are Web

servers (Apache 2.0) having the Mediawiki application (version 1.30) installed

which are receiving HTTP requests, processing, and returning them back to

33

the end-user. The data required for the requests are populated in an m1.xlarge715

VM (8 vCPUs, 16GB of RAM and 180GB of HDD) as the database server.

The data includes roughly 7 million English Wikipedia pages imported into a

MYSQL server. While the HTTP requests are sent to the Web servers, the

auto-scaler component (co-located with the load balancer in the same VM) dy-

namically adds/removes Web servers. This auto-scaler is a Java program and its720

development is also based on the MAPE-K concept, code available on GitHub1.

We already prepared a snapshot of the Web server having Mediawiki version 3.0

and LAMP server (Linux, Apache, MYSQL and PHP) installed by which the

auto-scaler launches new Web servers.

We target investigating the tail latency [43], which is presently a hot topic in725

cloud optimization and is seldom investigated in the context of auto-scaling [44,

45]. Tail latency is a measure of finding outliers and the occurrence of very

long latencies. The tail can be measured using percentiles, particularly high

percentiles such as 90th and 95th in the distribution of response time. Having

performed careful analysis of possible tail sources, we set a critical tail-related730

question, among others, to be investigated: Do the scaling interval (Scaling In-

terval validation), analysis method (Analysis method validation) and threshold

tuning (Threshold tuning validation) have any impact on the tail latency? The

same experiments are carried out in the simulator and real cloud to see if the

simulator behaves similar to a real platform when a particular parameter is ma-735

nipulated. The Wikipedia traces are utilized as the workload for both simulated

and real platform experiments.

6.3.1. Scaling Interval validation

The scaling interval can technically be tuned in three different ways: short-

term (2 minutes), mid-term (4 minutes) and long-term (8 minutes). The com-740

parison results show that, as expected, once the scaling interval becomes longer,

the average and tail of latency go up. This pattern was seen harmoniously in

1https://github.com/aslanpour/auto-scaling-in-openstack

34

the experimental results for the tests in the both platform and simulator (see

Fig. 8). This stems from the delayed reaction of the auto-scaler to the workload

variability, especially when it is growing. Assume that the incoming workload745

is experiencing a flash crowd. If the auto-scaler adopts the long-term scaling

interval, it is highly likely that current users’ requests would have to wait for the

scale up decisions more. Hence, both the simulator and the real cloud platform

indicate that the longer the scaling interval, the longer the tail latency will be.

Technically, we purposely employed a small number of VMs to host the ap-750

plication at the begining of this experiment. By this, auto-scaler is quickly faced

with request surge and has to make more scaling decisions in the rest of the ex-

periment. Given such settings, shorter SIs are expected to quickly respond to

the resource demand while longer SIs fail to do so. We observed that accumula-

tion of requests in both simulator and real testbed linearly influences the CPU755

performance and response time (as parameters involved in scaling decisions).

However, in the real environments, upon requests’ accumulation, the VMs are

getting saturated, CPU utilization goes up, memory utilization increases, more

resource contention for MySql read/writes are appeared and subsequently some

HTTP requests are kept in the queue for a long time. Some of these under-760

laying issues are simplified or are not completely modeled or simulated in Au-

toScaleSim. For example, AutoScaleSim discards to simulate memory usage and

resource contention which is inherited from CloudSim. This is why the same

phenomenon (i.e., accumulation of requests) has different imapact on the simu-

lator. Limitations of AutoScaleSim and possible solutions are further discussed765

in Section 7.

6.3.2. Analysis method validation

The comparison results for evaluating instant and predictive analysis meth-

ods are shown in Fig. 9. Single Exponential Smoothing algorithm is used as the

predictive approach and the parameter to be analyzed is the delay time. The770

predictive approach performs better, that is, leads to a lower latency. This is

because the occurrence of temporary short-term fluctuation in the Web work-

35

0

500

1000

1500

2000

2500

Avg. 50th 75th 90th 95th Avg. 50th 75th 90th 95th

Simulator Real testbed

la
te

n
cy

 (
m

ill
is

e
co

n
d

)

Scaling Interval Evaluation

short-term mid-term long-term

Figure 8: The comparison of scaling intervals in simulator and real testbed.

loads is highly probable, so considering only the present observation, without

taking recent changes into account, would make the auto-scaler impulsive. Both

the simulator and the real platform managed to take advantage of the predic-775

tive method to manage the workload, proportionally. The same pattern again

was achieved, with rare outliers, for the auto-scalers in both the simulator and

the real platform. With accurate performance, the simulator is positively af-

fected by delay time prediction which ended up in not only the average, but also

the tail optimization. This improvement demonstrates the synergy between the780

simulation and the real platform experimental results.

6.3.3. Threshold tuning validation

The threshold tuning has been a matter of concern for rule-based auto-scalers

which has been studied in [46], but not in terms of the impact on tail latency.

Three strategies can be adopted to reach a pair of thresholds and are categorized785

as: Loose, Moderate and Tight. For instance, considering CPU utilization upper

70% as the scale-up threshold would be a loose tuning strategy while considering

36

0

100

200

300

400

500

600

700

800

900

Avg. 50th 75th 90th 95th Avg. 50th 75th 90th 95th

Simulator Real testbed

la
te

n
cy

 (
m

ill
is

e
co

n
d

)

Analyzing Method Evaluation

instant predictive

Figure 9: The comparison of analysis methods in simulator and real testbed.

90% would be a tight and 80% a moderate. We conduct experiments in both

the simulator and the real platform and then draw an analogy between their

results. The parameter for scaling decisions is the delay time. Technically, it790

is expected that loose thresholds react to the workload variation promptly, by

which the VMs would sustain low load accumulation and latency.

As results show in Fig. 10, tantamount to the real platform, the simulator is

correctly reporting lower average and tail latency when the Loose thresholds are

used. In contrast, the Tight tuning is performing worse than others in the real795

platform, as this strategy is reacting to the workload variation with hesitation.

The same happened in the simulator as a result of applying the Tight tuning,

that is, the worse performance than other strategies (see Fig. 10). Both experi-

ments reported similar position for the Moderate strategy. The higher level of

latencies for the real platform has the root to the load accumulation at the be-800

ginning of the test which then is alleviated through operating system scheduling,

which is missing in simulation environments as explained in Section 6.3.1.

To give an estimation of performance precision of AutoScaleSim, the latency

37

0

200

400

600

800

1000

1200

1400

1600

1800

Avg. 50th 75th 90th 95th Avg. 50th 75th 90th 95th

Simulator Real testbed

la
te

n
cy

 (
m

ill
is

e
co

n
d

)

Threshold Tuning Evaluation

Loose Moderate Tight

Figure 10: The estimation performance of the simulator when compared with the real testbed–

threshold tuning analysis.

estimation by simulator is compared to the observed latency in the real experi-

ments point by point, which is demonstrated in Fig. 11. This figure shows that805

AutoScaleSim is able to capture the real world systems behavior. Despite the

variability in the beginning (which is explained in Section 7 in more details),

the simulator is able to show a reasonably close performance to that of real

testbed. The proximity of latency estimations in the second half of the results

confirms that the simulator is able to adapt itself to the incoming workload and810

produce acceptable estimations for evaluated parameters, e.g., the latency. The

simulator performance measured by MAPE (Mean Absolute Percentage Error)

confirms the accuracy of 81% which reasonable for such variable environments.

This accuracy will become even smaller when the resource abstraction level in

the simulator becomes more comprehensive. Thus, it is assumed that the exper-815

imental results in simulated environment represent the behavior of the system

not the actual values.

38

0

50

100

150

200

250

300

350

400

1 21 41 61 81 101 121 141 161 181

La
te

n
cy

 (
m

s)

Time (minutes)

Simulator Real Test-bed

Figure 11: The latency estimation accuracy by the simulator, AutoScaleSim.

6.4. Evaluation

Three use cases are presented here to prove the effectiveness and correctness

of AutoScaleSim. The aim is to demonstrate the way researchers can use and820

customize AutoScaleSim. AutoScaleSim is ran by default value of each exper-

imental parameter, shown in ‘Default Value’ column in Table 2. Then three

predominant use cases from the literature are tested. Within each use case, the

value for parameters of one particular component of AutoScaleSim is modified

and others remain unchanged. The result of running each use case is compared825

with the default scenario in AutoScaleSim to analyze their impact and to prove

the performance of AutoScaleSim.

Note that there is a technical affinity between the default test settings and

that of Amazon EC2 Auto-scaling Service2. In the analysis phase, the SIMPLE

analysis is selected. The rule-based planner is selected to use only delay time830

parameter to make its decision about resources (i.e., SLA AWARE rule). The

executor benefits from the simple executor (i.e., SIMPLE executor). In case of

2https://aws.amazon.com/autoscaling

39

executing scale-down decisions, the oldest VM as the surplus VM (i.e., theOldest

policy) comes to play. The results obtained by running this default scenario is

shown in Table 3, which is then compared to the three use cases.835

6.4.1. Evaluating the Analyzer

In this test, we improve the analyzer phase by analyzing the corresponding

parameter (i.e., delay time) using a predictive and times-series-based algorithm

called Weighted Moving Average–Fibonacci [16], rather than the SIMPLE used

in the default test. The value for all parameters, therefore, coincides with what840

is shown in ‘Default Value’ column in Table 2, except analysisMethod whose

value is set to COMPLEX WMAfibo. It is expected that by using a predictive

analyzer, the accuracy of decisions improves. Looking at the results in Table 3,

the performance of the auto-scaling mechanism significantly increased for the

majority of metrics. The most apparent improve is perceived in SLA-related845

metrics, where response time and also SLA violation is declined from 3.99 to 2.75

seconds and from 29.62% to 18.14%, respectively. Moreover, the lower the delay

time was, the smaller the number of failed cloudlets. Since a predictive analyzer

adopted, the decisions are provident and therefore the time to adaptation metric

reduced significantly. Regarding the cost, it is clear that, despite an increase in850

the renting cost, ascribing to the considerable number of scaling actions, the cost

of SLA violation lessened from $11.24 to $3.92. This improvement highlights

how forecasting methods can be effective in QoS. However, to reduce the scaling

actions, it seems that it is planner phase that should be improved, so that does

not make quick decisions. In terms of CPU utilization and load, the average855

values reduced compared to the default test. Whereas a lower percentage of

utilization and load can denote reduction in the performance, this can also be

interpreted as the ability of the mechanism in alleviating the accumulation of

load on VMs. Hence, such metrics seem irrational to be interpreted individually,

and should be perceived as one among a group.860

40

6.4.2. Evaluating the Planner

The focus of this test is to improve the auto-scaling mechanism by benefiting

from a more advanced planner. In the default test, the scalingRule was set to

SLA AWARE, whereas in this use case the HYBRID rule is selected. This

rule posits both SLA and CPU utilization to make the scaling decision, see865

Pseudocode 1. As, in this planner, the process of making decisions is more

restricted considering both CPU utilization and delay time, it is expected that

the scaling decisions reduce –although this restriction may lead to challenges

for SLA status as well.

Results in Table 3, ascribes improvement in scaling decisions to doubling pa-870

rameters affecting decision making, from only delay time to both delay time and

CPU utilization. In comparison with the default test, the incidence of scaling

decisions declined from 306 to 177 and from 304 to 175 for scale up and scale-

down decisions, respectively. The Max Used VM metric calculated 7 running

VMs, whereas it was 8 for the default test. Consequently, the cost of renting875

VMs reduced notably from 29.84 to 26.16, at around 12% reduction. The lower

provisioning of VMs has another impact that can be perceived in the increased

CPU utilization, where lower VMs served the incoming workload, whereby the

average CPU utilization increased by 4%. A repercussion of lower provisioning

of VMs, however, can be perceived in the SLA situation, where delay time and880

subsequently SLA violation went up, stemming from not provisioning a new VM

when either delay time or CPU utilization threshold is reached, not both. As a

drawback of this rule, the time to adaptation is increased. Hence, AutoScaleSim

is able to react to the rule-engine capabilities.

It should not be neglected that it is crucial that what range of thresholds is885

set for scaling parameters such as delay time and CPU utilization. For instance,

instead of thresholds 70% and 40% for, respectively, scale up and down deci-

sions, we can use more restricted values at 80% and 30% to reduce the number

of decisions; if these thresholds are unconsciously more limited, the SLA could

be at risk of violations. If rule-based planners do not satisfy needs, one can890

41

private void rule_SLAAware(double delayTime){

if(delayTime > delayTimeMax)

setPlannerDecision (AutoScaleSimTags.PLANNER_SCALING_UP);

else if (delayTime < delayTimeMin)

setPlannerDecision (AutoScaleSimTags.PLANNER_SCALING_DOWN);

}

private void rule_HYBRID(double cpuUtil, double delayTime){

if(cpuUtil > cpuScaleUpThreshold && delayTime > delayTimeMax)

setPlannerDecision (AutoScaleSimTags.PLANNER_SCALING_UP);

else if (cpuUtil < cpuScaleDownThreshold && delayTime < delayTimeMin)

setPlannerDecision (AutoScaleSimTags.PLANNER_SCALING_DOWN);

}

Pseudocode 1: The pseudocode for SLA AWARE and HYBRID rules in PlannerRuleBased

class

extend Planner class and implement other types of planners such as fuzzy infer-

ence, application profiling, analytical modelling, machine learning and hybrid

approaches [3]. The evaluation and results demonstrate that AutoScaleSim is

able to manage real workloads and react to planner strategies reasonably.

6.4.3. Evaluating the Load Balancing895

Load balancing is another support provided by AutoScaleSim. Here a com-

parison between the baseline algorithm, i.e., Round Robin (Default column in

Table 3), and an alternative, i.e., Random Selection Policy [3] (Load Balanc-

ing Evaluation column in Table 3) is made. The aim of this evaluation is to

demonstrate how the simulator can accommodate different load balancing so-900

lutions and present corresponding functions. The Random load balancer might

send incoming workload to the overloaded VMs since it is unaware of the load

already distributed between VMs. On the other hand a Round Robin algorithm

is expected to distribute the load between resources more evenly.

42

With this in mind, the reported results in Table 3 show that the simula-905

tor is reasonably responding to the algorithms’ functionalities. For instance,

distributing uneven workload among VMs by Random policy resulted in over-

provisioning of VMs by the auto-scaler. Our careful analysis revealed that this

tendency to provision more VMs at the beginning resulted in multiple scale up

decisions whereby the number of provisioned VMs reached at a high level of 21910

(which never happened for Round Robin algorithm). This over-provisioning is

highlighted by VMs’ Lifetime metric at 738 minutes which is far more than other

experiments and by the slight increase in the over-provisioning metric. The sig-

nificance of this issue for the Random policy is revealed when the Scale Down

Precision/Penalty is recorded as almost 9 VMs which means on average there915

have been 9 additional provisioned VMs during the experiment. This number

was less than 2 for the Round Robing policy. It is expected that the Random

policy imposes more renting cost, which is the case by renting cost of $71.56 in

comparison to only $29.84 for Round Robin policy. However, over-provisioning

is expected to have user-side benefits such as lower response time. This was also920

fulfilled by response time of 2.64 seconds which is lower than that of not only

the Round Robin policy but also other evaluated scenarios. As a summary, Au-

toScaleSim is able to accommodate load balancing policies for web applications

in conjunction with auto-scaling policies.

7. Discussion and Limitations925

To validate AutoScaleSim, similar experiments are conducted in simulation

and real environments under real workloads (i.e., Wikipedia). Observations

showed that the workload management in both environments is performed pro-

portionally. For instance, a multi-objective planner managed to reduce the pro-

visioning overhead in both. Performance metrics such as latency and cost faced930

the same pattern despite severe variability in the workload. This indicates the

careful abstraction of the Web application and the auto-scaler in AutoScaleSim.

Multiple further use cases were investigated in AutoScaleSim to evaluate the

43

Table 3: The experimental results collected for the first three use cases in Evaluation Section

Metric Default

(uses

default

values for

parameters)

Analyzer

Evaluation

Planner

Evaluation

Load

Balancing

Evaluation

CPU Util. (%)—Avg (SD) 35.8 (36.33) 28.69

(32.35)

39.84

(38.42)

12.15

(14.30)

CPU Load (%)—Avg. (SD) 110 (276) 49 (114) 138 (319) 19.18 (45)

Throughout (%) 100.67 100.22 100.88 100.044

VMs’ Lifetime (min.) 120 184.09 192.54 738.48

Max. Used VM 8 8 7 21

Response Time (sec.)—Avg (SD) 3.99 (4.46) 2.75 (1.76) 4.47 (5.03) 2.64 (0.87)

Delay Time (sec.)—Avg (SD) 1.99 (4.46) 0.75 (1.76) 2.48 (5.03) 0.64 (0.83)

Cancelled Cloudlet 68 46 26 5

Failed Cloudlet 9264 890 12306 236

SLA Violation (%) 29.62 18.14 33.63 20.71

Analyzed CPU Util. (%) 36.25 29.2 40.75 12.26

Analyzed Delay Time (sec.) 1.6 0.82 2.23 0.62

Scale-up Decisions 306 222 177 139

Scale-down Decisions 304 220 175 133

Contradictory Decisions 289 98 100 29

Time to Adaptation (min.) 2.57 1.48 4.07 1.55

Provisioned VMs 306 222 177 139

De-provisioned VMs 304 220 175 133

Over-provisioning % 97.67 99.71 96.54 99.96

Under-provisioning % 2.21 0.27 3.19 0.04

Scale Up Precision/Penalty (Vms) 0.007 0.001 0.01 0

Scale Down Precision/Penalty (Vms) 1.79 2.21 1.56 8.46

Contradictory Actions 279 98 100 29

Renting Cost ($) 29.84 31.12 26.16 71.56

SLA Penalty Cost ($) 11.24 3.92 14 2.48

Total Cost ($) 41.08 35.04 40.16 74.04

44

accuracy and correctness. The investigations demonstrated that AutoScaleSim

directly responses to customizations, showing its reliability for implementing935

and evaluating novel auto-scaling mechanisms whose development in real plat-

forms are complex and costly.

Although, the “exact” same results are not achieved with the simulator, they

comply with the objectives of auto-scaling approaches of the web applications

in cloud, and generally speaking, followed the same trends. The differences can940

be explained as follows: Firstly, the difference is insignificant in many cases,

meaning that the overall pattern for parameters under the test gave the same

implication, not negatively influencing the evaluations’ results. Secondly, this is

inevitable since in the real platform there are latencies for the communication

between tiers of the Web application which are failed to be captured by the945

simulator. Thirdly, we noticed that results of simulation resembles the reality

more accurately when the platform is free of resource contention for any of its

underlying resources (CPUs, Memory, Disk and Network). Therefore, one must

pay extra attention to the simulated results when the utilization of available

resources is high (e.g., network congestion). Lastly, in the real platform, there950

are optimization mechanisms like caching which are applicable to alleviate the

flash crowd situations while the simulator lacks such complimentary add-ons.

We emphasis that the main goal of simulators such as AutoScaleSim is to provide

an approximate replication of a real system operations through abstractions or

simplifications.955

In modern clouds, auto-scaling is becoming more of a provider issue than

users’ by the emergence of Function-as-a-Service (FaaS) or so-called Server-

less technology. Moving from low-level services (e.g., VMs), which leave the

management tasks to users, to such modern cloud services, the auto-scaling

evaluations demand different developments. The advanced deployments such as960

FaaS still require developers to estimate how the service will behave under dif-

ferent workload, in terms of cost management and QoS. AutoScaleSim is highly

customizable as it follows OOP principles and the the well-positioned MAPE-K

loop. Therefore it can be extended to model the auto-scaling of more advanced

45

cloud services such as FaaS.965

It is essential to note that virtualization of resources is no longer limited

to hypervisor-based machines and containers and unikernels are supplementing

existing VMs’ functionality. In simple cases, container provisioning is viable

in AutoScaleSim by omitting the delay in start-up of VMs and considering the

resource as a container. However, such level of abstraction would be unrealistic970

and demands technical investigations if more complex scenarios such as replica

management and container orchestration are required to be investigated.

Currently, relevant research on auto-scalers tend more to benefit from hy-

brid and more dynamic solutions. Examples of such developments include: (1)

combination of vertical and horizontal scaling (i.e., two-dimensional), (2) provi-975

sioning hybrid resources (e.g., VM and container), (3) combined resources (e.g.,

nested containers inside a VM), (4) event-driven decision making (not fixed scal-

ing intervals), (5) fine-grained function scaling for microservices (rather than

course-grained VM or container scalings), (6) hybrid analysing (reactive and

proactive together), (7) dynamic step-size for resource provisioning (e.g., more980

than one instance provisioning/de-provisioning per decision), and (8) multi-

objective planning. AutoScaleSim is open to such consideration as it modular-

izes the components of an auto-scaler, facilitating the placement of the above-

mentioned additions. For instance, a dynamic step-size approach is implemented

in the planner class without the need to put a significant modification in other985

components of the auto-scaler. Also, AutoScaleSim is intented to model trans-

actional and CPU-bound web applications with the support for continuous sim-

ulation of workload allocation. To employ other types of Web applications (e.g.,

data-bound or memory-bound), the End-user entity can be modified.

The present version of AutoScaleSim measures the cost according to an990

hourly billing cycle which is common in the literature [3] while the competitive

cloud market and modern services introduce other billing models, for example,

yearly-based billing for AWS Reserved Instances; hourly-based billing for AWS

Dedicated Instances and Saving Plans; finer-grained per minute billing for some

of Google Cloud Services and per second billing in AWS Fargate and AWS On-995

46

demand Instances. In addition, by the advent of Serverless the billing models

has been revolutionized, where the allocated resource is not the only effective

parameter, but the number of requests is essential as well. The billing becomes

further complicated when combined services (i.e., serverful and serverless) will

come to play. Therefore, AutoScaleSim might require further extensions or1000

modifications to support other billing models.

Finally, simulators consider an abstraction of the underlying resources such

as VMs, hence there always exist outliers and mismatches between simulator

and real platform’s results. Such mismatches have been observed in existing

simulators such as NetworkCloudSim [23] and PICS [24] which are validated1005

through real cloud platforms as well. AutoScaleSim is not an exception, and

demands further consideration of technical issues to become more realistic. Our

validation investigations show that consideration of resource contention, which

is highly difficult to simulate, significantly affects the outcomes (e.g., scaling

interval evaluation).1010

Overall, we believe that adding more detailed modeling of abstractions such

(1) resource contention, (2) novel virtualization technologies such as contain-

ers and unikernels, and (3) supporting applications having different request’s

pattern can make AutoScaleSim more applicable and accurate and the incorpo-

ration of such limitations are interesting areas for future research.1015

8. Conclusions

We introduced a simulation toolkit called AutoScaleSim, to model auto-

scaling of Web applications hosted in clouds, one of the most investigated is-

sues in the field of resource management. AutoScaleSim was proposed and

implemented as an extension to the CloudSim simulator. It provides an ex-1020

tendable, scalable, customizable, and accurate simulator for investigating auto-

scaling mechanism in clouds. It also uses realistic workloads such as NASA and

Wikipedia. We deployed a real cloud platform and used realistic workloads to

carry out experiments for the careful validation of AutoScaleSim. We also diss-

47

cussed the way researcher/developers can customize and extend AutoScaleSim1025

in details.

For future work, we plan to enrich features of AutoScaleSim to support both

vertical and horizontal scaling. Providing support for containers and unikernels

provisioning is an interesting area of development. We also make the simula-

tor further realistic by improving the networking and caching abstraction level1030

covering other factors such as inter-tier communication delay and caching.

References

[1] B. Varghese, R. Buyya, Next generation cloud computing: New trends

and research directions, Future Generation Computer Systems 79 (2018)

849–861.1035

[2] T. Chen, R. Bahsoon, Self-adaptive and online qos modeling for cloud-

based software services, IEEE Transactions on Software Engineering 43 (5)

(2017) 453–475.

[3] C. Qu, R. N. Calheiros, R. Buyya, Auto-scaling web applications in clouds:

A taxonomy and survey, ACM Computing Surveys (CSUR) 51 (4) (2018)1040

73.

[4] S. Lehrig, H. Eikerling, S. Becker, Scalability, elasticity, and efficiency in

cloud computing: A systematic literature review of definitions and metrics,

in: Proceedings of the 11th International ACM SIGSOFT Conference on

Quality of Software Architectures, ACM, 2015, pp. 83–92.1045

[5] T. Lorido-Botran, J. Miguel-Alonso, J. A. Lozano, A review of auto-scaling

techniques for elastic applications in cloud environments, Journal of Grid

Computing 12 (4) (2014) 559–592.

[6] N.R. Herbst, S. Kounev,A. Weber, H. Groenda, BUNGEE: an elasticity

benchmark for self-adaptive IaaS cloud environments, in: 2015 IEEE/ACM1050

10th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems, IEEE, 2015, pp.46–56.

48

[7] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, R. Buyya, Container-

CloudSim: An environment for modeling and simulation of containers in

cloud data centers, Software: Practice and Experience 47 (4) (2017) 505–1055

521.

[8] A. Bashar, Modeling and simulation frameworks for cloud computing en-

vironment: A critical evaluation, in: International Conference on Cloud

Computing and Services Science, 2014, pp. 1–6.

[9] F. Fakhfakh, H. H. Kacem, A. H. Kacem, Simulation tools for cloud com-1060

puting: A survey and comparative study, in: Computer and Information

Science (ICIS), 2017 IEEE/ACIS 16th International Conference on, IEEE,

2017, pp. 221–226.

[10] G. Sakellari, G. Loukas, A survey of mathematical models, simulation ap-

proaches and testbeds used for research in cloud computing, Simulation1065

Modelling Practice and Theory 39 (2013) 92–103.

[11] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consol-

idation of virtual machines in cloud data centers, Concurrency and compu-

tation: practice and experience 24 (13) (2012) 1397–1420.1070

[12] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating scientific

workflows in distributed environments, in: E-science (e-science), 2012 IEEE

8th International Conference on, IEEE, 2012, pp. 1–8.

[13] C. Wang, J. Chen, B. B. Zhou, A. Y. Zomaya, Just Satisfactory Resource

Provisioning for Parallel Applications in the Cloud, in: Services (SER-1075

VICES), 2012 IEEE Eighth World Congress on, IEEE, 2012, pp. 285–292.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,

CloudSim: a toolkit for modeling and simulation of cloud computing en-

vironments and evaluation of resource provisioning algorithms, Software:

Practice and Experience 41 (1) (2011) 23–50.1080

49

[15] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, R. Buyya,

Cloudsimsdn: Modeling and simulation of software-defined cloud data

centers, in: Cluster, Cloud and Grid Computing (CCGrid), 2015 15th

IEEE/ACM International Symposium on, IEEE, 2015, pp. 475–484.

[16] M. S. Aslanpour, S. E. Dashti, Proactive Auto-Scaling Algorithm (PASA)1085

for Cloud Application, International Journal of Grid and High Performance

Computing 9 (3) (2017) 1–16. doi:10.4018/IJGHPC.2017070101.

URL http://services.igi-global.com/resolvedoi/resolve.aspx?

doi=10.4018/IJGHPC.2017070101

[17] M. Aslanpour, S. Dashti, M. Ghobaei-Arani, A. Rahmanian, Re-1090

source provisioning for cloud applications: a 3-D, provident and

flexible approach, Journal of Supercomputing 74 (12) (2017) 6470–6501.

doi:10.1007/s11227-017-2156-x.

URL https://link.springer.com/article/10.1007/

s11227-017-2156-x1095

[18] M. Ghobaei-Arani, S. Jabbehdari, M. A. Pourmina, An autonomic resource

provisioning approach for service-based cloud applications: A hybrid ap-

proach, Future Generation Computer Systems.

[19] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,

J. N. de Souza, Elasticity in cloud computing: a survey, annals of1100

telecommunications-annales des télécommunications 70 (7-8) (2015) 289–

309.

[20] M. S. Aslanpour, M. Ghobaei-Arani, M. Heydari, N. Mahmoudi, LARPA:

A learning automata-based resource provisioning approach for massively

multiplayer online games in cloud environments, International Journal1105

of Communication Systems (2019) e4090doi:https://doi.org/10.1002/

dac.4090.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090

50

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
http://dx.doi.org/10.4018/IJGHPC.2017070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.2017070101
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
http://dx.doi.org/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://link.springer.com/article/10.1007/s11227-017-2156-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090
http://dx.doi.org/https://doi.org/10.1002/dac.4090
http://dx.doi.org/https://doi.org/10.1002/dac.4090
http://dx.doi.org/https://doi.org/10.1002/dac.4090
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4090

[21] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, R. Koschke, A

systematic survey of program comprehension through dynamic analysis,1110

IEEE Transactions on Software Engineering 35 (5) (2009) 684–702.

[22] I. Sriram, SPECI, a simulation tool exploring cloud-scale data centres, in:

IEEE International Conference on Cloud Computing, Springer, 2009, pp.

381–392.

[23] S. K. Garg, R. Buyya, Networkcloudsim: Modelling parallel applications in1115

cloud simulations, in: Utility and Cloud Computing (UCC), 2011 Fourth

IEEE International Conference on, IEEE, 2011, pp. 105–113.

[24] I. K. Kim, W. Wang, M. Humphrey, Pics: A public iaas cloud simulator,

in: Cloud Computing (CLOUD), 2015 IEEE 8th International Conference

on, IEEE, 2015, pp. 211–220.1120

[25] C. Badii, P. Bellini, I. Bruno, D. Cenni, R. Mariucci, P. Nesi, ICARO

Cloud Simulator exploiting knowledge base, Simulation Modelling Practice

and Theory 62 (2016) 1–13.

[26] A.V. Papadopoulos, A. Ali-Eldin, K. Årzén, J. Tordsson, W. Elmroth,

PEAS: A performance evaluation framework for auto-scaling strategies in1125

cloud applications, ACM Transactions on Modeling and Performance Eval-

uation of Computing Systems (TOMPECS) 1 (4) (2016) 1–31.

[27] B.-L. Cai, R.-Q. Zhang, X.-B. Zhou, L.-P. Zhao, K.-Q. Li, Experience avail-

ability: tail-latency oriented availability in software-defined cloud comput-

ing, Journal of Computer Science and Technology 32 (2) (2017) 250–257.1130

[28] M. Aslanpour, M. Ghobaei-Arani, A. Nadjaran Toosi, Auto-scaling web ap-

plications in clouds: A cost-aware approach, Journal of Network and Com-

puter Applications 95 (2017) 26–41. doi:10.1016/j.jnca.2017.07.012.

URL https://www.sciencedirect.com/science/article/pii/

S10848045173024481135

51

https://www.sciencedirect.com/science/article/pii/S1084804517302448
https://www.sciencedirect.com/science/article/pii/S1084804517302448
https://www.sciencedirect.com/science/article/pii/S1084804517302448
http://dx.doi.org/10.1016/j.jnca.2017.07.012
https://www.sciencedirect.com/science/article/pii/S1084804517302448
https://www.sciencedirect.com/science/article/pii/S1084804517302448
https://www.sciencedirect.com/science/article/pii/S1084804517302448

[29] Z. Cai, Q. Li, X. Li, Elasticsim: A toolkit for simulating workflows with

cloud resource runtime auto-scaling and stochastic task execution times,

Journal of Grid Computing 15 (2) (2017) 257–272.

[30] M. S. Aslanpour, S. E. Dashti, SLA-Aware resource allocation for appli-

cation service providers in the cloud, in: 2016 2nd International Con-1140

ference on Web Research, ICWR 2016, IEEE, Tehran, 2016, pp. 31–42.

doi:10.1109/ICWR.2016.7498443.

URL http://ieeexplore.ieee.org/document/7498443/

[31] E.-J. van Baaren, Wikibench: A distributed, wikipedia based web applica-

tion benchmark, Master’s thesis, VU University Amsterdam.1145

[32] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive

resource provisioning in the cloud, Future Generation computer systems

28 (1) (2012) 155–162.

[33] T. Chen, R. Bahsoon, X. Yao, A survey and taxonomy of self-aware and

self-adaptive cloud autoscaling systems, ACM Computing Surveys (CSUR)1150

51 (3) (2018) 61.

[34] Z. Sevarac, Neuroph-Java neural network framework, Retrieved in January.

URL https://github.com/neuroph/neuroph-master

[35] Amazon, Amazon EC2 Instance Types (2018).

URL https://aws.amazon.com/ec2/instance-types/1155

[36] E. Casalicchio, L. Silvestri, Mechanisms for SLA provisioning in cloud-

based service providers, Computer Networks 57 (3) (2013) 795–810.

[37] Amazon, Controlling Which Instances Auto Scaling Terminates During

Scale In.

URL http://docs.aws.amazon.com/autoscaling/latest/userguide/1160

as-instance-termination.html

52

http://ieeexplore.ieee.org/document/7498443/
http://ieeexplore.ieee.org/document/7498443/
http://ieeexplore.ieee.org/document/7498443/
http://dx.doi.org/10.1109/ICWR.2016.7498443
http://ieeexplore.ieee.org/document/7498443/
https://github.com/neuroph/neuroph-master
https://github.com/neuroph/neuroph-master
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-instance-termination.html

[38] M. Beltrán, Automatic provisioning of multi-tier applications in cloud com-

puting environments, The Journal of Supercomputing 71 (6) (2015) 2221–

2250.

[39] M. Mao, M. Humphrey, A performance study on the vm startup time in1165

the cloud, in: Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on, IEEE, 2012, pp. 423–430.

[40] R. N. Calheiros, R. Ranjan, R. Buyya, Virtual machine provisioning based

on analytical performance and QoS in cloud computing environments, in:

Parallel processing (ICPP), 2011 international conference on, IEEE, 2011,1170

pp. 295–304.

[41] A. N. Toosi, C. Qu, M. D. de Assunção, R. Buyya, Renewable-aware Geo-

graphical Load Balancing of Web Applications for Sustainable Data Cen-

ters, Journal of Network and Computer Applications.

[42] M. S. Aslanpour, S. S. Gill, A. N. Toosi, Performance Evaluation Metrics1175

for Cloud, Fog and Edge Computing: A Review, Taxonomy, Bench-

marks and Standards for Future Research, Internet of Things (2020)

100273doi:https://doi.org/10.1016/j.iot.2020.100273.

URL https://www.sciencedirect.com/science/article/pii/

S25426605203010621180

[43] J. Dean, L. A. Barroso, The tail at scale, Communications of the ACM

56 (2) (2013) 74–80.

[44] C.-F. Liu, M. Bennis, H. V. Poor, Latency and reliability-aware task of-

floading and resource allocation for mobile edge computing, in: Globecom

Workshops (GC Wkshps), 2017 IEEE, IEEE, 2017, pp. 1–7.1185

[45] D. Sun, G. Li, Y. Zhang, L. Zhu, R. Gaire, Statistically managing cloud

operations for latency-tail-tolerance in IoT-enabled smart cities, Journal of

Parallel and Distributed Computing.

53

https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
http://dx.doi.org/https://doi.org/10.1016/j.iot.2020.100273
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062

[46] F. Al-Haidari, M. Sqalli, K. Salah, Impact of cpu utilization thresholds and

scaling size on autoscaling cloud resources, in: 2013 IEEE 5th International1190

Conference on Cloud Computing Technology and Science, Vol. 2, IEEE,

2013, pp. 256–261.

[47] S. Islam, K. Lee, A. Fekete, A. Liu, How a consumer can measure elasticity

for cloud platforms, in: Proceedings of the 3rd ACM/SPEC International

Conference on Performance Engineering, 2012, pp. 85–96.1195

[48] N. Herbst, S. Kounev, R. Reussner, Elasticity in cloud computing: What

it is, and what it is not, in:10th International Conference on Autonomic

Computing ({ICAC} 13), 2013, pp. 23–27.

[49] R. Almeida, F. Sousa, S. Lifschitz, J. Machado, On defining metrics for

elasticity of cloud databases., 2013, pp. 12–1.1200

[50] M. Becker, S. Lehrig, S. Becker, Systematically deriving quality metrics for

cloud computing systems, in:Proceedings of the 6th ACM/SPEC interna-

tional conference on performance engineering, 2015, pp. 169–174.

[51] A. Ali-Eldin, A. Ilyushkin, B. Ghit, N.R. Herbst, A. Papadopoulos, A. Io-

sup, Which Cloud Auto-Scaler Should I Use for my Application? Bench-1205

marking Auto-Scaling Algorithms, in: Proceedings of the 7th ACM/SPEC

on International Conference on Performance Engineering, 2016, pp.131–

132.

54

	Introduction
	Related Work
	Architecture Design
	End-user Entity
	Application Provider Entity
	Auto-scaling
	Load Manager

	Cloud Provider Entity

	Implementation
	End-user Entity
	Application Provider Entity
	Auto-scaling
	Load Manager

	Cloud Provider Entity

	Simulation Process in AutoScaleSim
	Algorithmic Perspective
	Extending AutoScaleSim

	Validation and Performance Evaluation
	Experimental Setup
	Performance Metrics
	Validation
	Scaling Interval validation
	Analysis method validation
	Threshold tuning validation

	Evaluation
	Evaluating the Analyzer
	Evaluating the Planner
	Evaluating the Load Balancing

	Discussion and Limitations
	Conclusions

