
On Minimizing Total Energy Consumption in the

Scheduling of Virtual Machine Reservations

Wenhong Tian1,2,Majun He1 ,Wenxia Guo1 , Wenqiang Huang1,
Xiaoyu Shi2 ,Mingsheng Shang2 , Adel Nadjaran Toosi3,Rajkumar Buyya3

1 School of Information and Software Engineering, University of Electronic Science and
Technology of China (UESTC)

2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
Sciences,Chongqing,China

3CLOUDS Lab., Dept. of Information and Computing Systems, The University of
Melbourne, Australia.

E-mail: tianwenhong@cigit.ac.cn,
tian wenhong@uestc.edu.cn,{adel.nadjaran,rbuyya}@unimelb.edu.au

Abstract

This paper considers the energy-efficient scheduling of virtual machine (VM)
reservations in a Cloud Data center. Concentrating on CPU-intensive ap-
plications, the objective is to schedule all reservations non-preemptively,
subjecting to constraints of physical machine (PM) capacities and running
time interval spans, such that the total energy consumption of all PMs is
minimized (called MinTEC for abbreviation). The MinTEC problem is
NP-complete in general. The best known results for this problem is a 5-
approximation algorithm for special instances using First-Fit-Decreasing al-
gorithm and 3-approximation algorithm for general offline parallel machine
scheduling with unit demand. By combining the features of optimality and
workload in interval spans, we propose a method to find the optimal solution
with the minimum number of job migrations, and a 2-approximation algo-
rithm called LLIF for general cases. We then show how our algorithms are ap-
plied to minimize the total energy consumption in a Cloud Data center. Our
theoretical results are validated by intensive simulation using trace-driven
and synthetically generated data.

Keywords:
Energy Efficiency, Cloud Data centers, resource scheduling, virtual machine
reservation

Preprint submitted to Journal of Network and Computer Applications March 30, 2018

1. Introduction

Cloud computing has evolved from various recent advancements in vir-
tualization, Grid computing, Web computing, utility computing and other
related technologies. It offers three level of services, namely Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS). In this paper, we concentrate on CPU-intensive computing at IaaS
level in Cloud Data centers. Cloud computing providers (such as Amazon)
offer virtual machine reservation services with specified computing units. For
reservation services, customers request certain units of computing resources
in advance to use for a period of time in the future, so providers can have
enough time to do scheduling. The resources in this paper include:

1. Physical Machines (PMs): physical computing devices which can host
multiple virtual machines; each PM can be a composition of CPU,
memory, hard drives, network cards, and etc..

2. Virtual Machine (VMs): virtual computing platforms on PMs using
virtualization software; each VM has a number of virtual CPUs, mem-
ory, storage, network cards, and related components.

The architecture and process of VM reservation scheduler are provided
in Figure 1.1, referring to Amazon EC2 [21]. As noted in the diagram, the
major processes of resource scheduling are:

1. User reservation requesting: the user initiates a reservation through
the Internet (such as a Cloud service provider’s Web portal);

2. Scheduling management: Scheduler Center makes decisions based on
the user’s identity (such as geographic location, etc.) and the oper-
ational characteristics of the request (quantity and quality require-
ments). The request is submitted to a data center, then the data center
management program submits it to the Scheduler Center, finally the
Scheduler Center allocates the request based on scheduling algorithms;

3. Feedback: Scheduling algorithms provide available resources to the
user;

4. Executing scheduling: Scheduling results (such as deploying steps) are
sent to the next stage;

5. Updating and optimization: The scheduler updates resource informa-
tion, optimizes resources in the data center according to the optimizing
objective functions.

2

User

…	

1.Request	
 	

Resource	

2、Find	
 Suitable	
 Resource	

Schedule	
 Center	

3、Feedback	

	
 	
 	
 	
 	
 	
 	
 to	
 users	

5、Update/Op@mize	
 4、Schedule	
 Task	

VMs	
 and	
 PMs	
 in	
 a	
 Data	
 Center	

Figure 1.1: Referred architecture of VM reservation in a Cloud data center

In the reservation services, customers are billed in a way proportional
to the total amount of computing time as well as energy of the computing
resources. The scheduler executes periodically for a fixed period of time,
for instance, every one hour, depending on workloads in realistic scenar-
ios. From the providers’ point of view, the total energy cost of computing
resources is closely related to the total powered-on time of all computing
resources. Since Cloud data centers consume very large amounts of energy,
the energy cost (electricity price) is increasing regularly. So they like to min-
imize total power-on time to save energy costs. How to model this problem
and solve it efficiently is not well studied in the literature. In practice, some
simple algorithms (such as Round Robin and First-Fit) are used by EC2 [21]
and VMWare [26]. To measure the performance (such as energy-efficiency)
of different approximate algorithms, the approximation ratio, defined as the
ratio of the result obtained by proposed algorithm over the optimal result,
is widely used. Winkler et al. [18], Flammini et al. [4] and Khandekar et
al. [6] are closely related to our research and are earlier papers that discuss
this issue under general parallel machine scheduling context, and Kovalyov
et al. [9] provide a comprehensive review for the fixed interval scheduling
problem. The problem of VM reservations can be stated as follows. There
are n deterministic reservations submitted to the scheduler in advance to be
scheduled offline on multiple physical machines (PMs) with bounded capaci-
ties. Each VM reservation (job) is associated with a start-time, an end-time,
and a capacity demand. The objective is to schedule all reservations non-

3

preemptively, subjecting to constraints of PM capacities and running time
interval spans, such that the total energy consumption of all PMs is mini-
mized (called MinTEC for abbreviation).

The MinTEC problem is NP-hard in a general case [18]. Winkler et al.
[18] consider the problem in optical networks and show that the problem is
NP-hard already for g=2, where g is the total capacity of a machine in terms
of CPU. In this study, we assume that the total CPU capacity of a PM, g, is
measured in abstract units such as EC2 Compute Unit (ECU)1. Flammini et
al. [4] consider the same scheduling problem in optical network where jobs
are given as interval spans with unit demand (one unit from total capacity),
for this version of the problem a 4-approximation algorithm called FFD (First
Fit Decreasing) for general inputs and better bounds for some subclasses of
inputs are provided. The FFD algorithm basically sorts all jobs’ process time
in non-increasing order and allocates the job in that order to the first machine
which can host. Khandekar et al. [6] propose a 5-approximation algorithm
for this scheduling problem by separating all jobs into wide and narrow types
by their demands when α = 0.25, which is the demand parameter of narrow
jobs occupying the portion of the total capacity of a machine. Tian et al.
[32] propose a 3-approximation algorithm called MFFDE for general offline
parallel machine scheduling with unit demand and the MFFDE algorithm
applies FFD with earliest start-time first. In this work, we aim to propose
better methods for the optimal energy-efficient scheduling with concentration
on VM reservations. The jobs and VM requests are used interchangeably in
this paper.
The major contributions of this paper include:

1. Proposing an approach to minimize total energy consumption of virtual
machine reservations by minimizing total energy consumption (MinTEC)
of all PMs.

2. Deducing a theoretical lower bound for the MinTEC problem with
limited number of VM migrations.

3. Proposing a 2-approximation algorithm called LLIF, which is better
than the best-known 3-approximation algorithm.

4. Validating theoretical results by intensive simulation of trace-driven

1The EC2 Compute Unit (ECU) provides the relative measure of the integer processing
power of an Amazon EC2 instance and provides the equivalent CPU capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor

4

and synthetically generated data.

The rest of the paper is organized as follows. Formal problem statement is
provided in Section 2. Section 3 presents our proposed algorithm LLIF with
theoretical analysis. Section 4 considers how our results are applied to the
energy efficiency of VM reservations. Performance evaluation is conducted
in Section 5. Related work is discussed in Section 6. Finally we conclude in
section 7.

2. Problem Formulation

2.1. Preliminaries

For energy-efficient scheduling, the objective is to meet all reservation
requirements with the minimum total energy consumption based on the fol-
lowing assumptions and definitions.

1. All data is given to the scheduler since we consider offline scheduling
unless otherwise specified, the time is discrete in slotted window format.
We partition the total time period [0, T] into slots of equal length (l0) in
discrete time, thus the total number of slots is k=T/l0 (always making
it a positive integer). The start-time of the system is set as s0=0.
Then the interval of a reservation request i can be represented in slot
format as a tuple with the following parameters: [StartTime, EndTime,
RequestedCapacity]=[si, ei, di]. With both start-time si and end-time
ei are non-negative integers.

2. For all jobs, there are no precedence constraints other than those im-
plied by the start-time and end-time. Preemption is not considered.

Definition 1. The Interval Length: given a time interval Ii= [si, ti] where si
and ti are the start slot and end slot, the length of Ii is |Ii|=ti-si. The length
of a set of intervals I=

⋃k
i=1 Ii, is defined as len(I)=|I|=

∑k
i=1 |Ii|, i.e., the

length of a set of interval is the sum of the length of each individual interval.
Definition 2. The Interval Span: the span of a set of intervals, span(I), is
defined as the length of the union of all intervals considered.
Example#1: if I={[1, 4], [2, 4], [5, 6]}, then span(I)=|[1,4]|+|[5,6]|=(4-1)+(6-
5)=4, and len(I) =|[1,4]|+|[2,4]|+|[5,6]|=6. Note that span(I)≤len(I) and
equality holds if and only if I is a set of non-overlapping intervals.
Definition 3. The Total Power-on Time: For any instance I and capacity

5

parameter g ≥ 1, let OPT (I) denote the minimum total power-on time of all
PMs. For VM reservations, the power-on time here means the power-on time
of all PMs, only including busy time, and the idle time is not counted. The
PM will be turned off or put into sleep mode so that the energy consumption
during idle time can be ignored.
Example#2: Note that the total power-on time of a machine is the sum of
all intervals during which the machine is powered on. As in Example#1, a
machine is busy (powered-on) during intervals [1, 4] and [5, 6], based on our
definition of interval span for each job, the total power-on time of this ma-
chine is (4-1)+(6-5)=4 time units (or slots). The interval [4, 5] (idle period)
is not counted into the total power-on time of the machine.
Definition 4. The Workload: for any job j, denote its process time as
pi=ei-si, its workload is denoted by w(j), which is its capacity demand dj
multiplies its process time pj, i.e, w(j)=djpj. Then the total workload of all
jobs J is W (J)=

∑n
j=1w(j).

Definition 5. The Approximation Ratio: an offline deterministic algorithm
is said to be C-approximation for the objective of minimizing the total en-
ergy consumption if its total energy consumption is at most C times that of
an optimum solution.
Definition 6. Strongly divisible capacity of jobs and machines: the capacity
of all jobs form a divisible sequence, i.e., the sequence of distinct capacities
d1 ≥ d2 ≥ ... ≥ di ≥ di+1 ≥ ... taken on by jobs (the number of jobs of each
capacity is arbitrary) is such that for all i > 1, di+1 exactly divides di. Let
us say that a list L of items has divisible item capacity if the capacities of
the items in L form a divisible sequence. Also, if L is the list of items and
g is the total capacity of a machine, we say that the pair (L, g) is weakly
divisible if L has divisible item capacities and strongly divisible if in addition
the largest item capacity d1 in L exactly divides the capacity g [3].
Example#3: If the total capacity of a PM is g=8, and the requested ca-
pacity of each VM is one of {1, 2, 4, 8}, then the sequence forms a strongly
divisible capacity. Obviously, if all jobs have unit demand (eg. request only
1 CPU from the total capacity of 8 CPUs in a PM), then the sequence of
requested capacities also forms a strongly divisible capacity.

In the following sections, unless otherwise specified, the strongly divisible
capacity case is considered. Actually, in strongly divisible capacity config-
uration the CPU capacity of a VM represents the total capacity of (CPU,
memory, storage) in a PM. For example, VM type 1-1(1) shown in Table 1 has

6

memory of 1.875GB, CPU of 1 unit, storage of 211.25GB, and type-1 PM as
shown in Table 2 has memory of 30GB, CPU of 16 units, storage of 3380GB.
Therefore, VM type 1-1(1) has CPU 1/16, memory 1/16 (=1.875/30), stor-
age 1/16(=211.25/3380) of the total CPU,memory and storage capacity of
type-1 PM, respectively. In this strongly divisible capacity case we can use
the CPU capacity of a VM to represent the total capacity of a VM, espe-
cially the energy consumption model in Equ (5-11) is proportional to the
CPU utilization.

Note that the assumption of strongly divisible capacity is a valid assump-
tion and is used by commercial cloud service providers such as Amazon where
the CPU capacity of different VM instances are often evenly divisible (see
Table 1 and Table 2).

2.2. Problem Statement

The problem has the following formulation: the input is a set of n jobs
(VM requests) J= j1, ..., jn. Each job ji is associated with an interval [si, ei]
in which it should be processed, where si is the start-time and ei the end-
time, both in discrete time. Set pi=ei-si as the process time of job ji. For the
sake of simplicity, we concentrate on CPU-intensive applications and consider
CPU-related energy-consumption only. The capacity parameter g ≥ 1 is the
maximal CPU capacity a single PM provides. Each job requests a capacity
di, which is a natural number between 1 and g. The power-on time of PMi

is denoted by its working time interval length bi. The optimizing objective is
to assign the jobs to PMs such that the total energy consumption of all PMs
is minimized. Note that the number (m ≥ 1) of PMs to be used is part of
the output of the algorithm and takes integer value. This problem is called
MinTEC problem for abbreviation. The following Observation 1 is given in
[6]:
Observation 1 . For any instance J and capacity parameter g ≥ 1, the
following bounds hold:
The capacity bound: OPT (J) ≥ W (J)

g

The span bound: OPT (J) ≥ span(J).
The capacity bound holds since g is the maximum capacity that can be
achieved in any solution. The span bound holds since only one machine is
enough when g =∞.

Observation 2. The upper bound for the optimal total power-on time
is: OPT (J) ≤ len(J). The equality holds when g=1, or all intervals are not

7

overlapped when g ≥ 1.
Suppose for any scheduler S, the PMs are numbered as PM1, PM2, We
denote by Ji the set of jobs assigned to PMi with the scheduler S. The total
busy period of PMi is the length of its busy intervals, i.e., bi=span(Ji) for all
i ≥ 1 where span(Ji) is the span of the set of job intervals scheduled on PMi.

Formally, assuming there are m PMs in a Cloud Data center, Ei is the energy
consumption of PMi during test, the problem (MinTEC) can be restated as
an optimization problem:

minimize
m∑
i=1

Ei (1)

subject to (a) ∀ slot s,
∑

VMj∈PMi

dj ≤ g

(b) ∀ji, 0 ≤ si < ei

where (a) means that the sum of the capacity of all VMs (VMj) on a PM
(PMi) cannot be more than the available capacity a PM can offer; (b) means
that each request has a fixed start-time si and end-time ei, i.e., the process-
ing interval is fixed.

THEOREM 1: The lower bound of the total power-on time for MinTEC
problem is the sum of the minimum number of machines used in each slot,
i.e., the lower bound is to allocate exactly minimum number of machines
needed to each time slot.
Proof: The main problem MinTEC aiming to address is offline scheduling,
for a given set of jobs J , we can find the minimum number of machines
needed for each time slot, denoted as l1, l2, ...lk for total k time slots under
consideration, where li is the minimum number of machines needed for time
slot i. By the definition of the interval span and power-on time of each ma-
chine, OPT (I) =

∑k
i=1d

Li

g
e=

∑k
i=1 li, here Li is the sum of load for time slot

i. The total power-on time of all machines is the sum of minimum number
of machines in all time slots in this way, i.e., the lower bound is the sum of
the minimum number of machines used in each slot. This is the minimum
total power-on time of all machines. This completes the proof.
Remark#1: The theoretical lower bound given in THEOREM 1 is not easy
to achieve if each request has to be processed on a single PM without migra-

8

tion. Finding a subset of jobs for each machine to minimize total power-on
time is known to be NP-complete [10].
Example #4: As shown in Figure 2.2, considering there are 4 job requests

J4

J1

J2
J3

0 1 2 3 4 'me	
 slot

Figure 2.2: Referred architecture of VM reservation in Cloud Data centers

and g=3, Jobs J1, J2, J3, J4 have start-time, end-time and capacity demand
[0, 3, 1], [0, 2, 1], [1, 3, 1], [0, 3, 1] respectively. The minimum number of
PMs needed is 1, 2, 1 respectively in three time slots and total power-on
time is 4 by theoretical lower bound. Without job migration, one solution is
to allocate J1, J2 and J4 to one PM and J3 to another PM; or allocate J1,
J3, J4 to one PM and allocate J2 to another PM; in either case, the actual
total number of PMs needed is 2 and the total power-on time is 5. With job
migration, one can allocate J1, J2 and J4 to one PM (m1) during interval [0,
3], allocate J3 to another PM (m2) during interval [1, 2] and migrate J3 to
m1 during interval [2,3]; in this way, the total power-on time is 4, equals to
the lower bound.
To see the hardness of the MinTEC problem, its NP-completeness is proved
as follows:
THEOREM 2. MinTEC problem is a NP-complete problem in the general
case.
Proof : For completeness, we sketch the proof as follows by reduction a
known NP-complete problem to MinTEC problem. We know thatK-PARTITION
problem is NP-complete [13]: for a given arrangement S of positive numbers
and an integer K, partition S into K ranges so as the sums of all the ranges
are close to each other. K-PARTITION problem can be reduced to our

9

MinTEC problem as follows. For a set of jobs J , each has capacity demand
di (set as positive number), partitioning J by their capacities into K ranges,
is the same to allocate K ranges of jobs with capacity constraint g (i.e. the
sum of each range is at most g). On the other hand, if there is a solu-
tion to K-PARTITION for a given set of intervals, there exists a schedule
to MinTEC problem for the given set of intervals. Since K-PARTITION is
NP-hard in the strong sense, our problem is also NP-hard. In this way, we
have found that the MinTEC problem is NP-complete problem.

As proved in [6], it is NP-hard to approximate our problem already in the
special case where all jobs have the same (unit) processing time and can be
scheduled in one fixed time interval, by a simple reduction from the subset
sum problem.
Remark#2: This can also be proved by reducing a well-know NP complete
problem, the set partitioning problem to our (MinTEC) problem in polyno-
mial time (see for example [10] for a proof).

THEOREM 3. MinTEC problem obtains optimum result if job migra-
tion is allowed.
Proof : From THEOREM 1, we know that there is a theoretical lower bound
for MinTEC problem. The MinTEC as proved in THEOREM 2, is NP-
complete in general case without job migration. However with job migration,
a job can be migrated from one PM to another PM to be continuously pro-
ceeded, it is possible to obtain the lower bound. The method is introduced
in Algorithm 2.1 OPT-Min-Migration. Algorithm 2.1 firstly sorts all jobs in
non-decreasing order of jobs’ start-time (line 1) and represents load of each
slot by the minimum number of machines needed (line 3-4); then it finds the
longest continuous interval [z1, z2] with the same load and separates jobs into
two groups (line 5-9); it allocates jobs in each group by First Fit Decreasing
(FFD); and migrates the job to an existing PM when the minimum number
of machines will be more than the slot load (line 12-15); it updates load of
each PM and repeats the major steps until all jobs are allocated (line 17-21).
Basically, if a new allocation passes through an interval that already has
the minimum number of machines used (by the lower bound calculation),
then during this interval, the new allocation will be migrated to an existing
machine that still can host in that interval, so that no more than the min-
imum number of machines is needed for any slot (or interval). Because the
minimum number of machines needed in each slot can be found exactly and

10

the number of migrations (i.e., the minimum number of migrations) can be
found by Algorithm 2.1. In this way, the algorithm obtains the theoretical
lower bound (denoted as OPT in this paper) with the cost of the minimum
number of total migrations. This completes the proof.

The OPT-Min-Migration finds the lower bound with the cost of minimum
number of job migrations. Without job migration, only approximation is
possible. In the following, a 2-approximation algorithm is proposed.

3. The Longest Loaded Interval First Algorithm

In this section, a 2-approximation algorithm called Longest Loaded Inter-
val First (LLIF) is introduced. The LLIF algorithm schedules the requests
from the longest loaded slots first. The LLIF algorithm is described in Algo-
rithm 3.1:

LLIF algorithm is similar to Algorithm 2.1 except that there is no job
migration in LLIF algorithm. LLIF firstly finds the longest continuous in-
terval with the same load, denoted as [z1, z2], and separates jobs in [z1, z2]
as end-time first and start-time first groups, considers the longest job firstly
in the same group; then it decides if the theoretical maximum load (number
of PMs) is reached in [z1, z2], if not, it allocates the job to the first available
PM or opens a new PM when needs, else the allocation is migrated to an
existing PM which still can host in [z1, z2]. LLIF updates the load of each
PM and continues this process until all jobs are allocated.

Observation 3. The case that di=1 as shown in [4], called Unit Demand
Case, is a special case of 1 ≤ di ≤ g (let us call it General Demand Case). As
for minimizing total power-on time, Unit Demand Case represents the worst
case scenario for LLIF.
Proof : The proof is sketched here for better understanding. Consider the
General Demand Case, i.e.,1 ≤ di ≤ g. The adversary generates the following
case: there are g2 jobs in g groups, each group of jobs have the same start-
time at si=0, demand di (for 1 ≤ i ≤ h, and

∑h
i=1 di = g), each has end-time

at ei=
T

kg−j where T is the time length of consideration, k is natural number,
and if (i mod g) 6= 0, then set j=(i mod g); else j=g. In this case, for the
optimal solution, one can allocate all the longest requests to a machine (M1)
for a power-on time of dgT , then allocates all the second longest requests to

another machine (M2) for a power-on time of dg−1T

k
, ... , and finally allocates

11

all the shortest requests to machine (Mg) with a power-on time of d1T
kg−1 . The

total power-on time of optimal solution therefore is :

OPT (I) =

g∑
i=1

diT

kg−i
= T

g∑
i=1

di
kg−i

(2)

We consider the worst case (the upper bound). For any offline algorithm, let
us call ALGX , the upper bound is to make ALGX

OPT
the largest while keeping

other conditions unchanged. Obviously, if OPT has the smallest value, the
equation (2) will have the largest value. When k, g and T is given, the
equation (2) will have smallest value if di has the smallest value, i.e., di=1.
This means that Unit Demand Case represents the worst-case scenario and
the proof is completed.
In the following section, the worst case (unit demand case) is considered.
THEOREM 4. The approximation ratio of our proposed LLIF algorithm
for MinTEC problem has an upper bound 2.
Proof : Let us assume that all the jobs in subset Ji are assigned to machine
Mi. For such a set, the total power-on time of the assignment is exactly its
span. We just consider the upper bound for the worst case.

LLIF	

(m-­‐1)	

LLIF	
 (m)	

OPT	
 (1)	

OPT	

(m-­‐1)	
 LLIF	
 	

(1)	

OPT	
 (m)	
 tx	

Figure 3.3: The upper bound for LLIF algorithm

Ideally LLIF(J) equals to the optimal solution by the definition of interval
span since it behaves as THEOREM 1 suggests, allocating the minimum
number of machines to each time slot. But in some cases, this is not generally
true. We further construct an adversary2 for LLIF algorithm and provide

2According to the knowledge of the algorithm, the adversary generates the worst pos-

12

proof in the following: The adversary as shown in Figure 3.3, submits (kg+1)
jobs forming a clique (this is the case that all job intervals intersect each
other, see [4, 6] for a formal definition), k is a positive integer, all started
and ended at different time with different span lengths, and sorted in non-
decreasing order of their start-time (similarly, span lengths in this case). The
total power-on time of the optimal solution is determined by the span length
of the longest job with span T1, (g+1)-th job with span Tg+1, (2g+1)-th
job,..., and the shortest job (assuming that the shortest job has the longest
loaded interval comparing to all jobs in this case), this is to consider allocation
from the top to the bottom. LLIF treats the longest loaded interval first,
its total power-on time is determined by the (kg-g+1)-th job, (kg-2g+1)-th
job,..., the 2-nd longest job with span T2, and the longest job with span T1
(one job left for a single machine), this is to allocate from the bottom to the
top. In this case

LLIF (I)

OPT (I)
=

T1 + T2 + Tg+2 + ...

T1 + Tg+1 + T2g+1 + ...

=
1 + T2

T1
+ TM

T1

1 + Tg+1+T2g+1+TO

T1

(3)

where TM , TO are the remaining time span for other jobs in LLIF and OPT,
respectively. Equation (3) will have upper bound 2 when T1=T2 and other
span lengths are negligible comparing to T1; for other cases, LLIF(I) equals
to OPT(I). One can also easily check that LLIF(I)=OPT(I) for clique, proper
intervals and other special cases discussed in [4][6]. This completes the proof.
Our extensive simulation results validate THOREM 4 in performance evalu-
ation section.

4. Applications to Energy Efficiency of Virtual Machine Reserva-
tions

In this section, we introduce how our results are applied to VM reserva-
tions in a Cloud Data center. We consider that virtual machine reservation
for CPU-intensive applications in Cloud Data centers where CPU in PMs
are major resources [2][6]. Each VM has a start-time si, end-time ei, CPU

sible input for the algorithm.

13

capacity demand di. The CPU capacity demand (di) of a VM is a natural
number between 1 and the total CPU capacity (g) of a PM. These features
are also reflected in Amazon EC2. Our objective here is to minimize total
energy consumption of all PMs. This is exactly the same as the MinTEC
problem. So we can apply the results of the MinTEC problem to the energy-
efficiency of VM reservations. The metrics for energy consumption will be
presented in the following.

4.1. Metrics for energy-efficiency scheduling

4.1.1. The power consumption model of a server

There are many research works in the literature indicating that the overall
system load is typically proportional to CPU utilization (see Beloglazov et
al. [1], Matthew et al. [31]). This is especially true for CPU-intensive
computing where CPU utilization dominates. The following linear power
model of a server is widely used in literature (see for example [1][31] and
references therein).

P (U) = kPmax + (1− k)PmaxU

= Pmin + (Pmax − Pmin)U (4)

where Pmax is the maximum power consumed when the server is fully utilized,
Pmin is the power consumption when the server is idle; k is the fraction of
power consumed by the idle server (studies show that on average it is about
0.7); and U is the CPU utilization. In a real environment, the utilization of
the CPU may change over time due to the workload variability. Thus, the
CPU utilization is a function of time and is represented as Ui(t). Therefore,
the total energy consumption (Ei) by a physical machine can be defined as
an integral of the power consumption function during [t0, t1]:

Ei =

∫ t1

t0

P (Ui(t))dt (5)

When the average utilization is adopted, we have Ui(t) = Ui, then

Ei = P (Ui)(t1 − t0) = P (Ui)Ti

= PminTi + (Pmax − Pmin)UiTi (6)

where Ti is the power-on time of machine PMi, the first term PminTi, is the
energy consumed by power-on time of PMi, denoted as PminTi=Eion ; the

14

second term, (Pmax−Pmin)UiTi is the energy increase by hosting VMs on it.
Assuming that a VMj increases the total utilization of PMi from U to U ′

and set U ′ − U = uij, and VMj works in full utilization in the worst case.
Defining Eij as the energy increase after running VMj on PMi from time t0
to t1, we obtain that:

Eij = (Pmin + (Pmax − Pmin)U ′ −
(Pmin + (Pmax − Pmin)U))(t1 − t0)

= (Pmax − Pmin)(U ′ − U)(t1 − t0)
= (Pmax − Pmin)uij(t1 − t0) (7)

For VM reservations, we can further obtain that the total energy consumption
of PMi, the sum of its idle energy consumption (Eion) and the total energy
increase by hosting all VMs allocated to it.

Ei = Eion +
k∑

j=1

Eij

= PminTi + (Pmax − Pmin)
k∑

j=1

uijtij (8)

where uij is the utilization increase of PMi with the allocation of VMj, and
tij is the time length (duration) of VMj running on PMi.

4.1.2. The total energy consumption of a Cloud Data center (CDC)

The total energy consumption of a Cloud Data center (CDC) is computed
as

ECDC =
n∑

i=1

Ei (9)

It is the sum of energy consumed by all PMs in a CDC. Note that the energy
consumption of all VMs on all PMs is included. The objective of our research
is to minimize total energy consumption by considering time and capacity
constraints. The following theorem establishes the relationship between total
energy consumption, the total power-on time and the total workload of all

15

PMs in a CDC.
THEOREM 5. For a given set of VM reservations, the total energy con-
sumption of all PMs is determined by the total power-on time and the work-
load of all PMs.
Proof : Set α=Pmin, β = (Pmax − Pmin), we have

Ei = Eion +
k∑

i=1

Eij (From (6− 7)) (10)

ECDC =
m∑
i=1

Ei

=
m∑
i=1

(αTi + βUiTi) (From(7), (8))

= α
m∑
i=1

Ti + β
n∑

i=1

∑
VMj∈PMi

uijtij

= αT + βL (11)

where T =
∑m

i=1 Ti is the total busy (power-on) time of all PMs, L is total
workload of all VMs (which is fixed once the set of VM requests is given).
From equation (11), we can see that the total energy consumption of all PMs
is determined by the total power-on time of all PMs and the total workload
caused by hosting VMs on all PMs. This completes the proof.

From THEOREM 1-5, we also can induce the following observations, which
are applicable to energy efficiency of VM reservations.

Observation 4. Applying Algorithm 2.1, OPT-MIN-Migration, we can have
the minimum total energy consumption (i.e., the optimum result) for a given
set of VM reservations in a Cloud Data center.

Observation 5. Applying LLIF algorithm for VM reservations, the approx-
imation ratio has upper bound 2 regarding the total energy consumption
comparing with the optimum solution.
Notice that the upper bound 2 is obtained for the worst case. As for average
cases, we did intensive tests under different scenarios and find that LLIF

16

algorithm is near optimal.

Observation 6. For one-sided clique case where all jobs have the same
start-time or end-time as discussed in [4, 6], our proposed Algorithm LLIF
obtains optimal results.
Proof: For one-sided clique case, where all jobs have same start-time or
end-time. Since LLIF considers the longest loaded interval first, in this case
it is to allocate the longest group of jobs to the first PM, and the second
longest group jobs to the second PM, and so on. This is exactly the same as
the optimum solution does. This completes the proof.

5. Performance Evaluation

5.1. Settings

Table 1 shows eight types of VMs from Amazon EC2 online information,
where one CPU unit equals to 1Ghz CPU of Intel 2007 processors, MEM
is abbreviation for memory. Amazon EC2 does not provide information on
its hardware configuration. However, we can therefore form three types of
different PMs based on compute units. In a real Cloud Data center, for
example, a PM with 2×68.4GB memory, 16 cores×3.25 units, 2×1690GB
storage can be provided. The configuration of VMs and PMs are shown in
Table 1 and 2. Table 3 also provides different Pmin and Pmax for different
type of PMs, which are obtained from real power tests. For comparison, we
assume that all VMs occupy all their requested capacity (the worst case). In
this case, eight types of VMs are considered as shown in Table 1.

5.2. Algorithms

We considered four algorithms in this paper:

• First-Fit Decreasing (FFD): This algorithm introduced in [2], firstly
sorts all requests in non-increasing order of their process time and then
allocates the request to the first available PM. It has computational
complexity of O(nlogn) where n is the total number of requests.

• Earliest Start-Time First (EST): This algorithm firstly sorts all requests
in non-increasing order of their start-time and then allocates the request
to the first available PM. It has computational complexity of O(nlogn)
where n is the total number of requests.

17

• Longest Load Interval First (LLIF): This is our proposed algorithm
in Section IV, the major idea is to repeatedly consider a group of the
longest load interval span first in all slots. It has computational com-
plexity of O(nlogn) where n is the total number of requests.

• Optimal solution (OPT): This represents the theoretical lower bound,
obtained by Algorithm 2.1. The computational complexity of finding
this theoretical lower bound is O(k) where k is the total number of
slots considered, and can be ignored.

5.3. Simulation by Synthetically Generated Data

0	

50	

100	

150	

200	

250	

300	

350	

50	
 100	
 200	
 400	
 800	

FFD	
 EST	

LLIF	
 OPT	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Max	
 	
 dura8on	
 of	
 VMs	

En
er
gy
	
 C
on

su
m
p8

on
	
 (K

W
h)
	

	

Figure 5.4: The comparison of total energy consumption when varying maximum duration
of VM requests

A Java discrete simulator is used for performance evaluation (see [30] for
the detailed introduction of the tool). All requests follow Poisson arrival
process and have exponential service time, the mean inter-arrival period is
set as 5 slots, the maximum duration of requests is set as 50, 100, 200, 400,
800 slots respectively. Each slot is 5 minutes. For example, if the requested
duration (service time) of a VM is 20 slots, actually its duration is 20×5=100
minutes. For each set of inputs (requests), simulations are run 10 times and
all the results shown in this paper are the average of the 10 runs. The total
number of VMs is 1000 in all simulation.

Figure 5.4 provides the comparison of total energy consumption when
varying maximum duration of VM requests. In this comparison, the max-
imum duration of VM requests is varying from 50 to 800 slots. It can be

18

seen that EST≥FFD>LLIF>OPT regarding total energy consumption in all
cases. As we expected, LLIF in our experiments performs better than the
theoretical worst case analysis of 2-approximation while it achieves results
close to OPT. This validates our theoretical analysis which implies that LLIF
incurs at most twice of the optimal in the worst case.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

50	
 100	
 200	
 400	
 800	

FFD	

EST	

LLIF	

OPT	

To
ta
l	
 p
ow

er
-­‐o
n	

<m

e	

(m

in
ut
es
)	

Max	
 dura<on	
 of	
 VMs	

Figure 5.5: The total power-on time (minutes) of all PMs

Figure 5.5 shows the comparison of total power-on time when varying
maximum duration from 50 to 800 slots of VM requests. It can be seen that
EST≥FFD>LLIF>OPT regarding total energy consumption in all cases.
Again results of LLIF are less than two times of results of optimal (OPT)
solution.

Since the total energy consumption is strongly related to the total power-
on time of all PMs, the similarity between Figure 5-4 and 5-5 are observed.
Figure 5.6 also shows the comparison of the total running time of three
algorithms EST, FFD and LLIF when the maximum duration of VMs is
varying from 50 to 800. It can be observed that the total simulation running
time of LLIF is slightly larger than both EST and FFD, while EST and FFD
have running time close to each other. This is because LLIF spends more
time on finding the longest load interval recursively as described in Algorithm
3.1. Also finding (theoretical) OPT results costs linear time with the total
loads on all slots and can be computed in much shorter time than EST, FFD
and LLIF. Note that the number of VM migrations in OPT is 2, 4, 6, 15, 27
when maximum duration varies from 50 to 800, respectively.

19

Max	
 dura(on	
 of	
 VMs

To
ta
l	
 r
un

ni
ng
	
 (
m
e	

(m

ic
ro
	
 se

co
nd

s)
	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

50	
 100	
 200	
 400	
 800	

FFD	
 EST	

LLIF	
 OPT	

Figure 5.6: The comparison of the total running time (in micro seconds) when varying the
maximum duration of VMs

5.4. Replaying with Real Traces

To be realistic, we utilized the log data of Parallel Workloads Archive
(PWA) [28]. Because of lack of real data sets, the PWA data after con-
version (stated in the text) can be representative of MinTEC model where
jobs are represented in tuples [start-time, end-time, demand capacity]. The
log contains months of records collected by a large Linux cluster. Each row
of data in the log file contains 18 elements; we only need the requestID,
start time, duration, and the number of processors in our simulation since
these features are consistent with our problem model. To enable those data
to be fit with our simulation, we convert the units from seconds in PWA
log file into minutes, because we set a minute as a time slot length. An-
other conversion is that the different number of processors in PWA log file
are corresponding to 8 types of VM requests. To simplify the simulation,
three types of heterogeneous PMs and eight types of VMs are considered
(can be dynamically configured and extended). We perform the simulation
with enough PMs so that all VM requests can be allocated without rejection.
Figure 5.7 and Figure 5.8 show the comparison of the total energy consump-
tion (in Kilo Watts hours, KWh for abbreviation) and total power-on time
(in minutes) respectively when varying the number of VMs using PWA [28]
data. In this comparison, the total number of VMs is varying from 1000 to
7000 while other settings are the same. The minimum and maximum number
of processors in the requests is 1 and 20, respectively. The average number

20

of processors is 12. It can be seen that EST≥FFD>LLIF>OPT regarding
total energy consumption in all cases. And results of LLIF are less than
two times of results of optimal (OPT) solution. Similar results as those by
synthetically generating data for four algorithms are observed.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	

EST	
 FFD	

LLIF	
 OPT	

The	
 number	
 of	
 VMs

En
er
gy
	
 C
on

su
m
pC

on
	
 (K

W
h)
	

Figure 5.7: The comparison of total energy consumption (in KWh) when varying the
number of VMs

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

20000	

1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	

EST	
 FFD	

LLIF	
 OPT	

The	
 	
 number	
 of	
 VMs

To
ta
l	
 p
ow

er
-­‐o
n	

Fm

e	

(m

in
ut
es
)

Figure 5.8: The comparison of total power-on time (in minutes) when varying the number
of VMs

21

To
ta
l	
 r
un

ni
ng
	
 ,
m
e	

(m

ic
ro
	
 se

co
nd

s)
	

The	
 number	
 of	
 VMs

-­‐2000	

3000	

8000	

13000	

18000	

23000	

28000	

33000	

38000	

43000	

48000	

1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	

EST	
 FFD	

LLIF	
 OPT	

Figure 5.9: The comparison of the total running time (in micro seconds) when varying the
number of VMs

Figure 5.9 shows the comparison of the total running time of three algo-
rithms EST, FFD and LLIF when the total number of VMs is varying from
1000 to 7000. It can be observed that the total simulation running time of
LLIF is slightly larger than both EST and FFD, while EST and FFD have
running time close to each other. This is because LLIF spends more time on
finding the longest load interval recursively as described in Algorithm 3.1.
Finding (theoretical) OPT results costs linear time with the total loads on
all slots and is negligible. Note that the number of VM migrations in OPT is
12, 23, 34, 87, 158 when the number of total VMs varies from 1000 to 7000,
respectively.

In the simulation and trace-driven tests by the same configurations, we
found that results of MFFDE are about 2%-10% more energy-saving than
FFD on the average and LLIF is about 5%-15% more energy-saving than
FFD on the average, this means LLIF is a few percentages more energy-
saving than MFFDE.

6. Related Work

For the background and general introduction of cloud computing and
energy-efficient scheduling, Beloglazov et al. [1] propose a taxonomy and
survey of energy-efficient data centers and Cloud computing, especially the
models for power consumption and energy consumption can be applied. Liu

22

et al. [12] present the GreenCloud architecture, which aims to reduce data
center power consumption while guaranteeing the performance from users’
perspective. Rings et al. [14] consider the opportunities for integrating Grid
and Cloud computing with the next generation networks and suggest related
standards. Rimal et al. [15] discuss architectural requirements for Cloud
computing systems from an enterprise approach. Nunez et al. [13] introduce
a simulator for Cloud infrastructure. Srikantaiah et al. [15] study the inter-
relationships between energy consumption, resource utilization, and perfor-
mance of consolidated workloads. Lee et al. [10] introduce two online heuris-
tic algorithms for energy-efficient utilization of resources in Cloud computing
systems by consolidating active tasks. Feller et al. [34] propose a novel fully
decentralized dynamic VM consolidation schema based on an unstructured
peer-to-peer (P2P) network of PMs. Guazzone et al. [5] consider a two-level
control model to automatically allocate resources to reduce the energy con-
sumption of web-service applications. You et al. [19] investigate QoS-aware
service redeployment problem (SRP) with objective to minimize the rede-
ployment cost and propose a novel heuristic algorithm. Saovapakhiran et al.
[16] design an algorithm for admission control and resource allocation in or-
der to deal with unreliably excessive computing resources. Manvi et al. [35]
bring out an exhaustive survey of resource scheduling techniques for IaaS in
cloud computing and also put forth the open challenges for further research.
Sharma et al. [36] present a thorough review of existing techniques for reli-
ability and energy efficiency and their trade-off in cloud computing. In [37],
Zhang et al. survey more than 150 articles in the latest years and review
the state art of the algorithms to realize these objectives. Baker et al. [38]
present a network-based routing algorithm to find the most energy efficient
path to the cloud data centre for processing and storing big data. Baker et
al. [39] develop a novel multi-cloud IoT service composition algorithm called
(E2C2) that aims at creating an energy-aware composition plan by searching
for and integrating the least possible number of IoT services, in order to fulfil
user requirements.

For online energy-efficient scheduling, Kim et al. [7] model a real-time
service as a real-time VM request, and use dynamic voltage frequency scaling
schemes for provisioning VMs in Cloud Data centers. Tian et al. [27] pro-
pose an online scheduling algorithm for the problem of immediate (on-spot)
requests.
As for offline energy-efficient scheduling, Beloglazov et al. [2] consider the

23

off-line VM allocation based on modified best-fit bin packing heuristics with-
out considering VM life cycles where the problem formulation is different
from our proposed one. Winkler et al. [18], Flammini et al. [4] and Khan-
dekar et al. [6] are closely related to our research and are earlier papers to
discuss this issue under general parallel machine scheduling context, and Ko-
valyov et al. [9] provide a comprehensive review for fixed interval scheduling
problem. The MinTEC problem is NP-hard in general case [18]. Winkler et
al. [18] show that the problem is NP-hard already for g=2, where g is the
total capacity of a machine in term of CPU. Flammini et al. [4] consider
the MinTEC scheduling problem where jobs are given as interval spans with
unit demand, for this version of the problem a 4-approximation algorithm for
general inputs and better bounds for some subclasses of inputs are provided.
Khandekar et al. [6] propose a 5-approximation algorithm for this scheduling
problem by separating all jobs into wide and narrow types by their demands
when α = 0.25, which is the demand parameter of narrow jobs occupying
the portion of the total capacity of a machine. A 3-approximation algorithm
is introduced in [32] for general offline parallel machine scheduling. Orgerie
et al [33] discuss energy-efficient reservation framework for distributed sys-
tems with consideration of switching off unused resources for energy saving
purposes and prediction algorithms employed to avoid useless off-on cycles.

Through extensive analysis of open literatures and references therein, we
found that there is still lack of research on VM reservations considering both
capacity and interval span constraints. Specifically, there is a need to con-
sider the allocation of VMs with full life cycle constraints, which is often
neglected [6, 12]. Since reservation services in Infrastructure as a Service
(IaaS) is one of the key services widely provided by many operators, it is
very important to develop energy-efficient resource scheduling [21].

7. Conclusions and future work

In this paper, an energy-efficient scheduling method for virtual machine
reservations is proposed. We proposed an optimal solution with the minimum
number of job migrations. Then we improved the best-known bound 3-
approximation to 2-approximation by introducing LLIF algorithm. Most of
our results are applicable to a single Cloud Data center as shown in Figure
1.1. As for federated systems, our results are readily applicable by considering

24

all machines in federated data centers. There are a few more open research
issues for the problem:

• Finding better near-optimal solution and providing theoretical proofs
for the approximation algorithms. Although the problem is NP-complete
in general, we conjecture there is near-optimal solution for it. As for ap-
proximation algorithms, the theoretical approximation ratio comparing
to optimal solution can be provided.

• Considering VM migration further and the energy consumption during
migration transitions periods. Applying limited number of VM mi-
grations, it is possible to reduce total energy consumption. However,
frequently migrating VMs can also cause network vibration so that only
limited number of VM migrations should be taken. For offline schedul-
ing, it is also possible to take a limited number of migrations when
allocation so that the total energy consumption can be reduced. We
will investigate this further and consider energy consumption during
migration.

• Combing energy-efficiency and load-balancing together. Just consider-
ing energy-efficiency may not be enough for real application because it
may cause problems such as unbalance load for each PM. So we will
combine load-balancing and energy efficiency together to provide an
integrated solution.

We are conducting research to further improve energy efficiency by
considering these issues.

Acknowledgments

This research is sponsored by the National Natural Science Foundation of
China (NSFC) (Grand Number:61672136, 61650110513, 61602434), Sicience
and Technology Plan of Sichuan Provice (2016GZ0322), Xi Bu Zhi Guang
Plan of Chinese Academy of Science (R51A150Z10). The problem statement
as presented in Section 2.2 is also discussed in our earlier paper [32] although
solutions provided in this paper are new.

25

References

[1] A. Beloglazov, R.Buyya, Y.C. Lee, and A.Y. Zomaya, A Taxonomy and
Survey of Energy-Efficient Data Centers and Cloud Computing Systems,
Advances in Computers, vol. 82, pp. 47-111, M. Zelkowitz (editor), Else-
vier, Amsterdam, The Netherlands, 2011.

[2] A. Beloglazov, J. Abawajy, R.Buyya Energy-Aware Resource Allocation
Heuristics for Efficient Management of Data Centers for Cloud Comput-
ing, Future Generation Computer Systems, vol. 28, no. 5, pp. 755-768,
2012.

[3] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, 1987. Bin-Packing
with Divisible Item Sizes, J. Complexity 3(1987), 406-428.

[4] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir and S. Zaks, S., Minimizing Total power-on time in Parallel
Scheduling with Application to Optical Networks, Theoretical Computer
Science. vol. 411 (40-42), pages 3553-3562, 2010.

[5] M. Guazzone, C. Anglano, M. Canonico, Energy-Efficient Resource Man-
agement for Cloud Computing Infrastructures, In Proceedings of 3rd
IEEE International Conference on Cloud Computing Technology and Sci-
ence, CloudCom 2011, pp.424-431, Nov. 29 2011-Dec. 1 2011, Athens.

[6] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir, Minimizing
power-on time in Multiple Machine Real-time Scheduling, IARCS An-
nual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010), Pages.169-180.

[7] K. Kim, A. Beloglazov, R. Buyya, Power-aware provisioning of virtual
machines for real-time Cloud services, Concurrency and Computation:
Practice and Experience, vol. 23, no. 13, pp. 1491-1505, 2011.

[8] J. G. Koomey, GROWTH IN DATA CENTER ELECTRICITY USE
2005 TO 2010, technical report, August 1, 2011.

[9] M. Y. Kovalyov, C.T. Ng, E. Cheng, Fixed interval scheduling: Models,
applications, computational complexity and algorithms, European Journal
Of Operational Research, vol. 178, no. 2, pp. 331-342, 2007.

26

[10] Y.C. Lee, A.Y. Zomaya, Energy Efficient Utilization of Resources in
Cloud Computing Systems, Journal of Supercomputing, vol. 60, no. 2,
pp. 268-280, 2012.

[11] K. Li, Optimal power allocation among multiple heterogeneous servers
in a data center, Sustainable Computing: Informatics and Systems 2
(2012) 13-22.

[12] L. Liu, H. Wang, X. Liu, X. Jin, W.B. He, Q.B. Wang, Y. Chen, Green-
cloud: a new architecture for green data center, Proceedings of 6th In-
ternational Conference Industry Session on Autonomic Computing and
Communications Industry Session, ICAC-INDST’09, pages 29-38, New
York, NY, USA, 2009. ACM.

[13] A.Nunez, J.L. Vzquez-Poletti, A.C. Caminero, G. G. Casta, J. Car-
retero, I.M. Llorente, J. Carretero, I. M. Llorente, iCanCloud: A Flexible
and Scalable Cloud Infrastructure Simulator, Journal of Grid Computing
(2012) 10:185-209.

[14] T. Rings, G. Caryer, J. Gallop, J. Grabowski, T. Kovacikova, S. Schulz,
I. Stokes-Rees, Grid and Cloud Computing: Opportunities for Integration
with the Next Generation Network, Journal of Grid Computing (2009)
7:375-393.

[15] B. P. Rimal , A. Jukan , D. Katsaros , Y. Goeleven, Architectural
Requirements for Cloud Computing Systems: An Enterprise Cloud Ap-
proach, Journal of Grid Computing March 2011 , Volume 9 , Issue 1 , pp
3-26.

[16] B. Saovapakhiran, M. Devetsikiotis, Enhancing Computing Power by
Exploiting Underutilized Resources in the Community Cloud, In Proceed-
ings of IEEE International Conference on Communications (ICC 2011),
pp. 1-6, 5-9 June 2011, Kyoto.

[17] S. Srikantaiah, A. Kansal, F. Zhao, Energy Aware Consolidation for
Cloud Computing, In Proceedings of the 2008 conference on Power aware
computing and systems, pp. 1-10, USENIX Association Berkeley, CA,
USA.

[18] P. Winkler, L. Zhang, Wavelength assignment and generalized interval
graph coloring. In SODA, pages 830-831, 2003.

27

[19] K. You, Z. Qian, S. Guo, S. Lu, D. Chen, QoS-aware Service Redeploy-
ment in Cloud, In Proceedings of In Proceedings of IEEE International
Conference on Communications,ICC 2011, pp. 1-5, 5-9 June 2011, Kyoto.

[20] L. Youseff, et al., Toward A Unified Ontology Of Cloud Computing, In
Proceedings of Grid Computing Environments Workshop, GCE’08, pp.1-
10, 12-16 Nov. 2008, Austin, TX.

[21] Amazon EC2, http://aws.amazon.com/ec2/.

[22] DMTF Cloud Management, http://www.dmtf.org/standards/cloud

[23] Google App Engine, https://cloud.google.com/

[24] IBM blue cloud, http://www.ibm.com/grid/

[25] Microsoft Windows Azure, http://www.microsoft.com/windowsazure

[26] VMWare, http://www.vmware.com/

[27] WH.Tian, Q. Xiong, J. Cao, An Online Parallel Scheduling Method
With Application to Energy-Efficiency in Cloud Computing, Journal of
Supercomputing, December 2013, Volume 66, Issue 3, pp 1773-1790.

[28] Parallel Workloads Archive, www.cs.huji.ac.il/
labs/parallel/workload, Last Access, April 2013.

[29] T. Knauth, C. Fetzer, Energy-aware Scheduling for Infrastructure
Clouds, In Proceedings of CloudCom 2012, pp. 58-65, IEEE Computer
Society Washington, DC, USA.

[30] WH. Tian, Y. Zhao, MX. Xu, YL. Zhong, XS. Sun, A Toolkit For Mod-
eling and Simulation of Real-time Virtual Machine Allocation in a Cloud
Data Center, IEEE Transactions on Automation Science and Engineer-
ing,(Online, July 2013), pp.153-161, Volume 12, Number 1, January 2015.

[31] V. Mathew, R. K. Sitaraman and P.Shenoy, Energy-Aware Load Bal-
ancing in Content Delivery Networks, In Proceedings of INFOCOM 2012,
25-30 March 2012, pp. 954-962, Orlando, FL.

28

[32] WH. Tian, and CS. Yeo, Minimizing total busy-time in offline parallel
scheduling with application to energy efficiency in cloud computing, Con-
currency and Computation: Practice and Experience, online first, Nov.,
2013.

[33] A.C.Orgerie. An Energy-Efficient Reservation Framework for Large-
Scale Distributed Systems, PhD Thesis, Feb 20, 2012.

[34] E.Feller, C. Morin, A. Esnault, A Case for Fully Decentralized Dynamic
VM Consolidation in Clouds, Research Report n8032, August 2012.

[35] S. S. Manvi, G.K. Shyam, Resource management for Infrastructure as
a Service (IaaS) in cloud computing: A survey, Journal of Network and
Computer Applications, Volume 41, May 2014, Pages 424-440.

[36] Y. Sharma, B. Javadi, W. Si, D.Sun,Reliability and energy efficiency in
cloud computing systems: Survey and taxonomy, Journal of Network and
Computer Applications, Volume 74, October 2016, Pages 66-85.

[37] Jiangtao Zhang, Hejiao Huang, Xuan Wang, Resource provision algo-
rithms in cloud computing: A survey, Journal of Network and Computer
Applications, Volume 64, April 2016, Pages 23-42.

[38] T.Baker,B.Al-Dawsari, H.Tawfik,D.Reid, Y.Ngoko,GreeDi: An en-
ergy efficient routing algorithm for big data on cloud. Ad Hoc Net-
works,Volume 35, December 2015, Pages 83-96.

[39] Thar Baker, Muhammad Asim, Hissam Tawfik,Bandar Aldawsari, Ra-
jkumar Buyya An energy-aware service composition algorithm for mul-
tiple cloud-based IoT applications, Journal of Network and Computer
Applications, Volume 89, 1 July 2017, Pages 96-108.

29

Figure 7.10:

Figure 7.11:

Dr. Wenhong Tian has a PhD from Computer Science Department of
North Carolina State University. He is a professor at University of Electronic
Science and Technology of China. His research interests include dynamic
resource scheduling algorithms and management in Cloud Data Centers, dy-
namic modeling and performance analysis of communication networks. He
published about 40 journal and conference papers, and 3 English books in
related areas. He is a member of ACM, IEEE and CCF.

Mr. Majun He is a master student at University of Electronic Science and
Technology of China. His research interests include approximation algorithm
for NP-hard problems, and scheduling algorithms for BigData processing
platforms such as Spark.

Ms.Wenxia Guo is a PhD candidate at University of Electronic Science
and Technology of China. Her research interests include approximation al-
gorithm for NP-hard problems, and scheduling algorithms for resource allo-
cation in Cloud Computing and BigData processing.

Mr. Wenqiang Huang is a master student at University of Electronic Sci-
ence and Technology of China. His research interests include approximation
algorithm for NP-hard problems, and scheduling algorithms for resource allo-
cation in Cloud Computing and deep learning platforms such as Tensorflows.

30

Figure 7.12:

Figure 7.13:

Figure 7.14:

31

Figure 7.15:

Figure 7.16:

Dr. Xiaoyu Shi is an associate researcher at Chongqing Institute of Green
and Intelligent Technology, Chinese Academy of Sciences,Chongqing,China
. His research interests include cheduling algorithms for energy efficiency in
Cloud Computing and deep learning platforms.

Dr. Mingsheng Shang is a researcher at Chongqing Institute of Green
and Intelligent Technology, Chinese Academy of Sciences,Chongqing,China .
His research interests include recommendation systems, Bigdata processing
and deep learning.

Dr. Adel Nadjaran Toosi is a Research Fellow/Lecturer at the dept. of
Computing and Information Systems of the University of Melbourne, Aus-
tralia. He received his PhD degree in 2014 from the dept. of Computing and
Information Systems of the University of Melbourne. His research interests
include Distributed Systems, Cloud Computing, Cloud Federation and Inter-
Cloud. His main focus is on pricing strategies, market and financial solutions
for Cloud computing. Currently, he is working on economic aspects of the
Inter-Cloud project, a framework for federated Cloud Computing.

Prof. Rajkumar Buyya is Professor of Computer Science and Software
Engineering, Future Fellow of the Australian Research Council, and Director
of the Cloud Computing and Distributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Australia. He has authored over 450 publi-

32

Figure 7.17:

cations and four text books. He is one of the highly cited authors in com-
puter science and software engineering worldwide (h-index=87, g-index=176,
37500+ citations). Microsoft Academic Search Index ranked Pr. Buyya as
the world’s top author in distributed and parallel computing between 2007
and 2012.

33

Input: A Job instance J={j1, j2, . . . , jn}, and g, the maximum
capacity g of a machine

Output: The scheduled jobs (ji), total power-on time (Ton) of all
machines, the number of total PMs (H) used, and the
number of migrations Vi in each slot i.

1 Sort all jobs in non-decreasing order of their start-time (si for job i),
such that s1 ≤ s2... ≤ sn, set H=1;

2 forall the slots under consideration do
3 Consider Divisible Capacity, represent the load of slot i by dlie

(the minimum number of machines needed for it, taking integral
value by ceiling function)

4 end
5 forall the jobs under consideration do
6 Find the longest continuous interval with the same load first,

denoted as [z1, z2];
7 forall the jobs either started or ended in [z1, z2] do
8 separating jobs into end-time first (ETF) and start-time first

(STF) groups, consider the longest job first in the same group;
9 if li is not reached in all slots of this interval then

10 allocate to the first machine, open a new machine and set
H=H+1 if needed;

11 else
12 forall the slots that the minimum number of machines

will be more than li by new allocation do
13 the allocation is migrated to an existing machine

which still have available capacities (g is not fully
used) in those slots, updates the number of
migrations (Vi) in each slot in [z1, z2].

14 end

15 end

16 end
17 update the load of MH , remove allocated jobs;

18 end
19 Ton=

∑
(Ti);

20 Return the set of machines used, and the total power-on time of all
machines

21 end

Algorithm 2.1: OPT-Min-Migration

34

Input: A Job instance J={j1, j2, . . . , jn}, the maximum capacity g of
a machine

Output: The scheduled jobs (ji), the number of total PMs (H) used
and total power-on time (Ton) of all machines

1 Sort all jobs in non-decreasing order of their start-time (si for job i),
such that s1 ≤ s2... ≤ sn, set H=1;

2 forall the slots under consideration do
3 Consider Divisible Capacity, represent the load of slot i by dlie

(the minimum number of machines needed for it, taking integral
value by ceiling function)

4 end
5 forall the jobs under consideration do
6 Find the longest continuous interval with the same load first,

denoted as [z1, z2];
7 forall the jobs either started or ended in [z1, z2] do
8 separating jobs into end-time first (ETF) and start-time first

(STF) groups, consider the longest job first in the same group;
9 allocate to the first machine, open a new machine and set

H=H+1 if needed;
10 end
11 update the load of MH , remove allocated jobs;

12 end
13 Count the workload and power-on times of all machines ;
14 Return the set of machines used, and the total power-on time of all

machines
Algorithm 3.1: Longest Loaded Interval First (LLIF)

35

Table 1: 8 types of virtual machines (VMs) in Amazon EC2

MEM (GB) CPU (units) Storage(GB) VM Type

1.875 1 (1 cores x 1 units) 211.25 1-1(1)
7.5 4 (2 cores x 2 units) 845 1-2(2)
15.0 8 (4 cores x 2 units) 1690 1-3(3)
17.1 6.5 (2 cores x 3.25 units) 422.5 2-1(4)
34.2 13 (4 cores x 3.25 units) 845 2-2(5)
68.4 26 (8 cores x 3.25 units) 1690 2-3(6)
1.7 5 (2 cores x 2.5 units) 422.5 3-1(7)
6.8 20 (8 cores x 2.5 units) 1690 3-2(8)

Table 2: 3 types of PMs for strongly divisible capacity configuration

PM CPU (units) MEM (GB) Storage(GB)

1 16 (4 cores x 4 units) 30 3380
2 52 (16 cores x 3.25 units) 136.8 3380
3 40 (16 cores x 2.5 units) 14 3380

Table 3: 3 types of PMs With Energy Consumption Metrics

PM CPU (units) MEM (GB) Storage (GB) Pmin Pmax

1 16 30 3380 210 300
2 52 136 3380 420 600
3 40 14 3380 350 500

36

