

Auto-scaling Web Applications in Clouds: A Cost-Aware Approach

Mohammad Sadegh Aslanpour
a, *

, Mostafa Ghobaei-Arani
b, *

, Adel Nadjaran Toosi
c

a Department of Computer Engineering, Jahrom Branch, Islamic Azad University, Jahrom, Iran
b Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

c Cloud Computing and Distributed Systems Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

Abstract

The elasticity feature of cloud computing and its pay-per-use pricing entice application providers to use cloud application hosting.

One of the most valuable methods, an application provider can use in order to reduce costs is resource auto-scaling. Resource auto-

scaling for the purpose of preventing resource over-provisioning or under-provisioning is a widely investigated topic in cloud

environments. The Auto-scaling process is often implemented based on the four phases of MAPE loop: Monitoring (M), Analysis

(A), Planning (P) and Execution (E). Hence, researchers seek to improve the performance of this mechanism with different solutions

for each phase. However, the solutions in this area are generally focused on the improvement of the performance in the three phases

of the monitoring, analysis, and planning, while the execution phase is considered less often. This paper provides a cost saving super

professional executor which shows the importance and effectiveness of this phase of the controlling cycle. Unlike common

executors, the proposed solution executes scale-down commands via aware selection of surplus virtual machines; moreover, with its

novel features, surplus virtual machines are kept quarantined for the rest of their billing period in order to maximize the cost

efficiency. Simulation results show that the proposed executor reduces the cost of renting virtual machines by 7% while improves the

final service level agreement of the application provider and controls the mechanism’s oscillation in decision-making.

Keywords: Auto-Scaling, Resource Provisioning, Cloud Resource, Cost-Aware, Web Application, Service Level Agreement (SLA)

1. Introduction

With the rapid development of cloud computing, nowadays, instead of purchasing computing infrastructure, many

application providers (APs) tend to host their applications on cloud resources offered by cloud providers (CPs). Cloud

providers such as Amazon EC2 [1] offer resources to the AP in the form of Virtual Machines (VMs) with the scalability

feature and pay-per-use charging model [2-4]. The AP, the application, and application users can be a webmaster,

online store website, and end users, respectively.

Since the AP, in particular, the Web application provider is aware of the dynamics of the Web environment and end

users requests, static resource provisioning is not efficient. The reason is that in static resource provisioning, with

increased rate of incoming user requests, resource under-provisioning occurs which consequently results in interruption

or delayed response to user requests. On the other hand, in the period of reduced traffic, the issue of resource over-

provisioning occurs and as a result increased AP costs arise [4, 5]. Therefore, considering the various pricing models in

the cloud [4, 6], the AP usually prepays a minimum number of resources for its permanent and long-term needs to

receive a discount for this type of rental (for example, reserved instances in EC2 receive a discount of up to 75%).

Consequently, with load fluctuations, the AP seeks to use the short-term rental model to cover its temporary needs (for

example on-demand machines in the form of pay per hourly use). However, this approach is not enough as it requires a

mechanism capable of automatically determining the capacity and the number of rented on-demand resources

proportional to the incoming load [7].

Presentation of an efficient auto-scaling mechanism is a research topic which is mainly faced with the challenge of

maintaining a balance between cost reduction and the Service Level Agreement (SLA). IBM proposes a model for

autonomous management of auto-scaling mechanism in the form of MAPE (Monitor-Analyze-Plan-Execute) loop as a

reference model [8]. The MAPE loop model can be applied to implement a cloud web application system which knows

its state and reacts to its changes. Therefore, the majority of auto-scaling mechanisms are based on the MAPE loop [2,

4, 9-11]. MAPE-based mechanisms constantly repeat the four general processes of the monitoring, analysis, planning,

and execution, in a way that a monitor iteratively gathers information about resources, for example, the status of

resource utilization. After monitoring, the auto-scaling mechanism indicates the analysis process [4] to start which can

* Corresponding author.

E-mail address: (M. S. Aslanpour)aslanpour.sadegh@gmail.com; (M. Ghobaei-Arani)mostafaghobaye@yahoo.com, m.ghobaei@qom-iau.ac.ir

mailto:aslanpour.sadegh@gmail.com
mailto:mostafaghobaye@yahoo.com
mailto:m.ghobaei@qom-iau.ac.ir

be simple or complicated; simple analysis is the use of raw information obtained by the monitor, while complex

analysis discovers knowledge from information using methods such as artificial intelligence or machine learning [7,

12]. Afterward, by matching obtained analyses to a series of rules predefined by the AP, the planner makes scale-up or

down decisions (rule-based planner [4]). The final phase of the MAPE cycle is the execution of the decision by the

executor. This is when the auto-scaling mechanism needs to send a request for instantiation of a new VM or release of

the one of the VMs previously rented from the CP. This research focuses on improving the performance of the executor

in the resource auto-scaling mechanism with a cost-aware approach.

The motivation behind the improvement of the executor’s performance lies in the following: Thanks to the

possibility of selecting different types of VMs with various capacities, APs can rent a large number of VMs of different

types simultaneously; considering the intense workload fluctuation in the Web environment, this is highly possible to

happen [13]. That said, if the auto-scaling mechanism makes a scale-down decision, the executor needs to select from a

diverse set of rented VMs and release one. The basic question posed here is whether it matters which VM is selected? If

the answer is yes, what policy is the best to be used for this selection? Unlike Amazon’s auto-scaling policy that always

selects the oldest VM for release (as default executor) and according to the dark spots seen in related research [10, 14-

23], this selection should be made cautiously and rigorously. This is because, firstly, the CP calculates partial billing as

full billing (billing cycle) [24, 25]. For example, in the EC2 service, billing is carried out on an hourly basis and the

release of a VM for a duration of 4 hours and 1 minute would result in billing for 5 hours. Therefore, policy making for

minimizing the minutes wasted in the release of surplus VMs is an important economic matter for the AP. Secondly,

due to unresolved load balancing challenges [26], candidate VMs are probably processing different workloads and the

influence of releasing each VM on the SLA would vary. Hence, the first purpose of the present research is to employ

novel policies, especially cost saving ones, in the selection of surplus VMs (professional executor).

A research gap can be still seen after the selection of the surplus VM and before its release. On the one hand, it is

likely that the selector did not manage to find a VM with exactly X hours of use. In this situation, the release of that VM

would impose extra costs. On the other hand, a scale-up decision may be made immediately after the release of the

surplus VM; in this case, the delayed startup of the new VM is a challenge which negatively affects SLA [2-4]. Due to

the unpredictability of the Web environment [27, 28] or maladjustment of scaling rules [4], it is highly likely that the

mechanism to be affected by contradictory actions when the mechanism is in an oscillation condition [2, 4]. As a result,

the following hypothesis is put forward: If the selected surplus VM stays rented by the AP until the last minute of the

bill, it can possibly be used for the improvement of the scaling mechanism’s performance. Therefore, the other goal of

this research is to offer an executor with the ability to quarantine the surplus VM until the billed hour is completed in

order to resolve the challenge of delayed VM startup (super professional executor - Suprex). This is while to date,

researchers merely considered benefits of vertical scaling or applying cooling time in the execution of the commands as

the method for overcoming this challenge [4].

This paper presents a scaling mechanism equipped with a super professional executor (Suprex) with a cost-aware

approach. We seek to show that the execution phase of the MAPE cycle can play an effective role in cost saving. We

explain all four phases as they are required for the full implementation of the auto-scaling mechanism. This is also

required for better understanding of the paper. The auto-scaling mechanism offered in this research is different from

others where the focus is mainly on improving the mechanism’s performance in the monitoring, analysis, and planning

phases rather than the execution phase. The reason why the execution phase was overlooked lies in the fact the actions

are often considered under the control of the CP and the CP is considered as a black box. However, by applying an

architecture with full control [29] from the AP’s perspective, the power is granted to the AP in the execution of all

scaling commands. The main contributions of this research are as follows:

 We designed an auto-scaling mechanism based on the MAPE concept for Web applications,

 We enhanced the effectiveness of the execution phase of the control MAPE loop with a cost-aware approach,

 We provided an innovative solution for overcoming the challenges of delayed VM startup,

 We designed an executor in order to mitigate oscillation and increase the stability of the mechanism, and

 We conducted a series of experiments to evaluate the performance of proposed approach under real-world workload

traces for different metrics.

The rest of the article is organized as follows: Section 2 provides the necessary background. Section 3 includes

related work; Section 4 fully explains the proposed approach. Section 5 simulates and evaluates the performance of the

Suprex executor. Finally, Section 6 presents conclusions and future work.

2. Background

This section provides a brief overview of autonomic computing and application adaptation.

2.1. Autonomic Computing

The increasing complexity of computer systems makes it essential to handle them autonomically. IBM’s Autonomic

Computing Initiative has helped to define the four properties of autonomic systems: self-configuration, self-

optimization, self-healing, and self-protection [8]. Cloud computing providers manage their data centers in an efficient

way, taking cues from well-established autonomic computing practices. Particularly, tasks like VM provisioning,

disaster recovery, capacity management, etc. are performed autonomically [30]. To effectively manage cloud deployed

web applications, we need to react to regularly occurring or anticipated events in the system [31]. In [8], IBM proposes

a model for autonomous management in the form of an autonomic MAPE-K loop as a reference model. The MAPE-K

loop model can be applied to implement a cloud web application system which knows its state and reacts to changes in

it. This model details different components that allow an autonomic manager to self-manage properties, namely

Monitor, Analyze, Plan, Execute and Knowledge [32]. The MAPE-K loop model is depicted in Fig.1 and discussed in

the remaning part of this section.

Fig. 1: The control MAPE-K loop.

The MAPE-K loop model is applied to auto-scaling of web applications in the cloud environment. The auto-scaling

process of web applications matches the MAPE-K loop model, which dynamically adapt the resources assigned to the

web applications, depending on the input workload [4, 33]. The autonomic manager interacts with the managed element

(e.g., web application resources) through two interfaces that are the sensors and effectors to supervise and act on the

system, respectively

The MAPE-K loop model consists of four phases: Monitoring (M), Analysis (A), Planning (P) and Execution (E).

Monitoring phase involves capturing properties of the managed element that can be software or hardware components

used to perform monitoring; they are called sensors. The monitor component is responsible for collecting information

about the metrics of the low-level metrics (e.g., CPU utilization, memory usage, and network traffic, etc.) and high-

level metrics (e.g., rate of request arrival, type of requests, size of requests, etc.) during the monitoring phase. These

different sets of monitoring parameters are stored in a knowledge base for use by other components. The knowledge

base in the MAPE-K loop model shares data between the actual MAPE phases. The analysis phase is responsible for

processing the information gathered directly from the monitoring phase. During the analysis phase, the system

determines whether it is necessary to perform scaling actions based on the monitored information. The planning phase

is responsible for the estimation of the total number of resources to be provisioned/de-provisioned in the coming scaling

action. It follows rules that can be as simple as an event-condition-action policy, which is easy to implement and fast to

compute, or take the form of utility functions, which try to optimize a given property of the managed systems. The

execution phase is responsible for executing the actions decided in the planning phase. It can be implemented by the

automation APIs (i.e., effectors) available for the environment and the runtime configurability of the cloud web

application.

2.2. Application Adaptation

The migration of existing applications to the cloud environment requires adapting them to a new computing

paradigm [34]. Many applications are not ready to be moved to cloud because the environment is not mature enough for

this type of applications [35, 36]. The focus of most existing works is on migration of the entire application to the cloud

environment based on virtualization technology and using of VMs as the means for migration and running it in the

cloud environment. This way, the adaptation of the application is limited to the method that the application manages its

resources [34]. Application adaptation in this domain is designated to how to manage a dynamic amount of VMs in

trade-off with the cost of resources. Nowadays, the cloud web applications are often deployed and executed on a cloud

infrastructure which provides a convenient on-demand approach for renting resources and easy-to-use horizontal scaling

capabilities. The workload of cloud web applications is continuously changing over time and unexpected peaks of

requests can happen which makes the system incapable of responding to these unpredicted changes. For this reason, the

autonomic adaptation is an emerging solution to automatically adapt the resources allocated to the application according

to the incoming traffic, CPU-utilization, and other metrics [37].

In this paper, we apply the MAPE-K loop model to the autonomic adaptation of cloud web applications. A concrete

example of automatic infrastructure management is Amazon’s Auto Scaling [38], which manages when and how an

application’s resources should be dynamically increased or decreased. Furthermore, this paper focuses specifically on

the Execution phase. In other words, the system is monitored, analyzed and the adaptation plan is produced that is

executed by a super professional executor (Suprex) with a cost-aware approach.

3. Related Works

This section is an overview of related works in the field of auto-scaling for web applications. It is centered on the

studies focused on each MAPE phase and applied techniques. Note that research is considered to be focused on the

analysis phase if it benefits from complex analysis, e.g., neural networks; research is considered to be focused on the

planning phase if planning regarding the capacity and the number of resources is conducted based on several scaling

indicators. In the analysis phase, the analysis is carried out with reactive or proactive policies. In the planning phase, the

decisions are made by two categories of scaling indicators: (1) low-level scaling indicators, at the hypervisor/physical

level; (2) high-level scaling indicators, which are related to the application criteria. For scaling decision-making in the

planning phase, different techniques such as rule-based decisions, analytical modelling, and machine learning are often

used for resource estimation. Moreover, in the execution phase, scaling is done with horizontal and vertical methods

which work with replication-based and resizing-based techniques, respectively.

3.1. Works focused on the analysis phase of MAPE

Focusing on the analysis of resource utilization using the neural network and linear regression, Islam et al.[14]

studied the issue of resource provisioning. Huang et al. [15] also paid attention to proactive analysis of scaling

indicators and took advantage of Double Exponential Smoothing to predict resource utilization. Bankole et al. [16] and

Ajila et al.[17] focused on the analysis of indicators with several neural networks. Moreover, other than utilization, they

considered the scaling indicators of throughput and response time. In another work, Kaur and Chana [39] sought to

focus on analysis and planning phases (with more effort in the analysis phase). They offered a complete analysis of

effective indicators and conducted resource capacity planning using a decision tree. Mohamed et al. [9] investigated a

MAPE cycle-based scaling mechanism with a purely reactive policy using the scaling indicator of the response time.

Because their method is reactive, it faces challenges at the time of reconfiguration. Herbst et al. [18] analyzed the

workload in a way that in each monitoring stage, a prediction method is selected with the least errors (proactive policy);

the categorization of prediction methods from simple to complex is an important contribution of this study. In a

different work, with a focus on the analysis of workload properties, Singh and Chana [21] conducted a study on

workload clustering and its distribution between resources considering the QoS features of each workload. Assunção et

al. [23] analyzed user patience on auto-scaling with a proactive policy. Toosi et al. [40] propose a reactive auto-scaling

mechanism working based on threshold-based rules to help their load balancing approach for utilization of renewable

energy.

3.2. Works focused on the planning phase of MAPE

Casalicchio and Silvestri [29] focused on both analysis and planning phases (with more focus on the planning phase)

and studied the performance of different architectures by presenting 5 scaling rules (rule-based resource estimation).

García et al. [20] tried to improve the planner to reduce the cost and maximize QoS with a reactive SLA-aware policy.

Qavami et al. [19] also tried to improve the planner, but they used a resource-aware approach utilizing machine

learning. Focusing on the analysis of resource capacity, Fallah et al. [22] used learning automata and conducted

resource planning with a reactive and proactive method. Beltrán [41] considered planning for vertical and horizontal

scaling; he provided an automated resource provisioning framework for multi-tier cloud applications with an approach

to the realization of user needs and reducing AP costs. Moltó et al. [42] conducted scaling planning with the possibility

of horizontal and vertical scaling. They improved planning using oversubscription and live migration techniques. In

another effort, Ghobaei-Arani et al. [10] provided a resource provisioning framework based on the MAPE concept;

their focus was on the planning phase where they predicted the future of resource utilization with the help of a learning

automata. Aslanpour and Dashti [43, 44] sought to improve the mechanism’s performance with two-sided planning

based on resource utilization and SLA status with a combined reactive and proactive policy. Lastly, Moldovan et al.

[24] analyzed cost and cost-aware decision-making for releasing surplus VMs based on cost saving, while none of the

other indicators effective in decision-making, such as resource utilization or user response time were considered.

In general, the majority of research investigate scaling indicators [14-18, 21-23], most others improve the planner [9,

10, 19, 20, 41-43], and some improve both phases [29, 39]. Since the monitoring phase is merely the collection of

information for other steps, it cannot be considered as a research focus. Anyway, solutions are rarely provided for the

improvement of the executor. Casalicchio and Silvestri [29] were the only ones who considers the execution of scale-

down commands according to the status of the last hour. Moltó et al. [42] executed scale-up commands using the

unused capacity of other VMs with an oversubscription policy. In studies by Aslanpour and Dashti [43], Aslanpour and

Dashti [44], and Moldovan et al. [24], scale-down decisions are executed by selecting the surplus VM with Last Up

First Down (LUFD or the youngest VM), First Up First Down (FUFD or the oldest VM), and cost-aware methods,

respectively. Table 1 shows a summary of related works according to their proposed approaches, the extent of their

focus on the four phases of MAPE, and used techniques.

Table 1: Overview of related works in the field of auto-scaling

Study (Research) Approach Focused Phase Technique

M
o

n
ito

r
in

g

A
n

a
ly

sis

P
la

n
n

in
g

E
x
e
c
u

tio
n

Policy Scaling

Indicator

Resource

Estimation

Scaling

Method

Islam et al. [14] Load prediction  Proactive Low level Machine learning Horizontal

Huang et al. [15] Resource-aware  Proactive Low level Machine learning Horizontal

Bankole and Ajila [16] Resource-aware  Proactive Hybrid Machine learning Horizontal

Ajila and Bankole [17] Resource-aware  Proactive Hybrid Machine learning Horizontal

Casalicchio and Silvestri [29] Resource-aware  Reactive Hybrid Rule-based Horizontal

Mohamed et al. [9] SLA-aware  Reactive High level Rule-based Horizontal

Herbst et al. [18] Load prediction  Proactive High level Rule-based Horizontal

García et al. [20] SLA-aware  Reactive High level Rule-based Horizontal

Qavami et al. [19] Resource-aware  Proactive Low level Machine learning Horizontal

Singh and Chana [21] SLA-aware  Proactive Hybrid Analytical

modelling

Horizontal

Fallah et al. [22] Resource-aware  Hybrid Low level Machine learning Horizontal

Kaur and Chana [39] SLA-aware  Hybrid Hybrid Analytical

modelling

Horizontal

Beltrán [41] Resource-aware  Reactive High level Analytical

modelling

Hybrid

Ghobaei-Arani et al. [10] Resource-aware  Proactive Low level Machine learning Horizontal

Assunção et al. [23] Load prediction  Proactive Hybrid Rule-based Horizontal

Moldovan et al. [24] Cost-aware  Proactive Low level Rule-based Horizontal

Moltó et al. [42] Resource-aware  Reactive Low level Analytical

modelling

Hybrid

Aslanpour and Dashti [43, 44] SLA-aware  Hybrid Hybrid Rule-based Horizontal

Toosi et al.[40] Resource-aware  Reactive Low level Rule-based Horizontal

Proposed Cost-aware  Hybrid Hybrid Rule-based Horizontal

4. Proposed approach

This section details the proposed scaling mechanism equipped with a Suprex executor. This mechanism conducts its

operation based on the MAPE concept with an approach to cost-saving and exploitation of surplus resources.

Afterward, the problem formulation is explained and the algorithm needed for the implementation of the proposed

mechanism is presented.

4.1. Auto-scaling mechanism

An overview architecture of cloud-based web applications can be seen in Fig. 2. In this architecture, the three entities

of the end user, AP, and CP interact with each other using a top-down strategy. The end users send their request to the

Web application via devices connected to the Internet. The AP forwards the incoming request to the VM provisioned

for the application tier via the load balancer. The web application has a three-tier architecture and an independent VM is

generally provisioned for each tier. User requests can have access to different tiers for response. After processing, VMs

deliver the appropriate response to the user. The AP has an auto-scaling mechanism by which it determines the number

of required VMs considering the fluctuation in the incoming load. The contribution of this research lies in the

improvement of the auto-scaling mechanism in the execution phase. CP is in the lowest layer of the cloud environment

architecture and provides the AP with computational resources in the form of VMs with the pay per use charging

model.

Cloud Resource Auto-scaling is constantly possible within four phases of MAPE (see Fig. 2). If the planner’s

interpretation of the analyses is resource under-provisioning, the executor acts on adding a new VM. On the other hand,

if the planner’s interpretation of the analyses is resource over-provisioning, the executor acts on releasing a VM by

selecting a VM from on-demand VMs and releasing it. This section continues with the explanation of the innovative

aspects of the proposed mechanism - the improvement of the execution of scaling commands by Suprex.

In order to differentiate the novel features of Suprex, the common (default) executor in auto-scaling mechanisms is

first shown. Afterward, the aware surplus VM selection feature in the execution of scale-down commands is added to it

for cost saving purposes (professional executor). Finally, the proposed Suprex executor is completed by adding the

surplus VM quarantine feature in order to overcome the challenge of delayed startup of new VMs.

Fig. 2: An overview architecture of cloud-based web applications

4.1.1. Default executor

The common executor in research adopts the scaling commands from the planner without applying any specific

policy (see Fig. 3a). However, the most important drawback of this approach is that selection of surplus VMs for release

happens without specific strategy; that is, in the Default executor, the selection is conducted randomly or in a better

case, with LUFD [43] or FUFD [44] policies.

4.1.2. Professional executor

Through an aware selection of surplus VMs while executing scale-down commands, the Professional executor fills

the gap in the behavior of the Default executor. Thus, as it can be seen in Fig. 3b, this executor benefits from an internal

part called surplusVMSelector for aware selection of surplus VMs. This is important from two aspects:

 Since CPs consider partial billing cycles for rented VMs as a full billing cycle [24], why not select the VM with

greater use of its last billing cycle? This fact and the attempt to minimize wasted minutes lays the groundwork for

providing a cost-aware surplus VM selection policy.

 There are VMs with unequal loads, the release of each has a different impact on the SLA. This is inevitable for two

reasons: firstly, load balancing challenges in the cloud [26], and secondly three-tiers architecture of Web applications

which requires a different service time for each tier [4, 39]. This issue lays the groundwork for the load-aware

surplus VM selection policy.

Therefore, aware selection of surplus VMs is realized with cost-aware and load-aware policies in the proposed

Professional executor.

4.1.3. Super Professional Executor

In the surplus VM selection policy, the Professional executor aims to select the VM with the greatest utilization of

the last hour of use. Since it is possible that none of the candidate VMs have exactly X hours of use (according to the

Amazon’s pattern) [24], waste of cost is still possible for the AP. The solution for this issue and turning it into an

opportunity is to quarantine the surplus VM for the AP until the invoice period is completed (see Fig. 3c). Therefore,

other than applying specific policies in surplus VM selection, Suprex sends surplus VMs to quarantine (rather than

immediate release).The advantage of quarantining surplus VMs is that if, for example, the elapsed time of renting the

VM is 5 hours and 20 minutes, by quarantining it during the remaining 40 minutes before the release deadline, it can be

utilized if the planner makes a scale-up decision during this 40 minutes (due to the intensity of the incoming load,

maladjusted rules, or contradictory actions in the mechanism), this VM can be restored and utilized.

In order to manage quarantined VMs, Suprex requires an updater to check the release deadline of quarantined VMs

every minute and release them on the due time. The updater is placed at the end of the MAPE cycle so that if scale-up

decisions and the release deadline of a VM coincide, the VM is restored before it is released (Fig. 3c). This can prevent

SLA violation caused by the startup of a new VM through a timely restore of the quarantined VM. Thus, Suprex

overcomes the challenge of delayed startup of a new VM.

Fig. 3: The executing component in the MAPE-based auto-scaling mechanism; part a) is the Default executor, part b) is the Professional executor, and

part c) is the Super Professional executor

How and why are surplus VMs quarantined? In the EC2 service, VMs experience different statuses throughout their

life cycle (see Fig. 4). They are first requested by the AP, and then put in the Pending (Startup) status. Depending on

the time of the day, the number of requested VMs, operating system, VM size, and the server’s geographical location,

this status can take up several minutes [45]. After Startup, the VM is put in the InService status and is able to receive

the load sent by the load balancer and process it; this means that from this time onwards, the AP can leave end user

requests to the VM for processing. By default, if the AP intends to quarantine the VM in a way that it is out of reach of

the load balance, it has to change its status to Stopped or Standby. Nonetheless, restoring the VM from these statuses to

the InService status is faced with difficulties such as:

 (1) Restoring VMs from Standby and Stopped statuses requires going through the delayed startup.

(2) When a stopped VM wants to be restored, it is likely that CP uses another available host for the resource

allocation. This can cause more delay in the VM startup.

 (3) Restoring the VM from the Stopped status results in billing for the AP.

(4) If the VM in the Stopped status becomes unhealthy, this problem remains hidden from Amazon until the AP

requests switching the VM status to InService. In this condition, Amazon starts an alternative VM for the AP that

leads to the deletion of the data on it which would probably result in further delay in VM startup.

Therefore, the mechanism is faced with the issue of delayed startup after switching to Standby and Stopped statuses

(Fig. 4). These problems encouraged us to propose a new status in the system: Quarantined. VMs in the Quarantined

status are in operational conditions, but they are free from workload (Fig. 4). Since switching from InService to

Quarantined status does not make the VM inaccessible for the AP, it would still be possible for the AP to continue to

manage it.

Fig. 4: The Life Cycle of a virtual machine after adding the quarantine status

4.2. Problem formulation

This section explains the notations used in our proposed approach (see Table 2). Rented VMs are divided into three

categories: Requested VMs that have not been started (PL), In-service VMs (SL) and VMs switched to the Quarantined

status by Suprex (QL). In addition, all VMs under the rental of the AP are in the AL list (list of all VMs) (see (1)).

AL = PL + SL + QL (1)

The auto-scaling mechanism is regularly run every minute for the monitoring phase while it is run at specific time

intervals (∆t) for analysis, planning, and execution phases (except for the updater component of the executor). In the

monitoring phase, the scaling indicators of resource utilization (𝑀𝑖
𝑢) and response time (𝑀𝑖

𝑟𝑡) are measured every minute

(i). The mean resource utilization at time i is calculated based on (2).

𝑀𝑖
𝑢 =

∑ 𝑉𝑀𝑗
𝐴𝐿
𝑗=1 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐴𝐿

(2)

In this equation, the utilization of all VMs is calculated and divided by the total number of all rented VMs (AL).

Equation (3) is also used to calculate the utilization of each VM separately at time i.

𝑉𝑀𝑖 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ (𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑃𝐸𝑠𝑗 ∗ 𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑗)𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠

𝑗=1

𝑃𝐸𝑠 ∗ 𝑀𝐼𝑃𝑆

(3)

where 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠 is the number of requests (tasks) being executed by the VM, 𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑃𝐸𝑠 is the number of

processors required for a request, and 𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ is the number of instructions of a running request. Moreover,

𝑃𝐸𝑠 is the number of the VM’s processing elements and 𝑀𝐼𝑃𝑆 (Million Instructions Per Second) is the processing

power of each element.

On the other hand, the mean response time in minute i is monitored and stored according to (4). Here, the response

time means the latency in the response to user requests.

𝑀𝑖
𝑟𝑡 =

∑ 𝑊𝑗
𝑅𝑒𝑞𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

𝑗=1

𝑅𝑒𝑞𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

(4)

The total waiting time 𝑊𝑗 of answered requests (𝑅𝑒𝑞𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑) in minute i is measured and then divided by the

number of answered requests. The waiting time of each request is calculated according to (5).

𝑊J = (𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑗 − 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗) − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑗 (5)

Here, 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗 and 𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑗 are the times the request is received from user i and the time the response is

received by its VM, respectively. 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑗 is also the estimated service time required by the incoming user

request which is calculated according to (6). If the time between 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗 and 𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑗 is larger than

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑗, there has been latency in the response to the user request.

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒 =
𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑃𝐸𝑠

𝑉𝑀. 𝑔𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝐸𝑠 ∗ 𝑉𝑚. 𝑔𝑒𝑡𝑀𝐼𝑃𝑆

(6)

In the monitoring phase, other parameters are determined for the measurement of performance criteria; such as T as

the throughput which, according to (7), shows the ratio of answered requests (𝑅𝑒𝑞𝑖
𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑) to received ones

(𝑅𝑒𝑞𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) during minute i.

𝑇 =
𝑅𝑒𝑞𝑖

𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

𝑅𝑒𝑞𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

(7)

Requests experiencing the response time (W) of more than the desired limit (DRT) are considered as SLA violations.

According to (8), the sum of these seconds in hours (here ‘%’ is the modulus operator) is considered as the hours of

SLA violation (𝑆𝐿𝐴𝑉ℎ𝑜𝑢𝑟).

𝑆𝐿𝐴𝑉ℎ𝑜𝑢𝑟 = 𝑆𝑢𝑚 𝑆𝐿𝐴 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 ℎ𝑜𝑢𝑟) = (∑ 𝑊𝑗 − 𝐷𝑅𝑇) % 𝑎𝑛𝐻𝑜𝑢𝑟

𝑡𝑜𝑡𝑎𝑙𝑈𝑠𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑗=1

(8)

In the analysis phase, the analyzer takes actions to analyze the scaling indicators (resource utilization and response

time), the result of which is presented in the form of 𝐴𝑖
𝑢 and 𝐴𝑖

𝑟𝑡. Afterward, the planner makes the scaling decision (D)

by matching the utilization analysis (𝐴𝑖
𝑢) with the upper threshold (𝑈𝑢𝑝_𝑡ℎ𝑟) and lower threshold (𝑈𝑙𝑜𝑤_𝑡ℎ𝑟) as well as

the analysis of response time (𝐴𝑖
𝑟𝑡) with the upper threshold (𝑅𝑇𝑢𝑝_𝑡ℎ𝑟) and lower threshold (𝑅𝑇𝑙𝑜𝑤_𝑡ℎ𝑟). The planner’s

decision is sent to the executor and could be ScaleUp, ScaleDown, or DoNothing.

In the execution of the command, the executor is connected to a few variables including: MaxVM which is the

maximum number of VMs allowed to be rented from the CP. MaxVM is used to avoid the imposition of heavy costs on

the AP in conditions of confusion in the mechanism. The variable SU, according to the time recorded for the startup of a

VM, shows whether or not it had been started before (Started VMs have the value of -1). SU is checked when restoring

the VM from QL to SL. The α variable determines the surplus VM selection policy in the execution of scale-down

decisions which can be FUFD, LUFD, load-aware, or cost-aware. Moreover, some of these policies may need the

elapsed time from the last billing cycle in their selection, and the variable PT shows this period as one of the attributes

of any VM. Finally, MinPT and MaxPT show the minimum and maximum elapsed times since the last hour of use

among VMs, respectively.

Table 2: Summary of the notations used in this article

Symbol Description Related to

PL List of pending virtual machines

Rented

Resources

SL List of InService virtual machines

QL List of quarantined virtual machines

AL List of all virtual machines = (PL + SL + QL)

∆t Scaling Interval Calling Analyzer,

Planner, and Executor Clock Simulation timer

𝑀𝑖
𝑢 Monitored Average Resources utilization (percent) at time i

Monitor W Waiting time of a user request

𝑀𝑖
𝑟𝑡 Monitored Average response time during time i

𝑅𝑒𝑞𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 The number of received user requests during time i

Performance

Metric

𝑅𝑒𝑞𝑖
𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑 The number of answered user requests during time i

T Resource throughput in last minute

DRT Desire (acceptable or justified) response time = SLA contract

𝑆𝐿𝐴𝑉ℎ𝑜𝑢𝑟 The total response times of more than DRT (in hour) for all requests during the experiment

𝐴𝑖
𝑢 Analyzed CPU Utilization at time i (based on history)

Analyzer
𝐴𝑖

𝑟𝑡 Analyzed Response Time during time i (based on history)

𝑈𝑢𝑝_𝑡ℎ𝑟 CPU utilization threshold for under-provisioning (Upper)

Planner

𝑈𝑙𝑜𝑤_𝑡ℎ𝑟 CPU utilization threshold for over-provisioning (Lower)

𝑅𝑇𝑢𝑝_𝑡ℎ𝑟 Response time threshold for under-provisioning (Upper)

𝑅𝑇𝑙𝑜𝑤_𝑡ℎ𝑟 Response time threshold for over-provisioning (Lower)

D Planner Decision (Scale-Up, Scale-Down, and Do Nothing)

SU Shows that a virtual machine has passed the startup delay (-1 = no and others = yes)

Executor

maxVM Maximum number of on-demand virtual machines the executor allows for renting (Scaling

Limitation)

α Surplus VM selection policy (FUFD, LUFD, Load-aware, and Cost-aware)

PT Passed time from last hour (for a VM time)

MinPT Minimum passed minute from last hour (for a VM)

MaxPT Maximum passed minute from last hour (for a VM)

4.3. Proposed algorithm

Although the main focus of the proposed approach is the execution phase, in this section, we describe other

algorithms required to fully implement the auto-scaling mechanism. All of the operations of the auto-scaling

mechanism are controlled by Algorithm 1 (see Fig. 5), which manages the MAPE cycle. Algorithm 1 is responsible for

controlling the chronological order upon calling each MAPE phase, each of which is implemented with an independent

algorithm. Fig. 5 shows how these algorithms work with each other and the chronological order of their execution.

Fig. 5: Algorithms used to implement the proposed auto-scaling mechanism.

Algorithm 1 shows an overview of the algorithm’s operations in a way that it carries out monitoring (line 2)

continuously (every minute) while performs analysis, g, and execution (lines 4 to 6) at specified intervals (∆t).

Therefore, every time Clock % ∆t = 0, it is the turn to perform analysis, planning, and execution. Similar to monitoring,

the updating component of quarantined VMs is recalled every minute (line 8). This section provides a detailed

explanation of the algorithm for every MAPE phase.

Algorithm 1: Auto-scaling mechanism (Main)

1. repeat every 1 minute (while there is an end user request)

2. Monitoring (); // Stores history of metrics

3. if Clock % ∆t = 0 then

4. Analysis (history of 𝑀𝑢, history of 𝑀𝑟𝑡);

5. Planning (𝐴𝑢, 𝐴𝑟𝑡);

6. Execution (D); // Main component of Suprex

7. end if

8. Update Quarantined VMs // Suprex’s Surplus VM updater component

9. end repeat

4.3.1. Monitoring phase

According to Algorithm 2, the monitor continuously collects and stores information about low-level parameters

(infrastructure level) and high-level parameters (application level) [4] during the last minute. Low-level parameters

include utilization and the number of resources (line 2), and high-level parameters include categories related to the end

user and the SLA, lines 4 and 5, respectively.

 Algorithm 2: The monitoring phase of the MAPE cycle

 1. /* Low Level Parameters */

2. Store 𝑀𝑖
𝑢, PL, SL, QL, AL // VM parameters

3. /* High Level Parameters */

4. Store 𝑅𝑒𝑞𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 // End users parameters

5. Store 𝑀𝑖
𝑟𝑡, 𝑅𝑒𝑞𝑖

𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑 , T, // SLA parameters

4.3.2. Analysis phase

With a Hybrid method [3] consisting of proactive and reactive methods, the analyzer analyzes the two scaling

indicators of resource utilization (𝐴𝑢) and response time (𝐴𝑟𝑡), respectively (see Algorithm 3). 𝐴𝑢 analyzes utilization

during the last minutes after the previous management period (from i – ∆t to i) by calculating the weighted moving

average (WMA) (lines 5 to 12). The Fibonacci numbers technique [46] is used in weighing the observations so that

recent observations are given more weight compared to previous observations (line 7). The variables defined in line 3

are used for the purpose of WMA calculations. In addition, the analysis of 𝐴𝑟𝑡 is taken from the latest observation (line

14). These two analyses are sent to the planner so that it can plan the capacity control (line 15).

Algorithm 3: The analysis phase of the MAPE cycle

1. Input: 𝑀𝑢 (during the past ∆t minutes), 𝑀𝑟𝑡for the last minute

2. Output: 𝐴𝑢 and 𝐴𝑟𝑡

3. Variable: double cpuUtilization 0, weight 0, weightedMoving 0, totalWeight 0, fiboNumberA 0, fiboNumberB
1 4. // Proactive section

5. for j 0 to j < ∆t do

6. cpuUtilization  𝑀𝑖−𝑗−∆𝑡
𝑢

7. Weight  fiboNumberA + fiboNumberB

8. fiboNumberA  fiboNumberB; fiboNumberB  weight

9. weightedMoving  weightedMoving + (cpuUtilization × weight)

10. totalWeight  totalWeight + weight

11. end for

12. 𝐴𝑢  weightedMoving / totalWeight

13. // Reactive section

14. 𝐴𝑟𝑡 𝑀𝑖
𝑟𝑡

15. return 𝐴𝑢 and 𝐴𝑟𝑡

4.3.3. Planning

The planner makes decisions with a rule-based method and step sizes [4] equivalent to one. According to Algorithm

4, the obtained analysis compares the resource utilization (𝐴𝑢) and the response time (𝐴𝑟𝑡) with the thresholds defined

for each. In the event of upper thresholds violation with both analyses (line 3), a ScaleUp decision is made (line 4), and

if both violate the lower thresholds (line 5), a ScaleDown decision (line 6) is made; otherwise, DoNothing decision is

made (line 8). In the end, the planner’s decision is sent to the executor (line 10).

Algorithm 4: The planning phase of the MAPE cycle

1. Input: 𝐴𝑢, 𝐴𝑟𝑡, 𝑈𝑙𝑜𝑤_𝑡ℎ𝑟, 𝑈𝑢𝑝_𝑡ℎ𝑟, 𝑅𝑇𝑙𝑜𝑤_𝑡ℎ𝑟, 𝑅𝑇𝑢𝑝_𝑡ℎ𝑟

2. Output: D

3. if 𝐴𝑢 > 𝑈𝑢𝑝_𝑡ℎ𝑟 and 𝐴𝑟𝑡 > 𝑅𝑇𝑢𝑝_𝑡ℎ𝑟 then

4. D = ScaleUp

5. else if 𝐴𝑢 < 𝑈𝑙𝑜𝑤_𝑡ℎ𝑟 and 𝐴𝑟𝑡 < 𝑅𝑇𝑙𝑜𝑤_𝑡ℎ𝑟 then

6. D = ScaleDown

7. else

8. D = DoNothing

9. end if

10. return D

4.3.4. Execution

The methods of the proposed executor can be seen in Fig. 6. Suprex is comprised of two components: the main

component and the quarantined VM updater component. The main component takes the following actions:

 Scale-up: In the event of scale-up decision (1), the restoration technique for quarantined VMs is sought. If there is a

quarantined VM (2), the VM with the most remaining number of minutes to the completion of the last hour of use is

selected (3). In the case of multiple VMs with equal conditions (VM.getPT = MinPT), the one in the operational

status is restored (in order to avoid restoring the VM quarantined before startup). Afterward, the VM status is

switched from quarantine and is moved to the list of operational VMs (SL or PL) (4). On the other hand, if there is

no quarantined VM (5) and not faced with resource provisioning restrictions (6) the CP takes measures to request a

new VM (7).

 Scale-down: In the case of the scale-down decision (8), if there is a candidate VM (PL + SL > 0) (9) then according

to policy α, the surplusVMselector selects a surplus VM (10) and moves it to quarantined mode (11).

The updater component of quarantined VMs (Fig. 6) checks every minute to see if the deadline for the release

(VM.getPT = 60 minutes) of a VM is reached so that it can be released (12). At this time, if there are Cloudlets running

in the VM, the updater cancels them and sends them to the load balancer again for redistribution, as opposed to the

work of Beltrán [41] in which the canceled task is left without a response (see Fig. 6)

In the rest of this section, we introduce cost-aware and load-aware policies (α) for the selection of the surplus VM

by surplusVMselector.

Fig. 6: The proposed executor (Suprex), the main component for the execution of the scaling commands, and the updater component updating

quarantined VMs

 Cost-Aware surplus VM selection policy

This policy (Algorithm 5) calculates the elapsed time of the last billing hour (PT) (lines 5 to 7) for each VM. The

VM has the highest selection priority (lines 8 to 10) if it is exactly at the end of the last hour (for example exactly 3

hours). Afterward, the VM with the greatest PT compared to other studied VMs (i.e., the VM with the greatest

utilization of the last hour of its life cycle) is selected as the surplus VM (lines 11 to 14).

Algorithm 5: Cost-Aware policy in the selection of surplus VM

1. Input: On-Demand Vm List (𝑃𝐿 + 𝑆𝐿)

2. Output: surplusVM

3. Parameters: maxPT MIN_VALUE, availableTime

4. for vm in on-Demand VmLis do

5. PT  null;

6. availableTime  Clock - VM.getRequestTime();

7. PT  availabletime % anHour; // % = modulus operation

8. if PT = 0 then

9. PT  anHour;

10. end if

11. if PT > maxPT then

12. maxPT  PT;

13. surplusVm vm;

14. end if

15. end for

16. return surplusVm;

 Load-aware surplus VM selection policy

The load-aware policy is responsible for considering the VM load at the time of selection. According to Algorithm

6, for every VM, the remaining service time of the load in the VM is estimated through an inquiry from its scheduler

(entitled vmRemainedLoad) (lines 5 to 16). The remaining service time of any VM is calculated from the total

remaining service time of its cloudlets. The remaining service time of any cloudlet is also estimated by deducting the

amount processing already performed from its total service time (lines 8 to 11). Since in our desired system

processing a cloudlet with an X-core processing requirement on a VM with a X+1-core processing requirement

would not speed up the process, this issue has also been taken into consideration (lines 12 to 14). Finally, if the VM

has a lower load compared to other studied VMs, it is selected as surplus VM (lines 17 to 20).

Algorithm 6: Load-Aware policy in the selection of surplus VM

1. Input: On-Demand Vm List (𝑃𝐿 + 𝑆𝐿)

2. Output: surplusVm

3. Parameters: minLoad MAX_VALUE, vmRemainedLoad, length, ranTime, remainedServiceTime

cloudletList new ArrayList <Cloudlet> ()

4. for vm in onDemandVmList do

5. vmRemainedLoad 0;

6. cloudletList vm.getScheduler().getCloudletList();

7. for cloudlet in cloudletList do

8. remainedServiceTime  0

9. length cloudlet.getLength()× cloudlet.getNumberOfPes();

10. ranTime Clock - cloudlet.getFirstSubmissionTime();

11. remainedServiceTime length - (ranTime × (vm.getMips()× vm.getNumberOfPes());

12. if vm.getNumberOfPes() > cloudlet.getNumberOfPes() then

13. remainedServiceTime length - (ranTime × (vm.getMips()× cloudlet.getNumberOfPes()));

14. end if

15. vmRemainedLoad  vmRemainedLoad + remainedServiceTime;

16. end for

17. if vmRemainedLoad < minLoad then

18. minLoad vmRemainedLoad;

19. surplusVm vm;

20. end if

21. end for

22. return surplusVm;

5. Performance evaluation

This section explains experiments conducted to evaluate the performance of Suprex in CloudSim Simulator [47].

The experiment scenario is as follows: the AP rents a limited number of VMs from the CP for hosting a Web

application. Afterward, the users start sending their requests to the application. Meanwhile, the scaling mechanism

automatically prevents resource under-provisioning and over-provisioning by employing on-demand VMs. The purpose

of the mechanism is cost saving and maintaining end user satisfaction.

In each experiment, one of the following executors is used: Default (common in research [43]), Professional

(improved), and Suprex (proposed). Other parameters (parameters related to monitoring, analysis and planning phases)

stay fixed so that the performance of the executors is evaluated fairly.

5.1. Experiment setup

Each experiment is comprised of end user, AP, and CP, the detail of which shall be presented in the following

subsections (see Fig. 2).

5.1.1. End user entity

We used NASA workload [48] as the emulator of Web users requests to the AP (see Fig. 7). The NASA workload is

very common for the performance evaluation of web application auto-scaling [25, 49-52]. This workload represents

realistic load variations over time that makes the results and conclusions more realistic and reliable to be used in real

environments. The workload comprises 100960 user requests sent to NASA Web servers during a day. Extreme

fluctuations in this workload can trigger a realistic experiment for the scaling mechanism. Research shows that the

pattern of user request arrivals to many Websites complies with the similar pattern of this workload. In other words, the

majority of websites experience reduced incoming load during early hours of the day, increased incoming load with the

start of office hours, significant fluctuations at the end of office hours, and a decreasing pattern during the closing hours

of the night [53, 54].

Fig. 7: User requests to NASA Kennedy Space Center WWW server in Florida on July 6th, 1995

5.1.2. AP entity

In this system, the AP hosts the application by renting two reserved machines with the size of t2.large. Then, with

the help of the auto-scaling mechanism, on-demand VMs with the size of t2.medium are used to control incoming load

fluctuations (more details on VM configuration in [43]). A number of parameters can be seen in Table 3.

Note that the delayed startup of on-demand VMs is a fundamental issue in research based on cloud simulation

environment. In simulations, some researchers determine this delay as a fixed number [43, 55] or even better as normal

distribution [23]. Nonetheless, an interesting study by Mao and Humphrey [45] has shown that this delay depends on

factors such as VM size, VM request time (time of day), etc. In Equation (9), we study this issue with more details. In

Equation (9) where BASE is a fixed minimum amount (equivalent to 5 minutes) which is added to the total of delay

dependent on VMSIZE and TimeOfTheDay in accordance with Fig. 8 to calculate the delay in VM startup. According to

Fig. 8, the larger the VM size, the longer the startup delay is. The VM startup is also affected by the time of the day the

VM is requested as the rise in the number of VM requests by CP clients in working hours will increase the delay. It

should be noted other factors such as servers’ geographical location and step sizes of scale-up and scale-down

operations [4] can also be added to this equation which are omitted here for the sake of brevity. We also consider the

delay for releasing a VM to be zero since it is negligible [23, 45].

𝑉𝑀 𝐷𝑒𝑙𝑎𝑦 = 𝐵𝐴𝑆𝐸 + 𝑉𝑀𝐶𝑜𝑛𝑓𝑖𝑔 + 𝑇𝑖𝑚𝑒𝑂𝑓𝑇ℎ𝑒𝐷𝑎𝑦 (9)

 VM Config

large medium small micro

3 2 1 0 0-6

Time of The Day (hour)
4 3 2 1 7-12

5 4 3 2 13-18

4 3 2 1 19-24

Fig. 8: The effect of VM size and time of VM request on the delay in VM startup

5.1.3. CP entity

The CP entity potentially exists in CloudSim, but features need to be added to VM class for cost management and

issuance of resource rental bills. Task scheduling and resource scheduling were both time-shared (similar to [43]).

Table 3: Values determined for experiment parameters

Parameter Value

Workload NASA traces

Resource Utilization Thresholds 𝑈𝑙𝑜𝑤_𝑡ℎ𝑟 = 20% and 𝑈ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 80%

Response Time Thresholds 𝑅𝑇𝑙𝑜𝑤_𝑡ℎ𝑟 = 200𝑚𝑠 and 𝑅𝑇ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 1000𝑚𝑠

Scaling Interval ∆t = 10 min

Desired Response Time DRT = 1000ms = 1s

Load Balancing Policy Round-Robin

Configuration of VMs t2.medium and t2. Large (More information about the configuration in [43]

Maximum On-demand VM Limitation maxVM = 10 VM

Task and Resources Scheduling policy Time-Shared

5.2. Performance criteria

Evaluation criteria are presented in eight categories which are as follows:

 The cost of renting on-demand machines as the most important criteria. According to CPs’ policy [24], the cost is

calculated by rounding up the rented hours of all VMs. Lines 5-7 of Algorithm 5 show how this calculation is

performed.

 Response time: Based on studies [43], the desired Web application response time of 1 second was agreed upon

(DRT = 1s). This is obtained by calculating the average of all observed 𝑀𝑟𝑡. It is desirable to see that the

mechanism's performance fulfils this agreement. The standard deviation (SD) of response time is also measured; the

lower SD shows timely decisions and prevention of serious delays in responses.

 The rate of SLA violation: the total length of time (in hours) of delayed response to user request, which is

calculated according to (8).

 Resource utilization: Mean percentage of the utilization of resources used obtained by calculating the average of all

𝑀𝑢. The SD of resource utilization is also measured; the lower SD indicates that the VMs are not surprised by the

load [43].

 Oscillation mitigation or mechanism overload control which is evaluated by measuring the number of VMs

provisioned and de-provisioned by the executor. Fewer decisions are indicative of higher accuracy.

 Time to adaptation: If the planner discovers disturbance of desirable conditions for resource utilization and

response time, it recognizes the application as maladapted. In this situation, the executor considered more efficient if

it makes the scale-up decision in a way that the time for the re-establishment of application adaptability is

minimized; in other words, the one which establishes desirable conditions for resource utilization and response time.

Therefore, this metric shows how long it takes on average (in seconds) to re-establish adaptability after each scale-up

decision in the mechanisms.

 VM Minutes: The average length of time VMs are rented by the AP, i.e., the period of time from demand to release

of a VM. The higher amount of this criterion is indicative of the stability in resource provisioning [41].

 Contradictory Scaling Actions (CSA): Provision and release of a VM in a short period of time (for example, in two

consecutive scaling intervals), or vice versa, which results in increased cost and SLA violation [4]. Efficient

executors must be able to avoid CSA.

5.3. Experimental results and discussion

5.3.1. Experimental results

According to Table 4, there are three scenarios for experiments; the parameters of the three phases of monitoring,

analysis, and planning are fixed in all three experiments but different executors are used in the scaling mechanism. The

experiments were carried out as follows: The first experiment used the Default executor for the execution of scaling

decisions. This executor makes decisions by adapting unaware LUFD [43] or FUFD [44] policies in the selection of the

surplus VM for the execution of scale-down decisions. A Professional executor was used in the second experiment to

observe the effectiveness of aware selection of the surplus VM in scaling decisions; the Professional one utilizes two

heuristic cost-aware and load-aware policies. The proposed executor Suprex was used in the third experiment. In this

experiment, instead of immediately releasing the selected surplus VM, the executor sends it to quarantined status to be

restored if the need arises.

Table 4: The scenario of discussed experiments

Scenario Auto-scaling parameters (based on MAPE loop phases)

Monitoring Analysis Planning Execution

Type Feature

Scenario 1 Algorithm 2 Hybrid

(Algorithm 3)

Rule-based

(Algorithm 4)

Default LUFD and FUFD surplus VM selection

Scenario 2 Algorithm 2 Hybrid

(Algorithm 3)

Rule-based

(Algorithm 4)

Professional Cost-Aware and Load-Aware surplus VM selection

Scenario 3 Algorithm 2 Hybrid

(Algorithm 3)

Rule-based

(Algorithm 4)

Suprex

(Proposed)

Cost-Aware and Load-Aware surplus VM selection +

VM Quarantining

First we conducted a preliminary study to check if the proposed mechanism yields a desirable overall performance.

There are two signs in preliminary results that determined the performance of the mechanism was desirable; (1) the

study of the mechanism’s throughput indicated that despite severe incoming load fluctuations, the throughput was

effectively close to 100% (mean of 100%) (Fig. 9); (2) the comparison between the pattern of incoming user requests

and the pattern of VMs provisioned by the mechanism shows that the mechanism carries out VM provisioning

appropriately (Fig. 10). From now on, the number of VMs is the total number of reserved and on-demand VMs unless

otherwise mentioned.

Fig. 9: Throughput in the mechanism equipped with the Default executor

Fig. 10: The appropriateness of the pattern of the incoming load and provisioned VMs in the mechanism equipped with the Default executor

The results obtained from the evaluation of the three executors are as follows. The most important criterion for

verifying the effectiveness of executors is their influence on cost. Fig. 11 illustrates that after adding each feature to the

executor, there was a considerable cost saving. In addition, Fig. 12 shows that although Default and Professional

executors were able to maintain the response time at the desired level, according to the SLA (DRT < 1s), Suprex

managed to improve this criterion. Response time SD in this experiment reached 1.69 using the Suprex executor, while

this figure was 1.96 in other experiments. Improvement in the response time SD by the Suprex executor is indicative of

timely decisions and prevention of serious delays in responses. Also, as a result of improved response time, SLA

violation decreased by 5% (Fig. 13). On the other hand, the percentage of resource utilization decreased in the

mechanism equipped with Suprex executor (Fig. 14). The reason is that with the possibility of restoring quarantined

VMs without any delay requests are not accumulated on resources and this technique results in lower utilization in some

situations. The other reason for decreased utilization is the fact that quarantined VMs that do not receive any load is

included in the calculation of utilization. The SD of resource utilization improved by applying Suprex executor to the

mechanism. Improvement in the SD of utilization by applying Suprex reveals that VMs are less often surprised by the

incoming load when Suprex is exploited. The comparison between the amount of oscillation mitigation (or scaling

overload control) shows the system’s stability after applying Suprex (Fig. 15). The reason is that Suprex’s rate of

provisioning and releasing VMs was 24% less than the Default executor. Finally, the time to adaptation metric for the

mechanism taking advantage of the Suprex executor is almost half of the rest (Fig. 16). The reason for Suprex’s faster

application adaptation is that this executor overcomes the challenge of delayed startup of a new VM. Default and

Professional executors increase adaptation time since in their method for the execution of scaling decisions, application

adaptation is delayed by the startup of a new VM and its effect in the processing of user requests.

In overall, the Professional executor is only efficient in cost saving but Suprex in addition to cost shows more

efficiency in meeting SLA. The reason behind this performance improvement by Suprex is its aware selection

techniques and quarantining surplus VMs.

Fig. 11: Comparison between the costs of renting VMs after using each of the executors in the mechanism

Fig. 12: Comparison between the mean response times after using each of the executors in the mechanism

Fig. 13: Comparison between the rates of SLA violation after using each of the executors in the mechanism

Fig. 14: Comparison between the percentages of resource utilization after using each of the executors in the mechanism

Fig. 15: Comparison between the oscillation mitigation of the mechanism (or overload control) after using each of the executors in the mechanism

Fig. 16: Comparison of time to adaptation after using each of the executors in the mechanism

5.3.2. Discussion

With a closer look, this section studies how the two features of aware selection and quarantining surplus VMs

influence the proposed Suprex executor.

The results show that by adding a cost-aware selection of surplus VMs, the Professional executor managed to

decrease the imposed cost relative to the Default executor ($5.76 to $5.52). Note that whenever the figure witnessed a

fall, a scaling down decision is made and a VM is released. According to Fig. 17, the number and time of these

decisions were similar in the experiments. A total of 17 decisions are taken but in only 8 of them, both executors make

the same selection (s = same). The reason why selections from the beginning of the simulation until 7 A.M. are similar

is that in the selection of surplus on-demand VMs, the executors are only faced with one release option. Moreover, in

the same period, they fail to take actions for scale-down decisions twice (no-ac = no action) because there are no on-

demand VMs at that time. However, in 6 of the 7 remaining selections, the Professional executor selects the VM with

longer elapsed minutes compared to the Default executor (longer MaxPT) equipped with the cost-aware surplus VM

selection policy. In two cases of selection by the Professional executor, the surplus VM with exactly X hours of use is

selected; this choice prevented the mechanism from the addition of another hour to the billing of the VM. These savings

in the time of surplus VM selection result in the reduction of total cost imposed by the Professional executor for renting

resources compared to the Default executor.

Fig. 17: Comparison between the performance of Default and Professional executors in the selection of the surplus VM, s = same, no-ac = no action,

def = default, pro = professional. For example, pro = 40 means the professional executor selected a VM with the 40-minute use of the last hour.

In regards to the technique for quarantining and restoring surplus VMs, the results in Fig. 11 show that the Suprex

executor is more effective than the Professional executor in cost reduction (reduction from 5.52 to 5.36). This happens

since after the selection of the surplus VM, the Professional executor immediately releases it (see Fig. 18) while after

the selection of a surplus VM, Suprex moves the VM to the quarantined status. Yellow circles in Fig. 18 show when

Suprex has done so. The green lines connected to the circles show how long the VM remained in quarantined status.

Black triangles show the times that the mechanism restored quarantined VMs (5 times) in the execution of scale-up

decisions, as a result of which the request of a new VM was avoided. Interestingly, the Suprex executor reduces the cost

compared to the Professional executor while a greater number of VMs are rented by the AP. This fact as well as

avoidance of provisioning new VMs confirms the mechanism’s stability. Although quarantined VMs are not available

to the load balancer, the AP do not have to wait for VM startup, and user requests are responded quickly given the

possibility of restoring them in scale-up decisions.

Fig. 18: Comparison between the performance of Professional and Suprex executors in the execution of scale-down and scale-up decisions

Figs. 17 and 18 show that the proposed techniques in the selection of surplus VMs and quarantining them results in

more stable VM provisioning. Fig. 19 compares the performance of the mechanism regarding the VM Minutes metric as

an indicator of stability for each of the three executors. According to Fig. 19, pattern of changes in the number of VMs

for both Default and Professional executors is similar as a result of similar reaction to the planner’s decisions. In the

mechanism taking advantage of these two executors, the longest duration the number of VMs remained constant was

100 minutes; between hours 08:50 to 10:30, while the same duration was 140 minutes for the Suprex executor. In

addition, Suprex had 120-minute (twice) and 110-minute stability. This shows a better performance compared to the

Default and Professional executors (see Fig. 19). More importantly, Suprex makes the mechanism more stable exactly

when the incoming load has the highest fluctuations while the Default and Professional executors fail to do so due to

their inability in controlling contradictory scaling decisions (CSD) of the planner; for example, the period between

13:50 to 15:50 when a peak happens in the incoming load. On average, the VM Minutes metric for Default and

Professional executors was 204 while this figure was 287 minutes for the Suprex executor which shows that Suprex’s is

40% more effective in keeping the mechanism stable.

Fig. 19: Comparison between the performance of executors regarding the VM Minutes criteria

Study of the VM Minutes metrics also showed that one of the main reasons for the poor stability is failure in

controlling the CSD of the planner (this is when scale-down decision and immediate scale-up decision happen

consecutively). Fig. 20 shows the CSD of the planner and the performance of executors in this situation. During each

experiment, the planner made 4 contradictory scaling decisions. As shown in Fig. 20, both Default and Professional

executors had 4 CSAs where a VM () is released and immediately a new one () is provisioned upon the next scaling

interval. These contradictory actions never reported when the Suprex executor is exploited; because instead of

provisioning a new VM, Suprex covers the scale-up command by restoring a quarantined VM. As a result, excessive

costs and violation of the SLA is prevented.

Fig. 20: Comparison between the performance of executors in the face of contradictory scaling decisions by the planner

It is worth mentioning that all these improvements are attained only by applying a different executor in the

mechanism, not a completely different scaling mechanism. The fundamental differences between these two techniques

are the aware selection and quarantining the surplus VMs. We conclude that the techniques presented in this research

can significantly improve the effectiveness of the auto-scaling mechanisms.

6. Conclusion

In this paper, we proposed Suprex, an executor for the cost-aware auto-scaling mechanism. Suprex benefits from two

heuristic features: (1) aware selection of surplus VMs during the execution of scale-down commands and (2)

quarantining and immediate restore of surplus VMs (as opposed to immediate release). Simulation results show that

Suprex can achieve a 7% reduction in resource rental costs for the AP while improving response time by up to 5% and

decreasing SLA violation and the mechanism’s oscillation overload by 5% and 24%, respectively. Suprex overcomes

the challenge of delayed startup for new VMs without the help of cool-down time or vertical scaling. Finally, with

respect to the close relationship between Suprex features and the pay-per-use rental model, APs can take advantage of

Suprex in their auto-scaling mechanisms.

For future work, we plan to explore the impact of making quarantined VMs accessible by the load balancer to

redirect load to them and evaluate Suprex’s performance against an executor with the feature of vertical scaling. We

also will investigate utilization of Spot instances offered by CPs such as Amazon to save cost. Another future work can

be the investigation of using resources from multiple cloud environments in the auto-scaling mechanism.

References

[1] EC2. Elastic Compute Cloud Available: http://aws.amazon.com/ec2/

[2] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, "A review of auto-scaling techniques for elastic

applications in cloud environments," Journal of Grid Computing, vol. 12, pp. 559-592, 2014.

[3] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N. de Souza, "Elasticity in cloud

computing: a survey," annals of telecommunications-annales des télécommunications, vol. 70, pp. 289-309,

2015.

[4] C. Qu, R. N. Calheiros, and R. Buyya, "Auto-scaling Web Applications in Clouds: A Taxonomy and Survey,"

arXiv preprint arXiv:1609.09224, 2016.

[5] M. G. Arani and M. Shamsi, "An Extended Approach for Efficient Data Storage in Cloud Computing

Environment," International Journal of Computer Network and Information Security, vol. 7, p. 30, 2015.

[6] Y. Shen, H. Chen, L. Shen, C. Mei, and X. Pu, "Cost-Optimized Resource Provision for Cloud Applications,"

in High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and

http://aws.amazon.com/ec2/

Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl

Conf on, 2014, pp. 1060-1067.

[7] M. Amiri and L. Mohammad-Khanli, "Survey on Prediction Models of Applications for Resources

Provisioning in Cloud," Journal of Network and Computer Applications, 2017.

[8] A. Computing, "An architectural blueprint for autonomic computing," IBM White Paper, vol. 31, 2006.

[9] M. Mohamed, M. Amziani, D. Belaïd, S. Tata, and T. Melliti, "An autonomic approach to manage elasticity of

business processes in the Cloud," Future Generation Computer Systems, 2014.

[10] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, "An autonomic approach for resource provisioning of

cloud services," Cluster Computing, pp. 1-20, 2016.

[11] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, "Cloud resource management: A survey on forecasting

and profiling models," Journal of Network and Computer Applications, vol. 47, pp. 99-106, 2015.

[12] M. Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, "An efficient approach for improving virtual machine

placement in cloud computing environment," Journal of Experimental & Theoretical Artificial Intelligence,

pp. 1-23, 2017.

[13] S. Singh and I. Chana, "Resource provisioning and scheduling in clouds: QoS perspective," The Journal of

Supercomputing, vol. 72, pp. 926-960, 2016.

[14] S. Islam, J. Keung, K. Lee, and A. Liu, "Empirical prediction models for adaptive resource provisioning in the

cloud," Future Generation Computer Systems, vol. 28, pp. 155-162, 2012.

[15] J. Huang, C. Li, and J. Yu, "Resource prediction based on double exponential smoothing in cloud computing,"

in Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on,

2012, pp. 2056-2060.

[16] A. A. Bankole and S. A. Ajila, "Cloud client prediction models for cloud resource provisioning in a multitier

web application environment," in Service Oriented System Engineering (SOSE), 2013 IEEE 7th International

Symposium on, 2013, pp. 156-161.

[17] S. A. Ajila and A. A. Bankole, "Cloud client prediction models using machine learning techniques," in

Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual, 2013, pp. 134-142.

[18] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, "Self‐adaptive workload classification and forecasting

for proactive resource provisioning," Concurrency and computation: practice and experience, vol. 26, pp.

2053-2078, 2014.

[19] H. R. Qavami, S. Jamali, M. K. Akbari, and B. Javadi, "Dynamic Resource Provisioning in Cloud Computing:

A Heuristic Markovian Approach," in Cloud Computing, ed: Springer, 2014, pp. 102-111.

[20] A. G. García, I. B. Espert, and V. H. García, "SLA-driven dynamic cloud resource management," Future

Generation Computer Systems, vol. 31, pp. 1-11, 2014.

[21] S. Singh and I. Chana, "Q-aware: Quality of service based cloud resource provisioning," Computers &

Electrical Engineering, vol. 47, pp. 138-160, 2015.

[22] M. Fallah, M. G. Arani, and M. Maeen, "NASLA: Novel Auto Scaling Approach based on Learning Automata

for Web Application in Cloud Computing Environment," International Journal of Computer Application, vol.

117, pp. 18-23, 2015.

[23] M. D. de Assunção, C. H. Cardonha, M. A. Netto, and R. L. Cunha, "Impact of user patience on auto-scaling

resource capacity for cloud services," Future Generation Computer Systems, vol. 55, pp. 41-50, 2016.

[24] D. Moldovan, H. L. Truong, and S. Dustdar, "Cost-Aware Scalability of Applications in Public Clouds," in

2016 IEEE International Conference on Cloud Engineering (IC2E), 2016, pp. 79-88.

[25] J. Li, S. Su, X. Cheng, M. Song, L. Ma, and J. Wang, "Cost-efficient coordinated scheduling for leasing cloud

resources on hybrid workloads," Parallel Computing, vol. 44, pp. 1-17, 2015.

[26] R. Z. Khan and M. O. Ahmad, "Load Balancing Challenges in Cloud Computing: A Survey," in Proceedings

of the International Conference on Signal, Networks, Computing, and Systems, 2016, pp. 25-32.

[27] J. Panneerselvam, L. Liu, N. Antonopoulos, and Y. Bo, "Workload analysis for the scope of user demand

prediction model evaluations in cloud environments," in Utility and Cloud Computing (UCC), 2014

IEEE/ACM 7th International Conference on, 2014, pp. 883-889.

[28] A. Gholami and M. G. Arani, "A trust model based on quality of service in cloud computing environment,"

International Journal of Database Theory and Application, vol. 8, pp. 161-170, 2015.

[29] E. Casalicchio and L. Silvestri, "Mechanisms for SLA provisioning in cloud-based service providers,"

Computer Networks, vol. 57, pp. 795-810, 2013.

[30] M. Dhingra, "Elasticity in IaaS Cloud, preserving performance SLAs," Master's thesis, Indian Institute of

Science, 2014.

[31] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, "An autonomic resource provisioning approach for

service-based cloud applications: A hybrid approach," Future Generation Computer Systems, 2017.

[32] A. El Rheddane, "Elasticity in the Cloud," Université Grenoble Alpes, 2015.

[33] M. C. Huebscher and J. A. McCann, "A survey of autonomic computing—degrees, models, and applications,"

ACM Computing Surveys (CSUR), vol. 40, p. 7, 2008.

[34] T. Baker, M. Mackay, M. Randles, and A. Taleb-Bendiab, "Intention-oriented programming support for

runtime adaptive autonomic cloud-based applications," Computers & Electrical Engineering, vol. 39, pp.

2400-2412, 2013.

[35] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, "How to adapt applications for the cloud

environment," Computing, vol. 95, pp. 493-535, 2013.

[36] E. Cavalcante, T. Batista, F. Lopes, A. Almeida, A. L. de Moura, N. Rodriguez, et al., "Autonomous

adaptation of cloud applications," in IFIP International Conference on Distributed Applications and

Interoperable Systems, 2013, pp. 175-180.

[37] D. STEBLIUK, "Fine grained adaptation of Cloud applications with containers," 2016.

[38] Amazon. (2015, 12, 12). Amazon Auto Scaling. Available: https://aws.amazon.com/autoscaling/

[39] P. D. Kaur and I. Chana, "A resource elasticity framework for QoS-aware execution of cloud applications,"

Future Generation Computer Systems, vol. 37, pp. 14-25, 2014.

[40] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, "Renewable-aware Geographical Load Balancing of

Web Applications for Sustainable Data Centers," Journal of Network and Computer Applications, 2017.

[41] M. Beltrán, "Automatic provisioning of multi-tier applications in cloud computing environments," The Journal

of Supercomputing, vol. 71, pp. 2221-2250, 2015.

[42] G. Moltó, M. Caballer, and C. de Alfonso, "Automatic memory-based vertical elasticity and oversubscription

on cloud platforms," Future Generation Computer Systems, vol. 56, pp. 1-10, 2016.

[43] M. S. Aslanpour and S. E. Dashti, "SLA-aware resource allocation for application service providers in the

cloud," in 2016 Second International Conference on Web Research (ICWR), 2016, pp. 31-42.

[44] M. S. Aslanpour and S. E. Dashti, "Proactive Auto-Scaling Algorithm (PASA) for Cloud Application,"

International Journal of Grid and High Performance Computing, vol. 9, pp. 1-16, 2017.

[45] M. Mao and M. Humphrey, "A performance study on the vm startup time in the cloud," in Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, 2012, pp. 423-430.

[46] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications: Courier

Corporation, 2007.

[47] R. Buyya, R. Ranjan, and R. N. Calheiros, "Modeling and simulation of scalable Cloud computing

environments and the CloudSim toolkit: Challenges and opportunities," in High Performance Computing &

Simulation, 2009. HPCS'09. International Conference on, 2009, pp. 1-11.

[48] M. F. Arlitt and C. L. Williamson, "Internet web servers: Workload characterization and performance

implications," IEEE/ACM Transactions on Networking (ToN), vol. 5, pp. 631-645, 1997.

[49] J. Liu, Y. Zhang, Y. Zhou, D. Zhang, and H. Liu, "Aggressive resource provisioning for ensuring QoS in

virtualized environments," IEEE Transactions on Cloud Computing, vol. 3, pp. 119-131, 2015.

[50] V. R. Messias, J. C. Estrella, R. Ehlers, M. J. Santana, R. C. Santana, and S. Reiff-Marganiec, "Combining

time series prediction models using genetic algorithm to autoscaling Web applications hosted in the cloud

infrastructure," Neural Computing and Applications, vol. 27, pp. 2383-2406, 2016.

[51] G. Feng and R. Buyya, "Maximum revenue-oriented resource allocation in cloud," International Journal of

Grid and Utility Computing, vol. 7, pp. 12-21, 2016.

[52] J. Kumar and A. K. Singh, "Dynamic resource scaling in cloud using neural network and black hole

algorithm," in Eco-friendly Computing and Communication Systems (ICECCS), 2016 Fifth International

Conference on, 2016, pp. 63-67.

[53] X. Wang, A. Abraham, and K. A. Smith, "Intelligent web traffic mining and analysis," Journal of Network and

Computer Applications, vol. 28, pp. 147-165, 2005.

[54] H. Wang, F. Xu, Y. Li, P. Zhang, and D. Jin, "Understanding mobile traffic patterns of large scale cellular

towers in urban environment," in Proceedings of the 2015 ACM Conference on Internet Measurement

Conference, 2015, pp. 225-238.

[55] A.-F. Antonescu and T. Braun, "Simulation of SLA-based VM-scaling algorithms for cloud-distributed

applications," Future Generation Computer Systems, 2015.

