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Abstract

It is anticipated that future networks support network functions, such as fire-
walls, load balancers and intrusion prevention systems in a fully automated,
flexible, and efficient manner. In cloud computing environments, network
functions virtualization (NFV) aims to reduce cost and simplify operations
of such network services through the virtualization technologies. To enforce
network policies in NFV-based cloud environments, network services are com-
posed of virtualized network functions (VNFs) that are chained together as
service function chains (SFCs). All network traffic matching a policy must
traverse network functions in the chain in a sequence to comply with it. While
SFC has drawn considerable attention, relatively little has been given to dy-
namic auto-scaling of VNF resources in the service chain. Moreover, most
of the existing approaches focus only on allocating computing and network
resources to VNFs without considering the quality of service requirements
of the service chain such as end-to-end latency. Therefore, in this paper, we
define a unified framework for building elastic service chains. We propose a
dynamic auto-scaling algorithm called ElasticSFC to minimize the cost while
meeting the end-to-end latency of the service chain. The experimental results
show that our proposed algorithm can reduce the cost of SFC deployment
and SLA violation significantly.
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1. Introduction

Network Functions Virtualization (NFV) is an emerging trend in network-
ing that concerns with migration of network functions (NFs) such as network
address translation (NAT), firewalls, intrusion detection systems (IDS) into
virtualized environments to reduce capital expenditure, simplify operations,
and speed up service deployment. Traditionally, NFs are embedded on ded-
icated hardware devices called middleboxes or network appliances. Even
though, such middleboxes are designed to handle heavy loads efficiently, they
require high up-front investment and do not achieve the elasticity feature of
virtualized environments [1]. Hence, there is a significant tendency among
cloud service providers and operators to decouple NFs from their underlying
hardware and run them on commodity servers (e.g., x86 servers) [2]. This
tendency has given birth to NFV technology that converts NFs into virtual-
ized network functions (VNFs) hosted in virtual machines or containers.

Network policies often require those VNFs to be stitched together as Ser-
vice Function Chains (SFC) to deliver value-added services or certain network
functionality [1]. To supply specific requirements, SFC defines a sequence of
service functions (SF) through which traffic (stream of packets) must be
steered. Note that here SF, NF and VNF are used synonymously. Recently,
the new software defined networking (SDN) technology which decouples the
data forwarding and network control planes and enables the network to be-
come centrally manageable is effectively exploited in policy enforcement and
appropriate SFC forwarding [3].

In today’s networks, many applications produce a large volume of traffic
that is required to be processed by SFC. Cloud service providers’ goal is to
utilize network and host resources optimally to operate these service chains
and provide their associated Quality of Service (QoS) requirements such as
end-to-end latency or throughput, while failure to do so results in violation
of the service level agreement (SLA) [4]. The automated and efficient NFV
management and orchestration is one of the key solutions to achieve this
goal.

Cloud service providers have access to many prominent mechanisms and
techniques to develop efficient NFV management and orchestration systems
that minimizes their operational cost while meeting SLA requirements. The
elasticity feature of VNFs allows for both horizontal and vertical scaling of
resources in response to variation in service requests and workload. In hori-
zontal scaling, VNF instances can be added or removed, whereas in vertical
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scaling, host and bandwidth can be allocated or released according to on-
demand requests. To the best of our knowledge, this paper is one of the first
attempts to use vertical and horizontal auto-scaling of VNFs at the same time
to build elastic service chains. The live migration of VNFs is another option
that would enable consolidation and replacement of the VNFs to minimize
cost and improve performance. For example, a VNF can be migrated to a
new host closer to the traffic source to reduce network delay or a host with
more residual network bandwidth or computing resources suitable for ver-
tical auto-scaling. Further, dynamic flow scheduling and traffic engineering
provides opportunities for flow scheduling to redirects SFC traffic to other
paths to gain more network bandwidth or avoid congestion.

With this in mind, in this paper, we intend to minimize the operational
cost of the cloud computing service provider while the end-to-end delay re-
quirements of the service function chains are satisfied using dynamic auto-
scaling of resources in the network chain. The majority of works in this area
focused on the efficient placement of VNFs to reduce operational cost and
improve the performance of the chain, for example [5, 6, 7, 8, 9]. However,
they mostly ignore to how provide a strictly guaranteed SLA to satisfy QoS
requirements of the users which is very critical to the cloud service providers.
There are a few studies, partially similar to our work, that address the auto-
scaling and placement of VNFs with respect to end-to-end latency [10, 11].

Moreover, to best of our knowledge none of the existing works proposes a
unified method that builds elastic service function chains with simultaneously
considering all of auto-scaling (both horizontal and vertical), placement, mi-
gration and network traffic engineering together. To overcome the challenges
of building such method, we propose an elastic SFC management and orches-
tration framework and make the following key contributions:

1. Definition of an extended architectural framework and principles for
building elastic service chains in NFV environments,

2. Proposed ElasticSFC, a novel heuristic algorithm for end-to-end latency-
aware dynamic auto-scaling of service function chains using horizontal
and vertical scaling of VNFs and dynamic bandwidth allocation. In
dynamic bandwidth allocation, we use dynamic flow scheduling and
VNF migration to enable efficient utilization of network resources,

3. Evaluation of the ElasticSFC using realistic network policies and work-
load traces of a web application in our extended CloudSimSDN simu-
lator to support SFC and NFV.
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The remainder of this paper is organized as follows: Section 2 provides
a brief background on network polices, Service Function Chaining (SFC),
and Network Functions Virtualization (NFV). In Section 3, we describe the
extended architecture for SFC and fundamental principles to build elastic
service chains. We discuss our choices for building elastic service chains to
meet QoS requirements of users including horizontal and vertical scaling of
service functions, dynamic traffic steering in the network, and virtualized
network function migration in Section 4. Section 5 describes our proposed
algorithms for dynamic auto-scaling of network service functions. We present
performance evaluation and experimental results in Section 6. Section 7
discusses related work and finally we conclude our paper in Section 8.

2. Background

Applications in distributed systems have complex communications pat-
terns sometimes requiring enforcement of network policies to comply with
performance and security requirements [12]. Network policies mandate traf-
fic to traverse a series of network functions (NFs) such as firewalls, proxies,
traffic shapers, load balancers, intrusion detection and prevention systems
(IDS or IPS). A network policy (shorted as policy here) can be represented
as a flow and a list of NFs the flow needs to traverse, for instance, {Source
IP, Source Port, Destination IP, Destination Port, Protocol} → {Series of
NFs}. Sample policy for a web application front-end can be configured as:

{∗, ∗, LB1, 80, TCP}− > {IDS1, F1},

which implies that all TCP requests from any ports of all clients sent to the
port 80 of the public IP of the front-end load balancer (LB1) must traverse
through intrusion detection system IDS1 and then firewall F1 before reaching
the destination load balancer LB1. The responsibility of an NF is to perform
specific treatment of received packets (e.g., dropping all packets with spe-
cific headers in a firewall) where it can act at various layers of the protocol
stack (e.g., at the network layer or other OSI layers)1. Traditionally, NFs are
typically deployed in the form of “network appliances” or “middleboxes” in
which NF software is tightly coupled with proprietary hardware that needs
to be manually installed and managed. However, thanks to the advances in

1https://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf
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the Network Functions Virtualization (NFV), NFs can be realized as virtual
elements embedded into Virtual Machines called virtualized network func-
tions (VNFs) that alleviate operational challenges of middleboxes and rapid
deployment of NFs.

A network policy can be interpreted as a service function chain (SFC)
defining an ordered list of service functions (SFs) enforcing the ordering con-
straints and steering network flows through them. The term “service func-
tion” is used here to denote a “network function” or “virtualized network
functions” in the context of this paper.

We define P = {p1, p2, ...} as the set of SFC policies in the system. An
SFC policy pi is defined in the form of {flow → sequence}. A flow is de-
noted by a 5-tuple: {src, dst, srcport, dstport, proto}, where src and dst are
IP addresses of the source and destination hosts and srcport, dstport are their
associated port numbers, respectively. proto represents the protocol type that
can be either TCP or UDP. sequence is a list of SFs, {sf1, sf2, ..., sfn}, that
all network flows matching the flow section of policy pi must traverse in the
sequence of sf1 → sf2 → ... → sfn. We denote sf1 and sfn as ingress and
egress service functions, respectively.

SFCs might be unidirectional or bidirectional. Network traffic in the
unidirectional SFC needs to be be forwarded through the ordered list of SFs
in one direction,, i.e., sf1 → sf2 → ... → sfn, whereas a bidirectional SFC
requires the traffic to pass through both directions (sf1 → sf2 → ... → sfn
and sfn → ... → sf2,→ sf1). Without loss of generality, we assume that
SFCs are unidirectional in this paper.

Based on the Internet Engineering Task Force (IETF) model, the main
component of SFC architecture includes: 1) a classifier that differentiates
the traffic flows against the policy and redirects them to the specific SFC
by adding an SFC header, and 2) a Service Function Forwarder (SFF) that
uses the information in the SFC header to forward packets received from the
network to associated SFs. Traffic from SFs eventually returns to the same
SFF that injects back traffic onto the network.

A wide range of research work has been conducted on the design and
development of novel frameworks and techniques for successful realization
of SFC goals. Among these works, considerable amount of attention has
been given to VNF routing, placement, and consolidation with the aim of
decreasing operational and network communications cost. The VNF place-
ment and consolidation problems in NFV environments are very similar to
the well-studied VM placement and consolidation in cloud computing en-
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vironments [2]. However, existing works in the VM management area are
not suitable for SFC in their default forms as they are designed without
consideration of the sequencing requirement of service chains [4].

The possibility to dynamically scale network functions in service chains
at runtime in an automated fashion is an important area of the research that
requires particular attention [13]. Providing elastic networking services is
similar to offering flexible cloud services with the pay-as-you-go cost models.
However, it is far from trivial as it requires careful consideration of the chain-
ordered set of SFs and configuration of virtualized resources including virtual
machines (VMs) and network resources to meet the demand on the service
chain.

One of the main benefits offered by the NFV approach is the opportunity
to dynamically scale VNFs and the allocated bandwidth between them to
meet the performance requirements of the service chain such as throughput
or end-to-end latency. As mentioned earlier, considerable attention in the
literature has been given to the VNF routing, placement, and consolidation
which make the building blocks of elastic service chains. However, holistic
auto-scaling approaches that unify all these advancements and consider scal-
ing for both compute and network resources to meet SLA requirement of the
service chain are not sufficiently investigated in the current NFV management
and orchestration frameworks. Therefore, this work aims to develop dynamic
auto-scaling algorithms to support the construction of elastic service chains
meeting the end-to-end delay requirement of users in NFV management and
orchestration frameworks.

3. Service Function Chaining Architecture

In this section, we describe our extended architecture for SFC and fun-
damental components to build elastic service chains. With elastic service
function chaining, network service functions can be dynamically scaled in
order to meet QoS requirements of diversified clients (users).

The proposed architecture, shown in Figure 1, includes service function
chaining applications that allow users to composite their network policies
and chain together their required network function services via a dashboard
or command line (CLI) or application program (API) interfaces. Central to
the architecture is Management and Orchestration (MANO) module which
is in charge of the orchestration and management of resources and realiza-
tion of service chains. The architecture of MANO is aligned with ETSI NFV
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Figure 1: Service Function Chaining Architecture

architectural framework2 and has three main functional blocks: NFV Or-
chestrator (NFVO), VNF manager (VNFM), and Virtualised Infrastructure
Manager (VIM). NFVM is in charge of NFV lifecycle management including

2https://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano
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instantiation, scaling and termination of VNF instances. It maintains the
view of the entire virtualization infrastructure and keeps a record of installed
VNFs and available resources in the physical infrastructure. VIM controls
and manage the compute, storage and network resources within the infras-
tructure. NFVO is responsible for lifecycle management of network services
and policy management for VNF instances.

In this paper, we propose algorithms for building elastic service chains
that are dynamically scaled based on the system load and QoS requirements
of users. Our proposed algorithms are plugged into a module of MANO called
elastic service controller that is responsible for auto-scaling of service chains.
To build elastic service chains, we use techniques such as flow scheduling,
VNF migration, and scaling that are explained in more details in the next
section. To perform its duties, MANO communicates with SDN controller in
a tightly regulated process that ensures proper deployment and functioning
of service chains. SDN controller is a logically centralized component of
the system with a general view of the network and handles traffic steering
according to the requirement of the service function chaining applications.
SDN controller uses a protocol such as OpenFlow to set forwarding rule
satisfying routing requirement of service chains for the virtual and physical
switches in the infrastructure.

In the next section, we focus on the main techniques used by elastic
service controller to dynamically scale service functions to meet elasticity
requirement of service chains.

4. Elastic Service Chaining Approach

In this section, we explore a range of possible options including scaling
up/down and scaling in/out VNFs, dynamic flow scheduling, and VNF mi-
gration to allocate required processing power and bandwidth to build elastic
service chains meeting QoS requirements. Please note that the majority
of software-based network appliances are CPU intensive and unlikely to be
memory and disk heavy. Hence, we only focus on the processing power of
VNFs and the network bandwidth between them that are essential to the
performance of the service chain for the sake of simplicity. We assume that
VNFs always have access to adequate memory and storage resources and de-
mand no scaling for these resources. However, our proposed methods can be
simply extended to support these resources. In the following, we discuss chal-
lenges related to dynamic scaling of service functions in the NFV framework
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Figure 2: Elasticity Mechanism.

enforcing service chaining.
Figure 2a shows a service chain where each box represents one abstract

SF. Let us assume that the size of each box shows the processing power of the
hosting compute node (virtual machine), and the thickness of connector lines
represents the dedicated (available) bandwidth between VNFs. For the sake
of simplicity, we assume that each SF is hosted as a VNF in a single VM. Since
nodes (SFs) can be part of one or many SFCs and the throughput of the VNF
depends on the type (e.g., firewall or proxy) and the load of SF (incoming rate
of packets) running in the VNF instance, VNFs can become overloaded and
consequently degrade the entire chain performance. Horizontal and vertical
scaling of the VNF instances are the promising mechanisms to build elastic
SFC honoring the end-to-end latency requirement of the policies.

Figure 2b illustrates the case that VNF instance B is vertically scaled up
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by the allocation of more computational resources. Similarly, when utiliza-
tion of the VNF instance is considerably low, the VNF instance can be scaled
down by releasing redundant resources. Vertical scaling of VNF instances to
achieve processing capacity required by the traffic might be impossible due to
capacity constraints or allocated resources of the physical server. As shown
in Figure 2c horizontal scaling that allows adding/removing (scaling in/out)
VNF replica instances is another possible option in this scenario. However,
processing (Compute) capacity of VNF instances is not the only source of
variation in service function performance. The link capacity for transferring
packet (available bandwidth) or even network congestion can become the
bottleneck or the source of performance degradation of a service chain. Allo-
cating more bandwidth or finding other network paths to dedicate required
bandwidth is necessary under circumstances that the network is the source
of the issue.

The most recent architecture for SFC has made use of software-defined
networking (SDN) to assist automated deployment of service chains. SDN
decouples the control plane from the forwarding plane in traditional network
switches and provides a logically centralized management controller along
with programming APIs for network management. The SDN controller can
be used to dynamically control the SFC topology and perform traffic steering
across SFs [14]. The SDN controller and NFV manager work in coordination
to perform the allocation and management of resources required by elastic
SFC. Figure 3a depicts the same service chain in Figure 2a in a physical
network topology connecting eight physical servers. As it can be seen in the
figure, virtual links among SF nodes are mapped into multiple physical links
in the network. If a physical link does not have enough dedicated bandwidth
to be allocated to the virtual link, dynamic flow scheduling gives us the op-
tion to redirect traffic to another network path capable of accommodating
updated bandwidth shown in Figure 3b. This is only the case for network
topologies having multiple paths available between a pair of source and des-
tination hosts. If all possible paths between the source and the destination
with the required latency (number of hobs) are not suitable to allocate re-
quired bandwidth, VNF migration allow migration of either of the two end
VNF instances of the virtual link or even both to find a proper placement
providing required bandwidth. For example, in Figure 3c, the physical link
connecting the physical server to the edge switch cannot provide the extra
bandwidth required by the virtual link connecting A to B. Thus, VNF A has
been migrated to another host to gain the required dedicated bandwidth to
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Table 1: Notations

Symbol Description

V = {v1,v2, ...} List of all VNFs
Vi List of VNFs of policy i
V Set of VNFs to scale up
V Set of VNFs to scale down

P = {p1, p2, ...} List of policies
Li List of virtual links of policy i
P Set of policies to scale up their bandwidth
P Set of policies to scale down their bandwidth
θi Average end-end latency of policy i
Ti End-to-End latency required by SLA for policy i
δ Slack latency avoiding SLA violation i

H,H Overloading and underloading thresholds for hosts CPU utilization

B,B Overloading and underloading threshold for links bandwidth utilization
L = {l1, l2, ...} List of all virtual links

Lci List of virtual links used by the chain ci
ubj The utilized capacity of the virtual link of lj
uhi The utilization of the host of the VNF node vi

lj List of links in the jth virtual link of the chain
vk List of VNF instances in the kth VNF node

||vk|| Size of VNF instances in vk

BW Default unit bandwidth for scaling virtual links

satisfy performance requirements of the service chain.

5. Proposed Algorithms

In this section, we propose our solution including series of algorithms to
build elastic service chains in NFV environments. All the notations and their
description used in this section are given in Table 1.

5.1. Elastic SFC Algorithm

Our solution works based on the proposed Algorithm 1, called ElasticSFC,
and is executed periodically at fixed time intervals to find the list of VNFs and
virtual links that must be scaled to meet the end-to-end latency requirement
of the policy flow. Note that the service chain end-to-end latency in this
work is defined as the time it takes for a packet to traverse the entire service
chain from the time it arrives at the ingress SF (sf1) to the time it leaves
the egress SF (sfn). The variations in the latency caused by auto-scaling
algorithms at the service chain level will be translated to network latency
changes for the application in an abstract manner.
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Algorithm 1 Elastic SFC

Input: P,T,L,V
1: function ElasticSFC(x)
2: V,P, V, P = {}
3: for pi in P do
4: θi ← Average end to end delay of pi
5: if θi > Ti − δ then . Scale Up
6: for lj in Li do
7: ubj ← Average bandwidth utilization of lj
8: if ubj > B then
9: Add pi to P
10: Break
11: end if
12: end for
13: for vk in Vi do
14: uhi ← Average CPU utilization of vk

15: if uhi > H then
16: Add vk to V
17: end if
18: end for
19: else . Scale Down
20: isScaleDown← true
21: for lj in Li do
22: ubj ← Average bandwidth utilization of lj
23: if ubi > B then
24: isScaleDown← false
25: Break
26: end if
27: end for
28: if isScaleDown then
29: Add pi to P
30: end if
31: for vk in Vi do
32: uhi ← Average utilization of vk

33: if uhi < H then
34: Add vk to V
35: end if
36: end for
37: end if
38: end for
39: ∀vk ∈ V, ScaleNF(vk, false)
40: ∀vk ∈ V, ScaleNF(vk, true)
41: ∀pi ∈ P, ScaleBW(Li, false)
42: ∀pi ∈ P, ScaleBW(Li, true)
43: end function
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Algorithm 1 iterates over all policies in the outer loop of the algorithm in
lines 3-38. For every policy i, we calculate the average end-to-end delay θi
in the last time interval, and compare it with Ti, the maximum end-to-end
latency of the agreed on the SLA for the policy minus, δ, a small slack value
avoiding SLA violation . If θi is larger than Ti−δ, the algorithm addresses the
issue by allocating more compute and network resources to service chains in
lines 5-18, otherwise, it finds resources that are underutilized and are suitable
for scale down process in lines 21-35.

Algorithm 2 ScaleBW

Input: s, d
1: function ScaleBW(Li, up)
2: if up then
3: for lj in Li do
4: ω ← |lj|, bw ← BW

ω
5: for lk in lj do
6: if !AllocateBW(lk, bw) then
7: path← FindAlternate(lk, bw)
8: if path <> None then
9: ScheduleFlows(lk, path)
10: AllocateBW(lk, bw)
11: else
12: MigrateLink(lk, bw)
13: AllocateBW(lk, bw)
14: end if
15: end if
16: end for
17: end for
18: else
19: for lj in Li do
20: ω ← |lj|, bw ← BW

ω
21: for lk in lj do
22: ReleaseBW(lk, bw)
23: end for
24: end for
25: end if
26: end function

The scaling up process looks into two possible ways of enhancing the
performance of the corresponding service chain. 1) In lines 6-12, ElasticSFC
algorithm checks that if there exists any virtual link lj in the chain that its
average bandwidth utilization in the last time interval is higher than the
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Algorithm 3 ScaleNF

Input: s, d
1: function ScaleNF(vk, up)
2: if up then
3: τ ← |vk|
4: h← H

τ
5: horizontal← false
6: for vk in vk do
7: if !CanScaleUp(vk, h) then . Scale Up
8: horizontal← true
9: end if
10: end for
11: if !horizontal then
12: for vk in vk do
13: ScaleUp(vk, h)
14: end for
15: else . Scale Out
16: ScaleOut(||vk||) . Add a VNF instance with size of (||vk||) and update

bandwidth
17: end if
18: else
19: if ||vk|| > H then
20: τ ← |vk|
21: h← H

τ
22: for vk in vk do
23: ScaleDown(vk, h)
24: end for
25: else
26: ScaleIn() . Remove a VNF Instance and update bandwidth
27: end if
28: end if
29: end function
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maximum bandwidth threshold B. Note that lj can be a list of virtual links
if VNF node is horizontally scaled earlier. All policies with an over-utilized
virtual link lj are added into the set P for more bandwidth allocation where
function ScaleBW is called in line 42. Note that all virtual links of a policy
are scaled up even if a single virtual link is over-utilized. 2) In lines 13-17,
ElasticSFC algorithm adds all VNF nodes with average CPU utilization over
the upper threshold H into the set V . In line 40, all over-utilized VNF nodes
are scaled by calling ScaleNF function. Note that VNF node can be a group
of VNF instances if the VNF node is horizontally scale out earlier. This is
the reason that both lj and vk are notated in boldface.

In the scaling down process, the algorithm checks if all virtual links in the
service chain are under-utilized, that is, the average bandwidth utilization
of every virtual link lj, u

b
i , must be smaller than the lower threshold B. If

this is the case, the policy is added to P , the set of policies that require
to go through the bandwidth scaling down process in line 41, otherwise no
bandwidth scaling down is required. A similar process is repeated for VNF
nodes of the policy in the loop in lines 31-36. All VNF nodes with average
CPU utilization below the lower threshold H are added to the set V to be
scaled down later in line 39.

The computational complexity of the Elastic SFC algorithm is analyzed
as follows. The outer loop iterates over all policies in the system, i.e., |P|.
For each polciy i, the scaling up/down process requires checking both every
virtual link in Li and every VNF node in Vi in the service chain. Therefore,
assuming that |L| and |V| are the maximum number of virtual links and
the maximum number of VNF nodes in the service chain, the computational
complexity of Algorithm 1 is represented as O(|P| × (L + V)).

5.2. Bandwidth Scaling Algorithm

The ScaleBW algorithm (Algorithm 2) updates bandwidth for a service
chain. The algorithm has two parts, one for scaling up the dedicated band-
width, the other for scaling down. This is decided based on the up variable.
Note that we assume, service chains are provided by dedicated bandwidth
with minimal or no impact on other network traffic. The bandwidth scaling
algorithm updates the dedicated bandwidth for each service chain in order to
provision network resources elastically. In the scaling up process, lines 2-18,
the algorithm allocates the total of BW unit of bandwidth to every virtual
link. The loop in lines 3-17 iterates over all virtual links in the chain, it
calculates ω as the number links in virtual link lj. If we have a horizontal
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scale-up for VNFs then lj includes all those links connecting previous VNF
node to the next one in the chain. The algorithm evenly distributes BW
between all those links by dividing BW to the number of links noted as |lj|.
bw represents the amount of bandwidth needs to be allocated to every link.
We assume that when there are multiple links in a virtual link, forwarded
packets are distributed among the duplicated VNFs using a Round-Robin
fashion to equally distribute load across horizontally scaled VNFs. We also
assume that a shared storage for sessions is accessible from any individual
duplicated VNFs, thus packets can be simply redirected among duplicated
VNFs even for the statefull flows. The inner loop in lines 5-16 tries to in-
crease bandwidth by bw for every link lk in the virtual link set lj. Firstly,
it attempts to allocate bw for the link lk in line 6. This includes bandwidth
allocation for all physical links beneath. If that is not possible, the algorithm
finds an alternate path capable of accommodating the extra bw bandwidth
for all physical links of the link, lk in line 7. If there is such an alternate
path, it calls the ScheduleFlows function to change the path for the link lk,
and updates bandwidth in line 10. Otherwise, it migrates the entire virtual
link lk by moving both or either of VNF instances at the two ends of the link
to find a location that can provide additionally required bandwidth and then
updates bandwidth in line 13. Finally, in lines 19-24, the algorithm simply
releases bandwidth for all virtual links.

The outer loop of the algorithm iterates over all virtual links in the chain
i that requires |Li| iteration. The inner loop, then iterates over all links
in the virtual link set lj for |lj| times. The time complexity of finding an
alternate path algorithm depends on the topology of the network. If |N | is
the number of nodes (vertices) and |E| is the number edges in the network,
and Dijkstra’s algorithm is used, then the computational complexity based on
a min-priority queue implementation is O(|E|+ |N |log|N |). Link migration
also requires time O(|N |2). As a result, the overall time complexity of the
ScaleBW algorithm is represented as O(|L| × |lj| × (E + |N |2)).

5.3. Virtualized Network Functions Scaling Algorithm

The ScaleNF (Algorithm 3) is responsible for auto-scaling of a VNF node
in the service chain. Similar to ScaleBW, it has two parts to allocate and
release resources based on the boolean variable up. For allocating more
resources (lines 3-17), first, it attempts to vertically scale up VNF instances
in vk by means of allocating h units of capacity to each VNF instance. h
is calculated based on the proportion of the scaling unit capacity H to the
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number of VNF instances in a VNF node, i.e., |vk|. If scaling up is not
possible due to resource constraints (see line 7), it sets an indicator variable
horizontal to true, and tries horizontal scaling by adding a VNF instance
of size ||vk||, that is, the size of VNF instances in VNF node vk in line 1.
The ScaleOut function is in charge of adding a VNF instance to the VNF
node. The function needs to place the newly added VNF instance in the
physical servers. It is not our aim to propose a VNF placement algorithm
in this paper. Different methods proposed in the literature can be used for
the placement of VNF instances. In this paper, we use first fit algorithm for
placement of added VNF instances.

Lines 19-27 of the algorithm are dedicated to releasing surplus resources.
If size of VNF instances are larger than unit capacity H, the algorithm
performs vertical scale down in line 23; otherwise, it removes a VNF instance
in line 26.

The time complexity of Algorithm 3 is analyzed as follows. The algorithm
has a main loop that iterates over all VNF instances in the VNF node vk.
The ScaleOut function complexity is the most compute intensive part of the
algorithm that requires at least O(|M |) time for the first fit placement algo-
rithm, where M is the number of physical servers in the system. Therefore,
the overall time complexity of the algorithm is O(|vk| ×N).

6. Performance Evaluation

In this section, we present the experiment environment and results of the
performance evaluation.

6.1. Experimental Setup

To evaluate our algorithms, we modeled and simulated a software-defined
cloud environment. We implemented the proposed algorithms on CloudSimSDN [15]
environment that extends the CloudSim [16] to support SDN and NFV fea-
tures in the simulation. In order to simulate SFC functionalities and auto-
scaling policies, we added extra modules to CloudSimSDN that creates SFs
based on the exiting Virtual Machine module and the chain of multiple SFs.
It also defines SFC policies that specify the source and destination VM, and
the chain of SFs that transfers the traffic between the source and the desti-
nation VM. The modified CloudSimSDN can detect the network traffic from
the source VM to the destination VM specified in the policy and enforce
the traffic to travel through the SFC. SFs can be created and placed as
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Figure 4: 8-pod fat-tree topology setup for experiments.

like a traditional VMs with additional information to determine the capacity
of the SF. SFC policies are specified along with the VMs and SFs so that
CloudSimSDN can enforce the SFC for network traffics.

For the performance evaluation, a cloud data center with 8-pod fat-tree
topology is created in CloudSimSDN, which consists of 128 computing nodes
connected with 32 edge, 32 aggregation, and 16 core switches as shown in Fig-
ure 4. Each pod has 4 edge and 4 aggregation switches, and each edge switch
connects 4 hosts. All hosts have 16 cores with 10,000 MIPS each, and the
network bandwidth between hosts and switches are set to 200 MBytes/sec.
The main reason we chose the common fat-tree topology is that ElasticSFC
algorithm uses dynamic flow scheduling to handle the bandwidth require-
ment of the chain and fat-tree has multiple shortest paths available between
any given pair of hosts allowing for such dynamic flow scheduling. Eltas-
ticSFC is expected to provide equally comparable results with other network
topologies with many equal-cost paths between a given pair of hosts such
as leaf-spine [17], VL2 [18] or Bcube [19]. Note that, we also consider CPU
and network performance in the evaluation with the assumption that there
is always enough memory and storage resources for VNFs.

6.1.1. Application Scenario and Workload

We create a 3-tier web application consisting of arbitrary number of web,
app, and database (DB) VMs with the detailed specification depicted in Ta-
ble 2. Once the request from end users arrived at web servers, the request
is sent to an app server to retrieve the information from DB. Then, the
DB responds to the app server with the relevant information which will be
returned to the end-user through web server. Based on this process, we gen-
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erate 4 SFC policies which enforces the network traffic to go through a chain
of multiple SFs, such as firewall, load balancer, and intrusion detection sys-
tem. Please note that these policies are designed for performance evaluation
purposes and are not necessarily typical in real-world scenarios. The details
of SFC policies for the evaluation are shown in Table 3. From the web to app
server, the packet goes through the firewall (FW) to filter the request and
the load balancer (LB1) to distribute the request across the number of app
servers. Similarly, the request from app to DB is also sent through a load
balancer (LB2) and intrusion detection system (IDS). For the response from
DB to app, network traffic travels through the IDS and LB2 in the opposite
direction. From app to web, however, the traffic goes through only LB1 as
firewall is not necessary for the response packets. The detailed specification
of SFs is explained in the next subsection.

The workload is generated based on the Wikipedia traces in German
language for 24 hours. Each workload consists of CPU processing in each
VM and network traffic between VMs which must travel through the SFC
defined in the policy. The number of requests in each hour is depicted in
Figure 5. In total, 29 million requests are generated to be distributed across
the multiple servers through the load balancers specified in the SFC.

In the experiment, we set 10 seconds for time-out so that the request
will be cancelled and marked as SLA violation if it cannot be processed
within 10 seconds. The time interval is set to 60 seconds for the monitoring
and scaling checkpoints, which results in running the proposed ElasticSFC
algorithm every minute to check if any SFC needs to be scaled.

6.1.2. Baseline Policies

The proposed auto-scaling algorithm (ElasticSFC ) is evaluated by com-
parison with two baselines which does not implement scaling algorithms. The
first baseline, named NoScale-Min, is to use the same amount of CPU and
network resources as the initial resources given to the ElasticSFC algorithm,
but without any scaling. In this baseline, we give the same amount of CPU

Table 2: VM types for a 3-tier web application.

VM Type CPU Capacity (cores*MIPS) # of VMs

Web server 8*10,000 8

App server 4*10,000 24

Database 12*10,000 2
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Figure 5: The number of requests in the workload generated from Wikipedia
trace.

and network resources to the SFs and the network flows which is same as the
initial resource capacity for ElasticSFC policy. As the initial resources allo-
cated to SFCs are not enough for the whole workload, NoScale-Min would
result in higher SLA violations especially for high demand.

The second baseline (NoScale-Max ) is to provide maximum resources
enough to process the demand all the time which would guarantee the SLA
without any violation. As the SFC allocates more than enough CPU and
network resources at the beginning, this baseline is over-provisioning the
resources which does not incur any SLA violations without auto-scaling.

In addition to the two static baselines without auto-scaling, we also com-
pare the proposed algorithm with simple auto-scaling approaches which ex-
ploit auto-scaling method for only VNFs or network bandwidth. With Scale-
NF approach, the system automatically adds or removes VMs for SFs based
on the fluctuating real-time utilization of a SF. If the utilization of a SF ex-
ceeds the predefined threshold, more VMs are created for the SF. Likewise,

Table 3: SFC policies defined for the 3-tier application in the evaluation.

Source VM Destination VM SFC

Web server App server {FW, LB1}
App server Database {LB2, IDS}
Database App server {IDS, LB2}
App server Web server {LB1}
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Table 4: Initial SF resource allocations in each policy.

SF Type
ElasticSFC NoScale-Min NoScale-Max

CPU Number Bandwidth CPU Number Bandwidth

(Cores*MIPS) of VMs (MB/s) (Cores*MIPS) of VMs (MB/s)

Firewall (FW) 8*10,000 1 500,000 16*10,000 3 2,000,000

Load balancer (LB1) 2*10,000 1 500,000 10*10,000 1 2,000,000

Load balancer (LB2) 2*10,000 1 500,000 10*10,000 1 2,000,000

IDS 6*10,000 1 500,000 12*10,000 3 2,000,000

VMs for a SF are removed once the utilization is below the minimum thresh-
old. Scale-NF is similar to the approach presented in [20] which deploys
multiple VNF instances in distributed manner to provide network function-
ality. Scale-NF provides auto-scaling only for VMs, not for network band-
width which ElasticSFC supports. We also implement Scale-BW algorithm
as another baseline which scales only network bandwidth between SFs in a
policy based on the bandwidth utilization. Similar to [11], Scale-BW dynam-
ically allocates bandwidth for over-utilized links in a SF chain to reduce the
network transmission time. Note that Scale-BW does not auto-scale VMs.

The initial resources allocated to SF and networks are shown in Table 4.
For ElasticSFC and NoScale-Min policies, we allocate 1 VM for each SF
with the minimum amount of CPU and network resources. For NoScale-Max
policy, multiple VMs are allocated for FW and IDS in order to serve the
entire workload. In order to simplify the comparison, we fix the unit MIPS
in CPU resources (10,000) whereas the total MIPS changes only depending
on the number of cores.

We measure the response time, SLA violation rate, and the amount of
allocated CPU and network resources with different policies.

6.2. Analysis of SLA Violation Rate and Response Time

SLA violation rate is calculated based on the number of timed-out re-
quests. We check the processing time inside a SF and network delay between
SFs in the chain and mark the request as timed-out if it takes more than
10 seconds in any SF or network transmission due to the VM overhead or
network congestion.

The SLA violation rate is shown in Figure 6a. With the proposed Elas-
ticSFC algorithm, the SLA violation rate is measured at 0.03%, significantly
lower than NoScale-Min. As we discussed earlier, NoScale-Min allocates the
minimum amount of CPU resources to SFs and the network resources to the
SFC, which resulted in 72.97% of the requests to be timed-out during the
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Figure 6: SLA violation rate and average response time in Wikipedia appli-
cation with different policies.
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experiment. On the other hand, NoScale-Max provides enough resources to
process all the requests, which is why no request is timed out.

For the auto-scaling baselines, the SLA violation remains as high as
NoScale-Min policy because their auto-scaling is only applied either in VM
(Scale-NF) or network bandwidth (Scale-BW). Although Scale-NF policy can
add more VMs if the current capacity of VMs are not enough to process in-
coming requests, it does not provision network bandwidth which becomes
bottleneck even after more VMs have been created for a SF. As the network
transmission cannot be processed within the deadline, the SLA violation rate
of Scale-NF policy reaches at 72.95% which is almost same as NoScale-Min.
Similarly, Scale-BW does provide auto-scaling mechanism for VMs, which
made the SLA violation as high as the policy without auto-scaling.

The small amount of SLA violations in the proposed ElasticSFC algo-
rithm is caused during the gap time between the high-demand requests and
the monitoring checkpoint. The requests are timed out if they are processed
before running ElasticSFC algorithm to scale up the SFC. The SLA violation
rate can be reduced by decreasing the interval time between the monitoring
checkpoints, so that the algorithm runs more often to check if a SFC is over-
loaded, which however results in the overhead of frequent VM and network
scaling. Nonetheless, the result shows that the proposed algorithm can pro-
vide elastic resources to adapt to the change of the workload.

We also evaluate the performance of the algorithm by comparing the av-
erage response time. Figure 6b shows the average response time of requests
excluding the SLA violated ones. Similar to the SLA violation results, the
requests are responded in 0.96 seconds with ElasticSFC algorithm which
is slightly longer than NoScale-Max, but significantly faster than the other
baselines. Because of the elastic resource allocation adapted to the workload,
ElasticSFC algorithm reduces the amount of resources if the utilization is less
than the threshold, which results in more resource saving but increasing the
response time slightly. Scale-NF baseline increases the average response time
to 8.44 seconds which is far more than NoScale-Min result. In order to find
the reason of this result, we further investigated to measure the average pro-
cessing time in VMs and network transmissions shown in Figure 6c. For VM
processing, all policies had the same average processing time at 0.03 seconds.
However, for network transmission, Scale-NF takes far more than the other
baselines. This shows that the excessive amount of time is wasted for net-
work transmission in Scale-NF, due to more number of requests consuming
the limited bandwidth especially after the VMs have been scaled up. The
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static amount of network resources with more numbers of VMs for a SF cre-
ates a bottleneck in network transmission, which results in increasing average
response time.

6.3. Analysis of Resource Usage
We measure the allocated CPU and network resources over time. Fig-

ure 7 shows the number of total CPU cores used in all SFs and the network
bandwidth allocated to the SFC from DB to App. For CPU cores (Fig-
ure 7a), ElasticSFC policy started with the initial resource allocation (18
cores), but immediately increased to 44 to adapt to the workload. After
that, the algorithm dynamically changes the resource capacity adapting to
the workload shown in Figure 5. The total CPU cores used in NoScale-Min,
Scale-BW, and NoScale-Max baseline policies remain at the same amount
without any change for the entire experiment, because they do not scale the
VMs of service functions elastically. On the other hand, the number of CPU
cores with Scale-NF policy dynamically adapts to the workload similar to
our ElasticSFC, although there was no scaling down between 4 and 6 hours
which is due to the continuous SLA violation.

Similarly, the allocated network bandwidth is adapted to the workload
with our proposed algorithm (Figure 7b). Initially starting with the mini-
mum bandwidth (0.5MBytes/sec), it was immediately increased to 2 MB/sec
once the SLA violation detected. When the number of requests is decreased
after 2 hours, the allocated bandwidth is also reduced to 0.5MB/sec. In
NoScale-Min and NoScale-Max, the bandwidth allocation is consistent. It
is worth mentioning that, in Figure 7b, the Scale-BW policy also does not
have different bandwidth, since CPU capacity is the bottleneck in this case
and adding more bandwidth will not improve the end-to-end latency. This
observation demonstrate the importance of dynamic auto-scaling across both
computing and network resources.

In short, the proposed algorithm dynamically adjusts the amount of CPU
and network resources for SFCs elastically adapting to the workload. Al-
though Scale-NF can scale up and down for VMs similar to ElasticSFC, it
does not scale network bandwidth which results in continuous SLA viola-
tion. The results show that we can achieve the resource saving with the
proposed algorithm which does not over-provision the resources all the time,
yet it provides adequate amount of resources for the dynamically changing
workload.
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Table 5: Comparison of existing approaches for VNF placement and auto-
scaling.

Work Placement Migration SLA Horizontal Vertical Dynamic Flows SFC

MORSA [5] 3 7 7 7 7 7 7
Clayman et al. [9] 3 7 7 7 7 7 3

SOVWin [21] 3 7 3 7 7 7 3
VNF-P [6] 3 7 7 3 7 7 7

Drãxler et al. [22] 3 7 7 3 7 7 3
Wang et al. [7] 3 7 7 3 7 7 3
Cziva et al. [11] 3 3 3 7 7 7 3
FreeFlow [23] 7 7 3 3 7 3 7
Stratos [8] 7 3 7 3 7 3 3
Kariz [4] 3 7 3 7 7 3 3
SLFL [20] 3 3 7 3 7 7 3

Eramo et al. [2] 3 3 7 7 3 7 3
NFV-RT [10] 3 7 3 7 3 7 3
DFCA [24] 7 7 3 7 7 7 3
ElasticSFC 7 3 3 3 3 3 3

7. Related Work

Network service chaining, also known as service function chaining (SFC)
is an automated process used by network operators to set up a chain of
connected network services. SFC enables the assembly of the chain of vir-
tual network functions (VNFs) in an NFV environment using instantiation
of software-only services running on commodity hardware. To avoid tedious
manual steps of the chain setup, the process of service chain provisioning
in NFV environments happens through an NFV management and orches-
tration (MANO) framework. Managing and orchestrating of VNFs in NFV
MANO has been a popular research topic and a widely studied problem in
the literature [14].

The problem of VNF placement, often very related to the traditional VM
placement in cloud computing environments [2], has gained considerable at-
tention over the past few years [20]. MORSA [5] is a multi-objective VNF
placement approach proposed as part of vConductor framework [25] to min-
imize the physical machine load and the intra-data center traffic. MORSA
is designed to optimize placement for VNFs while it does not take into ac-
count other aspects such as auto-scaling of VNFs, consolidation, and service
chaining. Similarly, Clayman et al. [9] proposed MANO framework for the
automated placement of VNFs across the resources. They also did not con-
sider scaling and consolidations. SOVWin is a heuristic proposed by Pai
et al. [21] to address the service-chain deployment problem. Different from
other works, SOVWin aims at satisfying SLA requirements and maximizing
the number of accommodated user requests.

The above works do not consider auto-scaling of service chains. VNF-P
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is a model proposed by Moens and Turck [6] for efficient placement of VNFs.
They propose an NFV burst scenario in which the base demand for the net-
work function service is handled by physical resources while the extra load
is redirected to the virtual service instances. Their method only considers
a single service chain. Drãxler et al. [22] go one step further and propose a
mixed integer programming solution and a custom heuristic to address scal-
ing and placement problem of VNFs jointly. Wang et al. [7] propose online
algorithms for dynamic provisioning of virtualized network services. Their
approach determines the numbers of VNF instances and their placement
on physical servers to optimize operational cost and resource utilization of
the system. In a recent work, Cziva et al. [11] focused on the VNF place-
ment to optimize end-to-end latency for users. Their optimization method
is adapted for a dynamic and ever-changing edge networks. Rajagopalan
et al. [23] proposed a system called FreeFlow based on the Split/Merge ab-
straction model that enables elasticity for stateful virtual network services.
FreeFlow addresses auto-scaling of virtualized middleboxes by removing the
configuration complexity of running independent middleboxes. Stratos [8]
is a MANO framework aims to provide a scalable network-aware strategy
based on traffic engineering, elastic scaling, and VM migration for service
function chaining. Ghaznavi et al. [20] propose an optimization model and
heuristic called Kariz to optimize service chain deployment targeting custom
throughput. In another work [4], they propose a heuristic called Simple Lazy
Facility Location (SLFL) to minimize the overall operational costs by the
efficient consolidation of VNFs using migration and horizontal auto-scaling
of VNFs. Similarly, Eramo et al. [2] study the consolidation, routing, and
placement of VNFs in an NFV environment when the vertical auto-scaling
of VNFs is the case. They propose a migration policy that decides when and
to where migration of VNF instances must be done to minimize the overall
cost.

Majaority of these solutions are heuristics-based that they do not pro-
vide SLA guarantee. Li et al. [10] propose NFV-RT that dynamically provi-
sions resources in an NFV environment to provide packet-wise timing guar-
antees to service requests. They formulate the resource provisioning problem
with a mathematical model and evaluate their solution using a simulator.
Wang et al. [24] have developed a combinatorial optimization model to ad-
dress dynamic function composition problem, and proposed a distributed
algorithm using Markov approximation method to dynamically decide the
appropriate service function instances at runtime. They also use simulation
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to evaluate their proposed algorithm.
In comparison to other works in the area, the innovative contribution of

this work is that it proposes a holistic method for auto-scaling of VNFs to
build elastic service chains dynamically adapting to the changes of the work-
load for different network policies. Our model uses migration and horizon-
tal/vertical auto-scaling of VNFs along with dynamic bandwidth allocation
and flow scheduling to meet the SLA requirement of a service chain. It does
not only dynamically scale NFs within a chain, but also allocates/releases
dedicated network bandwidth, updates network paths, and relocates com-
municating VNFs to meet the latency requirements of the chain while min-
imizing the overall cost. Even though we use a simple placement algorithm
to build our system, VNF placement is not the primary focus of this work
and any placement algorithm can be combined with our proposed method.

8. Conclusions and Future Work

In this paper, we presented a framework to build elastic service chains
in NFV-based cloud computing environments. We proposed a set of auto-
scaling algorithms to meet end-to-end delay requirements of the service chains
while minimizing the overall operational cost. We implemented our algo-
rithms by extending a cloud simulator and conducted realistic experiments
using workload traces of Wikipedia application. Our experimental results
showed that our proposed method significantly reduces the cost of SFC de-
ployment while reduces SLA violation to 0.03% compared to 72.97% SLA
violations of no scaling scenario.

In this work, we assumed that all VNFs are horizontally scalable regard-
less of their states. A logical extension of this work is to add solutions for
auto-scaling stateful NFs and those that are none trivial to scale horizon-
tally. As a future work, we also aim to implement our algorithms in a real
networking environment using our micro data center designed for software-
defined cloud computing and networking. Our micro data center uses Open-
Stack as Virtualized Infrastructure Manager and OpenDaylight (ODL) as
SDN controller. We will extend ODL SFC Project to evaluate and validate
our proposed techniques. Using a real system, we are able to measure la-
tency and link delays for service chains along with impacts of dynamic flow
scheduling and VNF migrations on the runtime phase of the SFC lifecycle.
We will also develop autonomic SFC composition and management that tar-
gets efficient utilization of the data center including placement algorithms
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and consolidation of VNF instances.
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