Efficient Alternative Route Planning in Road
Networks

Ahmed Fahmin, Bojie Shen, Muhammad Aamir Cheema, Adel N. Toosi, and Mohammed Eunus Ali

Abstract—Alternative route planning requires finding k al-
ternative paths (including the shortest path) between a given
source and target. These paths should be significantly different
from each other and meaningful/natural (e.g., must not contain
loops or unnecessary detours). While there exists many work on
finding high-quality alternative paths, the existing techniques are
computationally expensive and are unable to accommodate the
high volume of queries required by modern navigation systems.
To address this, in this paper, we propose an efficient approach to
compute high-quality alternative paths. Our approach employs
hub-labeling to efficiently identify candidate alternative paths.
The candidate paths are then ranked considering multiple quality
metrics and the top-£ alternative paths are returned. We propose
several non-trivial optimizations to significantly improve the com-
putation time. In our experimental study, we conduct experiments
on three diverse real-world road networks and compare our
proposed algorithm against six state-of-the-art algorithms. The
results demonstrate that our algorithm is not only up to 3
orders of magnitude faster compared to most algorithms but
also consistently generates alternative paths that are comparable
or even superior in terms of quality across various metrics.

Index Terms—Road networks, alternative routes, route plan-
ning, shortest paths

I. INTRODUCTION

In road networks, shortest path queries refer to the task of
finding the most cost-effective path (e.g., in terms of travel
time, distance, or fuel consumption) from a given source
location to a target location. The shortest path queries are
among the most fundamental operations on road networks
and are commonly used in route planning services such as
Google Maps and Bing Maps, as well as in various high-
level planning tasks such as location-based services, ride-
sharing, traffic assignments, and more. Due to their various
applications, the shortest path problem has been extensively
studied not only on road networks [1]-[4], but also in other
settings such as on social networks [5], indoor venues [6],
game maps [7], to name a few.

In many real-world scenarios, it is desirable to provide
users not only with the shortest path but also to offer several
alternative paths for them to choose from. For example,
modern navigation systems often provide users with multiple
alternative routes, allowing them to select a path that best
suits their preferences for traveling. In many cases, the optimal

Manuscript received ...

A. Fahmin (email: ahmed.fahmin@monash.edu), B. Shen (email: bo-
jie.shen@monash.edu), M. A. Cheema (email: aamir.cheema@monash.edu)
and A. N. Toosi (email: adel.n.toosi@monash.edu) are with the Faculty of
Information Technology, Monash University, Melbourne, Australia.

M. E. Ali (email: eunus@cse.buet.ac.bd) is with Department of Computer
Science and Engineering, Bangladesh University of Engineering and Technol-
ogy, Dhaka, Bangladesh

s

FLUSHING

A <
ih & | @27 min
& | 145mies A
_ O New York Hall
oken EmMpire State Building of Science

/ GREENWICH
i VILLAGE

(=) 26 min

12.6 miles
WILLIAMSBURG ST

N;aw York

BUSHWICK
k72
BROOKLYN

Brooklyn Museum .
= 27 min
12.4 miles

f

Fig. 1: Three alternative paths from Brooklyn Museum to New
York Hall of Science (Google Maps).

route to a destination differs from what an individual prefers,
influenced by factors such as their familiarity with the area
or personal biases towards specific roads. To be useful to
the users, the alternative routes suggested by the navigation
system must be short, meaningful (e.g., without unnecessary
detours) and substantially different from each other. It is worth
noting that returning the k shortest paths is not a suitable
solution, as they are often very similar to one another (i.e.,
exhibiting high overlap) and may involve needless detours.
Figure 1 shows three alternative paths from Brooklyn Museum
to New York Hall of Science displayed by Google Maps. The
blue path is the shortest path (in terms of travel time) and the
other two paths have comparable travel times. Note that these
paths are short, significantly different from each other, and are
meaningful (e.g., do not contain any small detours or cycles).
In addition to its importance in navigation services, al-
ternative pathfinding has many applications in various other
domains. For instance, in traffic shaping [8], enabling self-
driving vehicles to autonomously select alternative paths can
effectively balance or reduce traffic loads on the road network.
In contingency planning [9], the alternative paths often serve
as backup plans, assisting drivers in avoiding road accidents
or road closures. Additionally, in automated warehousing [10],
the alternative paths are frequently utilized to prevent colli-
sions when multiple robots are concurrently executing their
tasks. In each application setting, the efficient computation of
high-quality alternative paths is of utmost importance.
Limitation of Existing Works: Due to their importance,
a considerable amount of research has focused on finding

alternative paths in road networks, e.g., [11]-[15] and ref-
erences therein. The existing body of literature has taken
diverse approaches to alternative routing. Some prominent
techniques for computing alternative paths involve the use
of edge penalties [16]-[18] or plateaus [19]. However, these
approaches often adapt a greedy strategy for identifying al-
ternative paths, relying heavily on searching in a frequently
updated graph or constructing shortest path trees, thus lead to
high computational costs. Other methods incrementally search
for alternative paths until a collection of dissimilar paths
has been found [20]-[23], or generate an extensive pool of
candidate paths and apply ranking criteria for alternative path
selection [19], [24], [25]. These existing techniques suffer
from high computation costs, may taking up to a second
to compute alternative paths. The performance bottleneck
inherent in these techniques presents a significant barrier to
their real-world application in large-scale navigation systems
that require computing tens of thousands of routes per second.
To overcome this challenge, there is a need to design scalable
algorithms capable of efficiently computing alternative routes.

Our Contributions: To overcome the limitations of the

existing works, in this paper, we propose an efficient al-
gorithm that leverages Hub Labeling (HL) [26], a state-of-
the-art approach for computing shortest paths, to efficiently
compute high-quality alternative routes. Our algorithm by-
passes resource-intensive graph searches used by the existing
algorithms and instead exploits hub labels to quickly find
high-quality alternative routes, thereby enhancing efficiency.
To further enhance efficiency, we present a set of filtering rules
to eliminate low-quality candidate paths. Additionally, we
introduce several non-trivial optimisations designed to speed
up candidate path construction and calculation of path quality
metrics. We conduct an extensive experimental study using
three diverse road networks (Melbourne, Copenhagen and
Dhaka) and compare against six state-of-the-art algorithms.
The results show that our algorithm is up to 3 orders of
magnitude faster compared to the existing algorithms while
the path quality is comparable or sometimes superior to the
existing approaches. For example, compared to X-CHV [24]
which is the fastest existing algorithm, our algorithm does
not only compute alternative paths 4-8 times faster than X-
CHV but also consistently returns better quality paths con-
sidering a variety of quality metrics. Similarly, compared to
SVP+ [23], another state-of-the-art algorithm, our algorithm
is around 3 orders of magnitude faster on average whereas the
alternative paths returned by our approach are slightly better
for some quality metrics and slightly worse for some other.
These findings demonstrate the effectiveness and efficiency of
our proposed algorithm, indicating its potential for practical
applications in real-world scenarios.

Our contributions in this paper are summarized below:

« We introduce a novel algorithm, called Hub-VAR, for ef-
ficiently computing k alternative routes in a road network.
What sets Hub-VAR apart from existing algorithms is its
ability to avoid expensive search processes by leverag-
ing hub labels. This approach enables the algorithm to
efficiently retrieve a pool of candidate paths.

o We introduce a set of filtering rules to eliminate low-

quality candidate and employ several optimization tech-
niques to further enhance the efficiency of the algorithm.

o We perform an extensive experimental study using three

diverse real-world datasets. The results of our study
demonstrate the promise of our algorithm in terms of
both effectiveness and efficiency.

The paper is organized as follows. We discuss the problem
definition, path quality metrics and hub-labeling in Section II.
Related work is presented in Section III. Our efficient algo-
rithm, called Hub-VAR, is presented in Section IV followed by
experiments and conclusion in Sections V and VI, respectively.

II. PRELIMINARIES
A. Problem Formulation

Similar to the existing research [17], [23], [24], for ease
of presentation, we assume undirected road networks. How-
ever, our techniques readily extend to directed networks. Let
G = (V,E,w) be an undirected graph, with vertices V,
edges E C V xV,and w : E — R' a weight function
that maps each edge e € F to a non-negative weight w(e),
e.g., travel time, distance, etc. A path/alternative path
between a start s and a target ¢ in G is a sequence of
vertices (vg, v1, V2, ...,Vk_1, VL), where vg = s, vy = ¢, and
(vi,vi41) € E for 0 < ¢ < k. We use |P| to denote the
length of path, where |P| = Zf;ol w(vi, vi+1). A sub-path
P(vg,vy) is a contiguous subset of vertices (vy,...,v,) of
P, where z < y and (v,...,v,) C P. We use d¥ (v,,vy)
to denote its length, i.e., d¥(vy,v,) = SV w(vi, vi1). A
shortest path sp(s,t) between s and ¢ is a path such that
|sp(s,t)| is minimum among all possible paths between s and
t. We denote its length (i.e., shortest distance) as sd(s,t). We
use sp(s,v,t) to denote the path sp(s,v) & sp(v,t) where
@ is concatenation operation. sd(s,v,t) denotes the length of
sp(s,v,t) (i.e., sd(s,v,t) = sd(s,v) + sd(v,t)).

Definition 1. (Alternative Pathfinding). Given a graph G,
a source s, a target t, and a positive integer k, alternative
pathfinding requires computing up to k alternative paths
(including the shortest path) between a start point s and a
target point t in a road network.

Intuitively, an alternative path can be any path between s and
t; however, the alternative paths that are short, significantly dif-
ferent from each other and do not contain unnecessary detours
are of users’ interest. As noted in the previous works [11],
there is no agreed definition of what constitutes a set of
“good” alternative routes. This is because the “goodness”
of the alternative routes is mostly subjective. Therefore, the
existing works typically do not include the definition of
“goodness” in the problem formulation. Instead, path quality
metrics are defined separately and are used in the experimental
study. Next, we briefly explain the most popular metrics to
evaluate the quality of a set of alternative paths P and, in our
experimental study, we use these metrics.

B. Path Quality Metrics

Existing works have defined a variety of metrics to evaluate
the quality of a set of alternative paths P returned by an
algorithm. We introduce these below.

a) Similarity: Similarity [11] of a set of alternative
paths P, denoted as Sim(P), measures the pairwise similarity
of paths in P and corresponds to the maximum pairwise
similarity. Formally, the similarity is defined as:

[P N By
= max e e—
v(P;,Py)ePxPiizj | P; U Pj|

Sim(P) (1)
where |P; N P;| (resp. |P; U P;|) denotes the total length of
the overlap (resp. union) of two paths P; and P;. Note that,
the alternative paths P should be significantly different from
each other, thus lower Sim(P) is better.

b) Distance Ratio: The alternative paths should not be
much longer than the shortest path. The distance ratio of P is
defined by the relative difference w.r.t the shortest distance:

_ |P| — sd(s,t)
sd(s,t)

The alternative path P with lower DR(P) is better, because
in real-world navigation scenarios, the users are unlikely to
choose alternative paths that are substantially longer than the
shortest path. The minimum possible DR(P) is zero which is
when each alternative path has the same length as the shortest
path. Given a set of alternative paths P, distance ratio of
‘P is the maximum distance ratio among all paths in P, i.e.,
DR(P) = mazypep DR(P).

c) Bounded Stretch: Stretch [18], [27] of a path reflects
detour length compared to the shortest distance. Given a
subpath P(v;,v,) of an alternative path P, the stretch of
P(vg,vy) is defined as the ratio of the path distance (i.e.,
d? (v, vy)) and the shortest distance (i.e., sd(vg, vy)) between
v, and v,. The bounded stretch BS(P) of the path P is the
maximum stretch of any of its subpaths:
dP (v, vy)

—_— 3
VP(zIJ?EJ)y()EP sd(vg, vy) ©)

DR(P))

BS(P) =

Note that an alternative path with smaller bounded stretch
P is preferred because it indicates that detours compared to
the shortest paths are short. A shortest path sp(s,t) has a
bounded stretch of 1 which is the minimum possible bounded
stretch. Given a set of alternative paths P, the bounded stretch
of P is the maximum bounded stretch of all paths in P, i.e.,
BS(P) = MaXypecp BS(P)

d) Local Optimality: Another popular quality metric for
evaluating alternative paths is local optimality [18], [27],
which is a measure of the optimality of the subpaths of an
alternative path. Given a subpath P(v,vy) of P, P(vg,vy)
is a suboptimal path if it is longer than the shortest path
between v, and vy, i.e., d¥(vy,vy) > sd(vy,vy). Let L(P)
be the shortest suboptimal subpath of P. This implies that
any subpath in P that has length less than £ must be an
optimal path [27], i.e., VP (vy,vy) € Pld¥ (vg,vy) < L(P):
d? (vg,vy) = sd(vgy,vy). If there is no suboptimal subpath
in P because P is an optimal (i.e., shortest) path, £(P) is
assumed to be infinity. The local optimality LO(P) normalizes
L(P) w.rt. sd(s,t). Mathematically, this is represented as:

L(P)
sd(s,t)

LO(P) =

Fig. 2: Illustrating different quality metrics

00 P is optimal
= d” (ve,vy)

min sd(s,t)
YV (vg,vy):dP (vg,vy) >sd(vg,vy) ’

else

“4)
Let P be an alternative path with LO(P) = x. This implies
that the shortest suboptimal path of P has length x X sd(s,t),
i.e., every sub-path of P with length less than x X sd(s,t)
is an optimal path. A low value of LO(P) implies that there
are short subpaths in P that are suboptimal. Therefore, higher
LO(P) is better as it indicates the alternative path P does
not have obvious flaws such as loops or small detours (e.g.,
does not have short suboptimal paths). For example, a high
local optimality, such as 0.8, indicates that every subpath of
P shorter than 80% of the shortest path between s and t is
guaranteed to be an optimal path. Given a set of alternative
paths P, the local optimality of P is the minimum local opti-
mality of all paths in P, i.e., LO(P) = miny,ep LO(P). For
more details of these quality metrics, we refer the interested
readers to the previous works [18], [24], [27].

Example 1. Fig. 2 shows three paths Py, P> and Ps between
s and t where Pp is the shortest path with length 30.
Similarity of both paths with the shortest path is the same,
The total length of both P, and Ps is 40. Thus, their
distance ratio is the same, i.e., DR(P;) = DR(Pg) =
(40—30)/30 = 1/3. The bounded stretch for Py is 1.5 because
d™ (s, C)/sd(s, C) = 30/20 = 1.5 (which corresponds to the
maximum stretch of all subpaths in Ps). For Ps, the bounded
stretch is also 1.5 because d73 (A, t)/sd(A, t) = 30/20 = 1.5.
For P, the shortest suboptimal path on Py is (s,D,E, C)
with length 30. Thus, LO(Pz) = 30/30 = 1. For Ps, the
shortest suboptimal path on P3 is (A, F,G) with length 15.
Thus, LO(Pg) = 15/30 = 0.5. Note that P, and Ps have the
same length, bounded stretch and similarity with the shortest
path but Ps is better than Pj in terms of the local optimality.

When assessing the path quality for alternative paths, it
is important to emphasize that all four quality metrics are
similarly important and should be evaluated simultaneously.
The overall quality of alternative paths cannot be represented
by any single metric in isolation. In the context of alternative
pathfinding, the objective is typically to identify a set of “high-
quality” alternative paths that exhibit low scores in DR(P),
Sim(P), BS(P), and high scores in LO(P) simultaneously.

C. Hub Labeling (HL)

Computing shortest paths in road networks has been exten-
sively studied and a variety of techniques have been proposed
including Dijkstra’s algorithm [1], bi-directional search [28],
heuristics estimation [2], [29], edge labeling [30], [31], con-
traction hierarchies [4], [32], and hub labeling [26], [33], to
name a few. Since we exploit hub labeling in our solution, we
summarise this approach in this section.

Hub labeling (HL) is the state-of-the-art approach for ef-
ficiently computing the shortest path/distance in road net-
works. Given an input graph G, HL stores a set of hub
labels H(v;) for each vertex v; € V. Each label is a tuple
(Viy dvv;s Pojo;) € H(vj) that includes: (i) a hub vertex
v; € V; (ii) the shortest distance d,,,,; between the hub vertex
v; and vj; and (iii) the predecessor py,,; of v; (i.e., the first
vertex before v; on the shortest path sp(v;,v;) between v;
and v;). It is crucial for the hub labeling to satisfy coverage
property formally described below.

Lemma 1. (Coverage Property) For every pair of reachable
vertices v; € V and v; € V, the hub labeling must ensure
that there exists a common hub vertex vy, in both H(v;) and
H (vj), such that vy, is on the shortest path between v; to v;.

Any hub labeling approach that satisfies coverage property
can be used to find the shortest distance/path between v; and
v; by using the hub labels corresponding to the common hub
node vy (as we explain in detail shortly). Reducing the total
number of labels stored while ensuring the coverage property
can improve the query performance. However, computing the
minimum number of hub labels that satisfies the coverage
property is known to be NP-hard [34]. Therefore, many heuris-
tic approaches have been proposed. Although our approach
does not rely on any particular hub labeling technique, in
our implementation, we use SHP [33], a state-of-the-art hub
labeling approach. The details on how the hub labels are
computed are omitted and readers are referred to the existing
works, e.g., [33]. Next, we show how to efficiently compute
the shortest distance and path using the stored hub labels.

a) Computing Shortest Distance: Based on Lemma 1,
the shortest distance between s and ¢ is calculated by scanning
over the sorted label set H(s) and H(t), and using Eq. (5).!

min

d(s,t) =
y (S) v; EH (s)NH(t)

(dsv,; + dvit) (5)

Note that the computational complexity of finding the
shortest distance is O(|H (s)|+|H (t)|), where |H (x)| denotes
the number of labels in H(z).

b) Computing Shortest Path: In order to retrieve the
shortest path, the hub labeling algorithm involves a two-
step process: (i) using Eq. (5) to identify the hub labels
(Vi dy, sy Dv;s) and (v, dy,¢, Dy,e) from H(s) and H(t), re-
spectively, where v; is the common hub vertex on the shortest
path sp(s,t); and (ii) retrieving the shortest subpath sp(s, v;)
and sp(v;,t), and concatenating them to obtain the shortest

'In this paper, we often use the notation H(s) N H (t) (resp. H(s)U H(t))
to refer to the common (resp. union of) hub vertices stored in H(s) and H (t).

Fig. 3: An example of a small road network graph.

| Vertex | Hub labels ‘
2 | &0 5

(a,2,n), (B,0,B)

(a, 6, B), (B, 4, B), (C,0,0C)

a, 2, E), (C, 5, 0), (D, 0,D)

(a, 1, »), (C, 6,D), (D, 1, D), (E, 0, E)
(»,5,B),(B,3,B),(C,3,0),(F,0F)
2,9,F),@®B,7,F), (5 0),(F, 4,F), (G006
(n, 3,E), (C, 8, E), (D,3,E), (E, 2,E), (H, 0, H)

TABLE I: Hub labeling for the graph in Fig. 3

T|QHEOlQlw

path sp(s, t), i.e., sp(s,t) = sp(s,v;)Dsp(v;,t). The step (i) is
the same as computing shortest distance. To obtain the subpath
sp(s,v;) in step (ii), we follow the predecessor p,, s obtained
from the label (v;,d,,s, Dy, s) and recursively extract the next
predecessor from s to v;. Each extraction of a predecessor
requires a linear search over the label set of H(p,,s). The
same process is repeated to obtain sp(v;,t). The complexity
of step (ii) is O(N x SP), where N is the average label size
of a node and SP is the number of vertices on sp(s,t).

Example 2. Consider Table I that shows hub labels for each
vertex of the graph in Fig. 3. To compute the shortest distance
sd(F, H) between F and H, HL iteratively scans the label set
H(F) and H(H) and finds two common hub vertices A and C.
When the common hub vertex A is found with label (A,5, B)
in H(F) and label (4,3,E) in H(H), sd(F, H) is updated to
be sd(F,H) = dar + day = 5+ 3 = 8. Later, the algorithm
processes the other common hub vertex C. Since sd(F, H) <
der + deyg = 3+ 8 = 11, the shortest distance sd(F, H) is not
updated. Finally, the algorithm returns sd(F, H) = 8.

The shortest path is retrieved as follows. Since the common
hub vertex A is on the shortest path, the algorithm computes
sp(F,H) as sp(F,A) @ sp(A, H). To retrieve sp(F,H), the
algorithm backtracks using the predecessor of the hub label
(4,5, B) in H(F). Specifically, the label indicates that B is the
first vertex on the shortest path from F to H. Next, the algorithm
accesses the hub labels of B, H(B) and identifies the label
(4,2, A) containing the hub vertex A. Since the predecessor
in (A,2,A) is A itself, the path extraction concludes, returning
the shortest path (F, B, A) from F to A. Similarly, the shortest
path (H, E, A) is extracted from Hto A. By concatenating these
two shortest paths, the algorithm determines the shortest path
between F and H as (F,B, A, E, H).

III. RELATED WORK

Navigation in road networks has garnered significant atten-
tion, with existing research (see Section II-C) largely con-
centrating on computing the shortest paths by representing
edge weights as static values. However, static road networks
merely approximate real-world road conditions. To account for
factors like road congestion, closures, and others, numerous
studies [35], [36] have endeavored to efficiently compute the
shortest path on time-dependent road networks, where the
travel times on the edges vary throughout the day. Addi-
tionally, recent research [37]-[39] has expanded beyond mere
shortest and time-dependent paths to consider other important
user preferences, aiming to plan utility-rich driving routes such
as the safest and most scenic paths. However, these works are
orthogonal to finding high-quality alternative paths which is
the focus of this work. In this section, we cover some of the
most well-known alternative pathfinding techniques.

a) Penalty: This approach [16], [17], [40] iteratively
computes the shortest paths from the source s to the target
t. After each iteration, it applies a penalty to each edge on the
shortest path found in the previous iteration by increasing its
edge weight by a certain penalty factor. This approach aims
to find multiple paths that are significantly different from each
other, as increasing the edge weight on the shortest path found
in the previous iteration will likely lead to a different shortest
path being chosen in the next iteration. The algorithm stops
when either £ unique paths have been found or when the length
of the shortest path found in the current iteration is longer
than d(s,t) x (1 4+ €) where € is a user-defined parameter.
Although the penalty method heavily relies on increasing
edge weights to avoid similar paths, it offers no guarantee
of identifying alternative paths that are sufficiently dissimilar
from each other. Despite its ease of implementation, as shown
in our experimental study, this method returns, in some cases,
alternative paths that are highly similar to each other.

b) Plateaus: This approach [19] first computes two
shortest path trees T and T} rooted at s and ¢, respectively.
Then, the two trees are joined and common branches in the
two trees are found. Each common branch is called a plateau.
Let pl(u,v) be a plateau such that u is the endpoint closer
to s and v is the endpoint closer to ¢. The algorithm selects
the k longest plateaus, and for each of these plateaus pl(u,v),
computes an alternative path as sp(s, u) @ pl(u,v) ® sp(v,t).
Note that building the shortest path trees requires running two
Dijkstra searches from the source s and target ¢, respectively,
which results in high query processing time. Our proposed
algorithm outperforms this approach by more than two orders
of magnitude in terms of running time.

c¢) SVP+: Similar to Plateaus, this approach [23] gen-
erates two shortest path trees 75 and 7;. For a vertex v,
its via-path through v is sp(s,v) @ sp(v,t). The algorithm
iteratively accesses vertices in the two trees Ts and 7} in
ascending order of the lengths of their via-paths and adds a
via-path to the set of alternative paths only if its similarity
to the already added alternative paths is less than 6 where 6
is a user-defined similarity threshold. Similar to the Plateaus
approach, this approach also suffers from high computation
time dominated by the construction of two shortest paths trees.

d) ESX: The key idea of this approach [23] is to incre-
mentally remove edges from the road network and compute
the shortest path on the updated network. The order in which
the edges are removed from the road network affects both the
result quality and the performance. The authors apply multiple
strategies (e.g., edge removal, optimisation) to improve its
performance and result quality. ESX is an extension of the
Penalty approach, incorporating a more greedy strategy by
removing edges rather than increasing edge weights. However,
it still suffers from a high computation time and is more than
two orders of magnitude slower than our approach.

e) X-CHV: This idea was first proposed in [24] and is
quite similar to SVP+. The fundamental difference is that
X-CHV performs a bidirectional search on the contraction
hierarchy (CH) [32] and selects the intersecting nodes of CH
as via-nodes. By using these via-nodes, alternative paths are
generated by concatenating the two shortest paths. While X-
CHV enhances SVP+ by adjusting CH to expedite runtime,
it still requires extensive search efforts to discover alternative
paths. Consequently, its computation time is still up to an order
of magnitude slower than our proposed approach which avoids
expensive graph search.

f) DESP: This approach [15] constructs the shortest path
tree from the source node s and generates candidate paths that
deviate from the shortest path between s and ¢ using edge
deviation, ordered by increasing distance. The primary goal
of DKSP is to reduce the lengths of alternative paths while
maintaining a relatively high level of similarity between them.
For instance, in the experimental study conducted in [15], the
allowed similarity between alternative paths can be as high
as 90%. However, our approach, along with the majority of
existing works, emphasizes ensuring significant dissimilarity
between paths, with, for example, a limit of up to 50% simi-
larity. As the similarity threshold decreases, DkSP becomes
considerably more resource-intensive, reaching up to three
orders of magnitude higher computational costs compared to
our approach. This increased expense is attributed to the need
to explore a significantly larger number of candidate paths
within the shortest path tree.

IV. HUB-BASED VIABLE ALTERNATIVE ROUTING

Our approach, Hub-based Viable Alternative Routing (Hub-
VAR), consists of two phases: (i) generation of candidate
paths (Section IV-A); and (ii) selection of up to k alternative
paths from the generated candidates (Section IV-B). In this
section, we present the basic ideas for each phase and discuss
optimizations to improve the performance.

A. Candidate Paths Generation

Given user-defined similarity threshold 6 and distance
threhsold e, Algorithm 1 shows how to generate candidate
paths between s and ¢. First, it utilizes hub-labeling (HL) to
compute the shortest distance sd(s,t) and extract the shortest
path sp(s,t) between s and t (line 1). Then, the algorithm
initializes P, a set containing the candidate alternative paths
found so far, by inserting the shortest path sp(s, t) in it (line 2).
To generate the candidate alternative paths, the algorithm

Algorithm 1: Candidate Paths Generation

Input: s: start ; ¢: target ; 0: similarity threshold; e: distance
threshold
Output: P: a set of candidate paths
1 Compute shortest distance sd(s,t) and path sp(s,t);
2 P = {sp(s,0)};
3 foreach v € H(s) U H(t) do
if v is not on the shortest path sp(s,t) then
sd(s,v,t) = sd(s,v) + sd(v,t);
if sd(s,v,t) < sd(s,t) x (1+ ¢€) then
sp(s,v,t) = sp(s,v) ® sp(v,1);
if sp(s,v,t) does not contain cycles then
it Sim({sp(s,t),sp(s,v,t)}) < 6 then
10 | P="PUsp(s,v,t);
11 return P

[REN T NV B

iteratively examines the unique hub vertices in H (s) and H (t)
(i.e., v € H(s) U H(t)) (line 3). The algorithm prunes a hub
vertex v if it lies on the shortest path sp(s,t) (line 4) because
the shortest via-path through v, sp(s,v,t), is the same as
the shortest path sp(s,t). If v does not lie on the shortest
path, our algorithm considers the via-path sp(s,v,t) where
sp(s,v,t) is concatenation of the shortest paths from s to v and
from v to t (i.e., sp(s,v,t) = sp(s,v) @ sp(v,t)). Although
each sp(s,v,t) can be used as a candidate alternative path
and stored in P, our algorithm ignores poor quality paths by
filtering sp(s,v,t) if:
1) it is much longer than the shortest path, specifically if
sd(s,v,t) > sd(s,t) X (1+¢) (line 5 - 6); or
2) it contains cycles (line 7 - 8); or
3) its similarity to the shortest path sp(s,t) is greater than
the similarity threshold € (line 9).

The pruning steps 1 and 3 ensure that the candidate paths
satisfy similarity and distance thresholds. Pruning step 2
ignores any path that contains cycles because such paths are
not realistic and have infinite bounded stretch (see Eq. (3)).
Each via-path sp(s,v,t) which is not pruned by the above
pruning rules is appended to the candidate set P (line 10).
When each hub vertex v is processed as described above, the
algorithm terminates by returning the candidate set P (line 11).

Example 3. Consider the example in Fig. 4, where we
assume the source is F, the target is H e¢ = 0.5 and
0 = 0.5. The algorithm begins by computing the shortest path
sp(F, H)=(F, B, A, E, H) (shown in orange dotted line) and
sd(F,H) = 8 using HL. The shortest path is then appended
to P as a candidate path. Next, the algorithm employs HL to
determine the union of hub vertices {A, B, C, D, E, F, H} stored
in F and H, as shown in Table I. The algorithm then iteratively
accesses each hub vertex, skipping the hub vertices A, B, E, F
and H since they already appear on the shortest path. The
remaining hub vertices C and D are processed. When hub
vertex C is processed, the via-path sp(F, C, H)=(F, C, D, E, H)
(shown in magenta dashed line) is appended to P because it is
not pruned by any of the pruning rules. Specifically, its length
11 is smaller than sd(F, H) x (14€) = 8x 1.5 = 12, it does not
contain a cycle and its similarity to the shortest path is less
than 0.5. The algorithm then processes the hub vertex D but it
is pruned because the via-path sp(F, D, H)=(F, B, A, E, D, E, H)

Fig. 4: The source (resp. target) node is F (resp. H). Hub-VAR
generates two candidate paths colored in orange and magenta.

contains a cycle (e.g., (E, D, E)). The algorithm terminates and
returns the two candidate paths shown in orange and magenta.

Next, we describe how to implement the pruning steps.

1) Implementing Pruning Step 1: For a given v € H(s) U
H(t), this pruning step requires calculating sd(s,v,t) which
requires computing sd(s,v) and sd(v,t). We efficiently com-
pute sd(s,v,t) using HL as follows. Since v € H(s) U H(t),
it must have a hub label in at least one of H(s) or H(t). We
have two cases:

Case 1. v is a hub label in both H(s) and H(t). In this
case, sd(s,v) and sd(v,t) can be easily retrieved using the
hub labels of v in H(s) and H(t), respectively.

Case 2. v is a hub label in only one of H(s) or H(t).

Without loss of generality, assume that v is a hub label in
H(s) but not in H(t). In this case, sd(s,v) is obtained using
the hub label of v in H(s) and sd(v,t) is computing using
HL as explained in Section II-C.
Optimisations. For the case 2 above, the algorithm requires
computing either sd(s,v) or sd(v,t) using HL. Without loss
of generality, assume that sd(v,t) is required to be computed
using HL. (whereas sd(s,v) is retrieved from the hub label
of v in H(s)). To further optimise computational efficiency,
we delay the distance calculation sd(v,t) as follows. We first
check if sd(s,v) > sd(s,t) x (1 + ¢). If so, sd(v,t) is not
required and the path is pruned. Otherwise, we compute a
lower bound distance between v and ¢ (denoted as ld(v, t)). If
sd(s,v) +1d(v,t) > sd(s,t) x (1+¢€), the path is pruned and
sd(v,t) is not needed to be computed. Although any lower
bound distance can be computed, in our implementation, we
use landmark based lower bound distance [29].

2) Implementing Pruning Step 2: A simple approach to
implement pruning step 2 is to traverse the via-path sp(s, v, t)
and see if it contains cycles (i.e., a vertex appears more
than once on the path). However, this requires computing and
traversing the whole path which may be un-necessary.
Optimisation. Recall that sp(s,v,t) = sp(s,v)®sp(v,t). The
following lemma helps in efficiently identifying if sp(s,v,t)
contains a cycle or not.

Lemma 2. Let v be the first vertex on the shortest path from
v to s. Let vy be the first vertex on the shortest path from v to
t. The path sp(s,v,t) contains a cycle if and only if vs and
vy refer to the same vertex.

Proof. 1f v, and v, are the same vertex, then it is easy to see
that sp(s, v,t) contains a cycle (vs, v, v;). Next, we prove that

sp(s,v,t) contains a cycle only if vs and v; refer to the same
vertex. Assume that sp(s,v,t) contains a cycle but v; and v,
do not refer to the same vertex. Since there is a cycle, there
must be at least one vertex r repeated twice. Since sp(s, v) and
sp(v, t) are shortest paths, they cannot contain cycles. Thus, if
there is a cycle in sp(s, v, t), it must overlap both sp(s, v) and
sp(v,t), i.e., the cycle is (r,--+ ,v,---r). Since (r,--- ,v) is
on sp(s,v) and (v,--- ,r) is on sp(v, t), the cycle is sp(r, v)d
sp(v, 7). Since the graph is undirected?, all vertices on sp(r, v)
and sp(v,r) are repeated®. Thus, v, and v; must be the same
vertex which contradicts our assumption. O

Based on Lemma 2, instead of retrieving the whole via-
path, we simply check whether v and v; refer to the same
vertex or not. Note that vy and v; can be easily retrieved
using HL by looking at the predecessor vertex stored in the
hub labels (as explained in Section II-C). Also, vs or v,
may have already been computed during pruning step 1. In
short, this optimisation does not require computing the via-
path sp(s,v,t) at line 7. Instead, the pruning step 2 is applied
by computing only vs and v;.

3) Implementing Pruning Step 3: Applying pruning step 3
requires computing similarity between sp(s,v,t) and sp(s,t)
(line 9). This can be done by computing sp(s,v,t) =
sp(s,v) @ sp(v,t) and computing its similarity with sp(s, t)
using Eq. (1). Next, we present an optimisation that may not
require computing the whole path sp(s, v, t) if it can be pruned
by the pruning step 3.

Optimisation. First we present the following lemma which is
crucial to the optimisation.

Lemma 3. Let P; and P; be two paths. Similarity between
them Sim({P;, P;}) is greater than 6 if and only if |P;NP;| >
1+0(|P | + | P;]) where | X | denotes the length of a path X

Proof. We show that Sim({P;, P;}) > 6 is equivalent to | P;N
1 N P; Pj

Pj| > 1% (1P| + | Py]). Since Sim({P;, P;}) = {555} (see

Eq (1)), we have.

|P; N Py
— >
BUD|

Since |P; U P;| is equal to |P;| + |P;| — |P; N P}, we get

|P; N P
|Pi| + |Pj| — | P 0 Py
[P 0 Py > 0P| + | Ps| — [P N By))
(1 +0)(|1PByl) > (1P| + [F;1)

TgUBl+IED

>0

|PmP|>
O

2For ease of presentation, in this paper, we assume an undirected graph.
But the proof can be extended for the directed graphs as well.

3Even if there are more than one shortest paths between r and v, hub
labeling construction using a shortest path tree rooted at v ensures that a
unique shortest path is selected.

We exploit Lemma 3 as follows. Instead of computing the

whole path sp(s,v,t), we incrementally retrieve edges on
sp(s,v,t) and calculate |sp(s,v,t) N sp(s,t)|. When sp(s,t)
is computed at line 1 of Algorithm 1, we mark every edge
that lies on sp(s, t). This allows checking whether an edge on
sp(s,v,t) overlaps with sp(s,t) in O(1). We incrementally
update |sp(s,v,t) N sp(s,t)] as new edges on sp(s,v,t)
are retrieved and, at any stage, if it becomes bigger than
1+9 (sd(s,v,t)+sd(s,t)), we prune the path, where sd(s, v, t)
and sd(s,t) are already computed by the algorithm earlier.
This allows pruning the via-path sp(s, v, t) without retrieving
the whole path.
Remark: Algorithm 1 might return fewer than k candidate
paths if, for instance, the union of H(s) and H(¢) has fewer
than k vertices. Our experimental investigation indicates that
H (s)UH (t) typically encompasses numerous vertices, making
it unlikely to have fewer than k vertices. However, there
are cases where this could occur. In such instances, akin to
numerous existing methodologies, the algorithm will yield
fewer than k alternative paths. As an alternative approach, the
algorithm can generate additional candidate paths by progres-
sively considering nodes in H (v) for each v € H(s) U H ()
until a sufficient number of candidate paths are obtained.

B. Alternative Paths Selection

After Algorithm 1 generates the candidate paths P, we pass
‘P to another algorithm which selects up to k alternative paths
from P and returns to the user. The aim here is to return a
result set R C P containing up to k paths such that R is of the
highest quality according to the metrics defined in Section II.
One straightforward approach is to select paths based on a
single metric, disregarding others. While this method may
expedite the selection process, it often leads to poor path
quality. Another strategy is to identify a set of candidate paths
that are not dominated by other paths considering all four
metrics. However, computing the pareto frontier can yield a
large number of paths which may overwhelm the users. To
overcome these issues, we introduce a combined objective
function that integrates the four path quality metrics in order
to select up to k alternative paths from P. The main intuition
is to acknowledge that all path quality metrics are important,
thereby avoiding the selection of alternative paths that favor
only a specific metric.

Specifically, DR(R), BS(R), Sim(R) should be as small
as possible and LO(R) should be as large as possible. One
possible approach is to consider all possible path combinations
in P containing k paths such that LO(R)—BS(R)—DR(R)—
Sim(R) is as large as possible. However, this approach
requires evaluating]IX) path sets which is computationally
expensive because (k) may be a large number and computing
the quality metrics for each path set is computationally ex-
pensive. Next, we present a greedy algorithm which returns R
aiming to maximise the objective function LO(R)— BS(R)—
DR(R) — Sim(R). Note that this objective function gives
equal weight to each quality metric and, depending on the
application or user requirements, a weighted aggregate of these
values can also be used. Also, we normalise all these values
using Min-Max normalization.

Algorithm 2: Get Alternative Paths

Input: P: set of candidate paths; k: # of required paths
Output: Result set R containing up to k alternative paths
1 R = {sp(s,0)}:P = P\ sp(s,1)
2 foreach P € P do
3 | P.score = LO(P)— BS(P)— DR(P)
4 while P is not empty and R contains less than k paths do
5 foreach P € P do
6 | P.quality = P.score — Sim(P UR)
7
8
9

X = the path in P with the highest P.quality
R=RUX;P=P\X
return R;

Algorithm 2 shows the details of the greedy algorithm for
alternative path selection. Initially, it inserts the shortest path
sp(s,t) in R and removes it from the candidate paths P
(line 1). For the remaining paths in P, we compute quality
score of each path P, denoted as P.quality, and incrementally
insert the path P with the highest P.quality in R. The
quality score of each path P is LO(P)— BS(P) — DR(P) —
Sim(P UR). Note that LO(P), BS(P) and DR(P) of a path
P remain unchanged in each iteration whereas Sim(P UR)
needs to be recomputed as more paths are inserted in R.
Therefore, we first compute LO(P) — BS(P) — DR(P) for
each path, denoted as P.score (see lines 2-3). Then, in each
iteration, we compute Sim(P UR) and subtract this value
from P.score to obtain its quality score P.quality (lines 5-6).
Then, the path with the highest quality score is inserted in R
and removed from the candidate paths P (lines 7-8). When P
becomes empty or R contains at least k paths, the algorithm
terminates by returning R (lines 4 and 9).

The algorithm requires computing DR(P), BS(P), LO(P)
and Sim(PUTR). Computing DR(P) is computationally
cheap as it needs | P| and sd(s,t) which are already known to
the algorithm at this stage. Next, we present two optimizations
to improve the computational cost for the other quality metrics.

1) Efficiently computing BS(P) and LO(P): Recall that
bounded stretch BS(P) of P is the maximum stretch of any
of its subpaths P(v,,v,) € P where stretch of a subpath
P(vg,vy) is dF (vg,vy)/sd(ve, vy) (see Eq. (3)). Thus, one
simple approach to compute BS(P) is to compute stretch of
each subpath P(v,,v,) and maintain the maximum stretch.
Also, recall that LO(P) is computed by dividing the length
of the shortest suboptimal path £(P) by sd(s,t) (see Eq. (4)).
L(P) can be computed by considering all subpaths P(v;,v,)
and maintaining the smallest length for paths that are not
optimal (i.e., d”(vy,vy) > sd(vg,vy)). Let n be the number
of vertices on the path P, the above approaches to compute
BS(P) and LO(P) require considering O(n?) subpaths. The
following lemma helps us significantly reduce the number of
subpaths considered for computing BS(P) and LO(P)

Lemma 4. Consider a path P and its subpath P' C P. If
P’ is an optimal path, each subpath P(v,,v,) where both v,
and vy lie on P’ can be safely ignored to correctly compute

BS(P) and LO(P).

Proof. We show that the stretch of each such P(v,,v,) is 1
and thus is not required to be specifically computed. Since

P’ is an optimal path, for every (v, v,) on P’, P(vg,vy) is
also an optimal path, i.e., d* (v, v,) = sd(v,,v,). Therefore,
its stretch df (v,,v,)/sd(ve,v,) = 1. Computing LO(P)
requires computing the length of the shortest suboptimal
subpath. Since P’ is an optimal path, P(v,,v,) is also an
optimal path and thus is not required to be considered.

O

Now, we present Algorithm 3 which efficiently computes
BS(P) and LO(P) for a via-path sp(s,v,t) by exploiting
Lemma 4. The algorithm initializes the bounded stretch (BS)
to be 1 which is the minimum possible bounded stretch,
and the length of the shortest suboptimal path £ to oo.
Since sp(s,v,t) = sp(s,v) ® sp(v,t), we do not need to
consider any pair of vertices (v, v,) where both v, and v,
lie either on sp(s,v) or on sp(v,t) (see Lemma 4). Therefore,
the algorithm only considers the vertices (v,,v,) where v,
lies on sp(s,v) and v, lies on sp(v,t). Specifically, the
algorithm employs two nested loops where the outer loop
incrementally considers each v, on the shortest path from
s to v (line 1) and the inner loop incrementally processes
each v, on the shortest path from ¢ to v (line 2). In each
iteration of the inner loop, the algorithm calculates the shortest
distance sd(v,,v,) using HL. Note that d”(v,,v,) can be
obtained in O(1) if the path distance d” (s, v’) from s to each
vertex v’ on the path sp(s,v,t) is recorded at the beginning
of the algorithm by traversing the path sp(s, v, t). Specifically,
df (vg,vy) = dF (s,v,) — d¥(s,v,).

If the subpath P(v,,v,) is not a shortest path (i.e.,
df (vg,vy) # sd(vs,vy)), the algorithm computes stretch of
P(vg,vy) and updates BS if this stretch is higher than the
current BS (line 4). Also, £ is also updated if the length of
this path dP(vgc,vy) is smaller than the current £ (line 5). If
the subpath P(v,,v,) is a shortest path, the algorithm exploits
Lemma 4 and breaks the inner loop (line 6). When both nested
loops are concluded, the algorithm returns the bounded stretch
BS and local optimality which is £/sd(s,t) (line 7).

While Algorithm 3 correctly computes BS(P) and LO(P),
the algorithm to return top-k alternative paths (Algorithm 2)
does not necessarily need exact BS(P) and LO(P), ie.,
approximate values of BS(P) and LO(P) may be sufficient
to return high quality paths. Therefore, it is not necessary to
traverse every vertex v, and vy in the two nested loops of
Algorithm 3. Instead, we can skip x nodes in each iteration
of inner and outer loops. We tried different values of x and
observed that, for x = 10, Algorithm 3 still returned very
good approximates of BS(P) and LO(P) while significantly
reducing the computation time.

2) Memoization: Algorithm 2 requires computing BS(P)
and LO(P) for all candidate paths P € P and, we observed
that, there were repetitive calculations of the shortest distance
sd(vg, vy) for numerous duplicate pairs (v, v,) across dif-
ferent candidate paths. To further improve the computational
efficiency, we implemented a hash table to store the values of
sd(vg,vy) for each vertex pair (v,,v,). This approach avoids
redundant computations of the shortest distances using HL
when the same vertex pair has already been cached. Addition-
ally, Algorithm 2 requires computing similarity Sim (P UR)

Algorithm 3: Optimized calculation of BS and LO
Input: P: a via-path sp(s,v,t)
Output: path quality metrics: BS(P) and LO(P)
Initialisation: BS = 1; £L = o0

1 foreach v, on the shortest path from s to v do

2 foreach v, on the shortest path from t to v do
3 if d¥(ve,vy) # sd(vz,vy) then
P
4 BS = maz(BS, %”j} %
5 L =min(L,d" (ve,vy)));
6 else break;
7 return BS and L£/sd(s,t);

for each candidate path P € P whenever a new alternative
path is appended to the result set R. The similarity metric
Sim(P UTR), as defined in Eq. (1), represents the maximum
similarity between any pair of paths (P;,P;) in P U R.
To avoid redundant computations of the similarity between
pairs (P;, P;), we also employ caching to store the computed
similarity values for each pair of paths (P;, P;). Similarly, we
also integrate these caching strategies into Algorithm 3. When
implementing caching, it is important to note that the hash
table created for each individual query can be deleted once
the query results have been computed. Consequently, the size
of the hash table does not accumulate, leading to negligible
memory overhead as verified in the experiments.

V. EXPERIMENTS
A. Settings

We run experiments on an Apple M1 Pro machine with 10-
core CPU with 32 GB of RAM. All algorithms have been im-
plemented in C++ and compiled with the -O3 flag. To ensure a
fair comparison, the algorithms use the same implementation
of common routines. We obtained real-world road networks
from OpenStreetMap* for three demographically diverse cities:
Melbourne, Dhaka, and Copenhagen (see Table II). For each
road network, we show results for two sets of experiments: one
where the edge weights correspond to the travel times; and the
other where edge weights correspond to the travel distances.
As noted in the previous works [27], if an approach returns
less than k alternative paths, it may unfairly receive better
quantitative scores for certain quality metrics. Therefore, we
generated 10,000 queries for each map with source and target
for each query uniformly distributed over the map, ensuring
that all approaches returned & alternative paths.

B. Algorithms Evaluated

Our approach, Hub-based Viable Alternative Routing, is
shown as Hub-VAR in the experiments. To implement the hub
labeling, we employ the state-of-the-art algorithm, Significant
path-based Hub Pushing (SHP) [5], using the implementation
taken from the public repository’. For reproducibility, imple-

mentation of Hub-VAR will be made available online®.
4www.openstreetmap.org

Shttp://degroup.cis.umac.mo/sspexp

Ohttp://will_publish_after_acceptance

We compare our approach with the six well-known and
state-of-the-art algorithms discussed in Section III. To ensure
a fair comparison, we strive to utilize the original source
code released by the creators of each algorithm, whenever
accessible. Therefore, for SVP+ and ESX [23], we utilize
the original authors’ implementations from the publicly avail-
able repository’. Similarly, we use the publicly available
implementation of DkSP [15] from the online repository®.
However, for Penalty and Plateaus, the algorithm inventors
have not released their implementations. Therefore, we opted
for the implementations provided by the authors of a recent
comparative study [11]. Notably, the X-CHV implementation
was not available, prompting us to develop it ourselves.
Note that implementing X-CHV involves creating contraction
hierarchies (CH), for which we utilized the CH implementation
from RoutingKit®, implemented by the same research group
that proposed X-CHV. We make our best efforts to implement
the algorithm following the details provided by the authors in
the original work. Similar to most of the existing studies [11],
[22], [23], [25], all algorithms are configured to compute k =
3 alternative paths. The similarity threshold € and the distance
threshold € are both set to 0.5, unless specified otherwise.

C. Results

1) Preprocessing: In Table II, we present the build time
and memory costs associated with hub labels. In all cases, the
build time is under two minutes and the memory required to
store hub labels is under 2GB, which is reasonable for modern
systems that have much larger main memories. Similar to
existing works, these labels are generated offline and persist in
memory throughout query processing. Additionally, we offer
insights into the maximum and average label sizes for the
vertices in each network. On average, the vertices have a
sufficient number of hub labels for Algorithm 1 to identify
candidate paths. According to the Table II, the hub labeling
technique performs better for the travel time network. The
label size in the distance network is higher, thereby incurring
higher query runtime, as demonstrated in later sections.

2) Query Runtimes: Figure 5 illustrates the runtime for
different algorithms on the three road networks using either
the travel time or the distance. Similar to existing studies for
shortest path queries on road networks [4], we sort the queries
based on the shortest distances between their respective start
and target locations. The x-axis of each figure represents the
percentile ranks of the queries in this sorted order (e.g., a query
with a larger percentile has a longer distance between its start
and target). Note that the y-axis is in log scale. As expected,
the cost of each algorithm increases as the distances between
query start and target location increases. Our approach, Hub-
VAR, consistently outperforms all competitors for all road
networks and for both travel time and distance. Specifically,
Hub-VAR is 4-8 times faster than X-CHV and is 2-3 orders
of magnitude faster than all other approaches. Notably, Hub-
VAR exhibits faster performance on travel time maps as

"https://github.com/tchond/kspwlo

8https://github.com/AngelZihan/Diversified-Top-k-Route-Planning-in-
Road-Network

9https://github.com/RoutingKit/RoutingKit

Travel Time Distance
City Name #V #E Build Time | Memory | Node Label Size || Build Time | Memory | Node Label Size
(Mins) (MB) MAX [AVG (Mins) (MB) MAX [AVG
Melbourne | 907k | 1978k 0.5394 974 252 108.5 1.244 1563 350 151.9
Dhaka 484k | 1011k 0.2182 348 325 85.6 0.7198 836 362 104.7
Copenhagen | 258k | 556k 0.0919 240 207 78.1 0.5693 593 287 95.4

TABLE II: Number of vertices (#V') and edges (#F) in each map. We also show preprocessing cost for constructing the hub
labeling, including build time in minutes, memory cost in megabytes, and average/maximum label size.

----- DkSP oo SVP+ — ESX --- Plateau —-— Penalty X-CHV === Hub-VAR
Melbourne Travel Time Dhaka Travel Time Copenhagen Travel Time
—~ 1034 103 103
2
=~ 102, 102 102
2
E 101, 10t 10t
£ 10° 10° 10°
o . gt -
1ot 7 107t 107!
@ !
Z 102 10724 / 1072
—~ 103 103 103
2
=~ 102 102 102
2
E 10t S 10t 10t
‘==| 10° "N%M.‘._,r,.,,..\, 10° . 10°
[} »;’ - o~
§’ 1071 / 107! 107!
(] %
Z 1072 1072 10724 ’
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Fig. 5: Runtime comparisons on the three road networks. The x-axis shows the percentile ranks of queries sorted based on the

shortest distances between start and target.

opposed to distance maps. This distinction can be attributed to
the underlying hub labeling technique, SHP, which has been
proven to operate more efficiently on travel time maps in
previous studies on the shortest path queries [4].

3) Path Quality: Table III compares the quality of the
alternative paths for Hub-VAR against the competitors. Our
evaluation is based on the alternative paths metric defined in
Section II: (i) Bound Stretch BS(P); (ii) Similarity Sim(P);
(iii) Local Optimality LO(P); and (iv) Distance Ratio DR(P).
For each metric, we present both the average value as well
as the worst reported value across all queries. We remark that
although our algorithm, Hub-VAR, computes approximate val-
ues of LO(P) and BS(P) to optimise the query performance
(see Section IV-B), the quality metrics reported in Table III
correspond to the exact values for all metrics.

The results show that no single approach dominates all
other algorithms across all metrics. The Plateau method se-
lects alternative paths with longer plateaus which are locally
optimal. Consequently, it performs better in terms of LO(P)
but exhibits lower quality in DR(P) due to longer paths. The
Penalty approach adjusts the penalty factor for each newly
selected alternative path, making it more likely to choose dis-
similar paths and thus performing better in terms of Sim(P).

However, this comes at the cost of other metrics as the
Penalty method lacks guarantees in those areas. While most
of the algorithms are pretty similar in terms of path quality
metrics, DESP is an outlier. This is mainly because, as noted in
Section III, DESP aims to minimize the lengths of alternative
paths and allows very high similarity between the alternative
paths. As a consequence, it achieves better performance in
terms of DR(P) and BS(P) whereas it performs very poorly
on Sim(P) and LO(P). Specifically, the paths reported by
DESP are around 75% similar to each other on average (the
maximum similarity is 98%) and the local optimality is also
very small. This is undesirable in most real world applications
where the users are interested in retrieving paths that are
significantly different from each other, and do not have small
detours (i.e., do not have very low local optimality).

Hub-VAR considers a combination of quality metrics during
alternative path computation. By doing so, it ensures that it
does not perform poorly in any particular criterion, making it
consistently competitive across all metrics. At the same time,
its runtime is 2-3 orders of magnitude lower than most of the
approaches making it suitable for deployment in real-world
navigation systems that are expected to handle tens of thou-
sands of queries per second. X-CHYV is the closest to Hub-VAR

Travel Time Distance
Algorithm| BS(P)| | Sim(P)| | LO(P)T | DR(P)} |Runtime|| BS(P)] | Sim(P)| | LO(P)t | DR(P)} |Runtime
AVG[MAX AVG[MAX AVG{ MIN | AVG [MAX (in ms)| AVG[MAX AVG[MAX AVG{ MIN | AVG [MAX (in ms)|
Melbourne ‘
Plateau |1.29| 2.28 |0.39| 0.86 | 0.36 [0.008| 0.19 | 0.48 | 352.7 |/ 1.24|2.24 10.37| 0.84 |0.31]0.005]| 0.15| 0.49 | 427.3
Penalty |1.33|2.16 {0.29| 0.95 | 0.15]0.004| 0.15| 0.48 | 153.6 || 1.26| 3.04 |0.27 | 0.89 | 0.36 |0.005| 0.14 | 0.50 | 161.4
SVP+ |1.39] 3.63 |0.36| 0.50 | 0.21 |0.004| 0.07 | 0.28 | 851.2 || 1.15] 2.32 |0.28 | 0.50 | 0.38 |0.005| 0.06 | 0.34 | 993.5
ESX 1.32] 3.33 |10.38| 0.50 [0.28 |0.004| 0.10 | 0.32 | 515.7 || 1.17] 2.98 {0.29| 0.50 {0.39(0.005| 0.08 | 0.35 | 621.1
DKSP | 1.08| 2.07 {0.77 | 0.97 | 0.03{0.001{0.003| 0.04 | 1350.9 (| 1.07 | 2.02 | 0.75| 0.96 | 0.01 |0.001|0.002| 0.03 | 1546.3
X-CHV |1.42|4.02]0.42| 0.49 |0.21|0.004| 0.10 | 0.37 5.2 1.26 | 3.54 | 0.35] 0.49 | 0.29 |0.005| 0.08 | 0.38 8.6
Hub-VAR | 1.34 | 4.07 [0.29 | 0.49 | 0.25|0.004| 0.13 | 0.43 0.8 1.241 3.16 | 0.27 | 0.48 | 0.30 {0.005| 0.12 | 0.38 1.8
Dhaka
Plateau |1.44| 2.54 |0.32| 0.80 | 0.35[0.007| 0.20 | 0.46 | 116.8 |/ 1.36| 3.63 | 0.40| 0.87 | 0.28 |0.006| 0.15 | 0.47 | 126.4
Penalty |1.48|2.85(0.34| 0.94 |0.18]0.003| 0.16 | 0.50 | 52.5 1.38] 3.73 10.33| 0.93 {0.35]0.006| 0.10 | 0.49 | 614
SVP+ [2.64]7.13 |0.35]| 0.50 | 0.25[0.004| 0.09 | 0.38 | 578.4 || 1.38| 4.09 [0.28 | 0.50 | 0.33 0.006| 0.06 | 0.33 | 672.3
ESX 1.76 | 3.73 1 0.36 | 0.50 | 0.27 |0.004| 0.11 | 0.44 | 109.7 || 1.31| 3.83 |0.28| 0.50 | 0.37 {0.006| 0.07 | 0.39 | 127.6
DESP | 1.11| 2.24 |0.81 | 0.97 |0.01 |0.001{0.005| 0.05 | 933.4 |/ 1.08 | 2.16 |0.74 | 0.95 |0.02{0.001|0.001| 0.04 | 1021.6
X-CHV |2.31|6.85(0.39| 0.50 |0.27]0.003| 0.11 | 0.41 1.6 1.41| 4.81 |0.37] 0.50 | 0.28 |0.006| 0.08 | 0.38 2.9
Hub-VAR| 1.73| 5.93 | 0.32| 0.50 | 0.28 [0.004| 0.15 | 0.45 0.2 1.39| 4.52 {0.30 | 0.49 |0.290.006| 0.10 | 0.41 0.7
l Copenhagen
Plateau |1.31| 2.30 |0.38| 0.77 | 0.38 [0.009| 0.16 | 0.48 | 81.2 1.321 3.53 10.35] 0.88 |0.27|0.008| 0.12 | 0.47 | 88.9
Penalty |1.33|2.50 {0.33| 0.86 |0.11]0.005| 0.12 | 0.48 | 35.8 1.32| 3.58 {0.39| 0.90 |0.31 |0.008| 0.10 | 0.49 | 40.3
SVP+ |1.52]3.76 |0.35| 0.50 {0.30[0.005| 0.07 | 0.30 | 218.2 || 1.33| 3.49 {0.30 | 0.50 | 0.33]0.008| 0.08 | 0.40 | 287.9
ESX 1.43| 3.63 |0.37] 0.50 | 0.31]0.005| 0.07 | 0.35 | 47.6 1.33| 3.69 {0.30 | 0.50 | 0.350.008| 0.09 | 0.42 | 61.1
DKSP | 1.09] 2.03 {0.78 | 0.98 | 0.02{0.001{0.002| 0.03 | 427.6 |/1.07| 1.97 |0.76| 0.96 | 0.03 |0.004|0.002| 0.04 | 464.4
X-CHV |1.57|3.84 |0.41| 0.50 | 0.24 |0.005| 0.08 | 0.38 0.7 1.39| 4.92 | 0.38 | 0.50 | 0.28 |0.008| 0.09 | 0.40 1.3
Hub-VAR | 1.40| 3.77 | 0.36| 0.49 | 0.28 [0.005| 0.09 | 0.43 0.1 1.34| 4.16 [0.32| 0.49 | 0.29 |0.008| 0.11 | 0.48 0.3

TABLE III: Path quality and computational efficiency comparison. Arrows indicate whether smaller or larger values are better.
We show BS(P) (smaller the better), Sim(P) (smaller the better), LO(P) (larger the better), DR(P) (smaller the better),
and average runtime (smaller the better). Best values for each column are shown in bold.

in terms of runtime but is still 4-8 times slower. Furthermore,
Hub-VAR consistently performs better or comparable to X-
CHYV in terms of almost all path quality metrics.

4) Other experiments: Fig. 6 shows the impact of varying
different important parameters on runtime of different algo-
rithms. In each experiment, only one parameter is varied while
the others are set to their default values. As expected, the run-
time of most of the algorithms increase as the values of k and
€ increase because the search space increases. However, Hub-
VAR consistently outperforms all existing algorithms. As 6
increases the cost of Hub-VAR and X-CHYV increases because
there are more candidate paths that need to be processed. The
cost of DESP significantly decreases as 6 is increased because
it needs to explore fewer candidate paths from the shortest path
tree (see Section III). For very high values of 6 (e.g., > 0.8),
DESP outperforms all algorithms in terms of running time.
However, note that DEKSP is orthogonal to our algorithm and
the other competitors as it is designed to minimise lengths
of alternative paths while allowing very high similarity and
very low local optimality. In real-world navigation scenarios
where diverse alternative paths are recommended, DkSP is
not suitable due to the high similarity among the returned
alternative paths, reaching up to 0.98 in Table III. DkSP
performs very poorly in terms of Sim(P) and LO(P) metrics,

e.g., for Melbourne Distance graph (Table III), its average
Sim(P) and LO(P) are 0.75 and 0.01, respectively, compared
to 0.27 and 0.3, respectively, for Hub-VAR. Thus, DkSP
should only be used in applications where length of the paths is
the key focus regardless of their similarity and local optimality.

The results for path quality metrics for varying these param-
eters are not shown due to the space limitations. However, the
results follow the same trend as shown in Table III, e.g., most
algorithms are comparable to each other except DASP which
has significantly better BS(P) and DR(P) but very poor
Sim(P) and LO(P). We also assess the memory consumption
of the Memoization technique. As mentioned earlier, the size
of the hash table incurs negligible memory overhead consid-
ering large main memory available in the modern systems. In
the Melbourne Travel Time network experiment, the average
size of the hash table is 0.7988 MB (max: 2.8229 MB), and
the use of the hash tables results in an average performance
gain of 2.81 times (max: 5.23 times).

VI. CONCLUSION

Our study is the first to exploit hub labeling for alternative
routing in road networks. We propose an efficient approach
that generates candidate paths using hub labeling and returns
high-quality candidate paths by ranking these candidate paths

ESX --- Plateau —:— Penalt X-CHV - Hub-VAR
y
103 103 ..
102 102 ettt
101 101
10° L e
0.3 0.4 0.5 0.6 0.7

Fig. 6: Runtime comparisons on the Melbourne (travel time) road network for different values of k, 6, and e.

considering a combination of path quality metrics. We present
several non-trivial optimisation to improve the efficiency. Our
experimental results demonstrate that our proposed approach
is up to three orders of magnitude faster than the existing
alternative routing approaches and 4-8 times faster than the
existing most efficient algorithm. Furthermore, the results
show that none of the existing techniques outperforms all other
approaches across all performance criteria, while our algorithm
is capable of generating high-quality paths of comparable
quality at a much lower computational cost and, therefore,
is suitable for deployment in large-scale navigation systems.

ACKNOWLEDGEMENTS

Muhammad Aamir Cheema is supported by the Australian
Research Council DP230100081 and FT180100140.

[1]
[2]

[3]

[5]

[6]
[7]

[8]

[9]
[10]

[11]

(12]

REFERENCES

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for A*: Efficient
point-to-point shortest path algorithms,” in ALENEX, 2006, pp. 129-143.
B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Contracting
and compressing shortest path databases,” in ICAPS, 2021, pp. 322-330.
Y. Li, L. H. U, M. L. Yiu, and N. M. Kou, “An experimental study on
hub labeling based shortest path algorithms,” Proceedings of the VLDB
Endowment, vol. 11, no. 4, pp. 445-457, 2017.

M. A. Cheema, “Indoor location-based services: challenges and oppor-
tunities,” SIGSPATIAL Special, vol. 10, no. 2, pp. 10-17, 2018.

J. Du, B. Shen, and M. A. Cheema, “Ultrafast euclidean shortest path
computation using hub labeling,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 10, pp. 12417-12426, Jun. 2023.
F. Barth and S. Funke, “Alternative routes for next generation traffic
shaping,” in International Workshop on Computational Transportation
Science, 2019, pp. 6:1-6:8.

A. Botea, E. Nikolova, and M. Berlingerio, “Multi-modal journey
planning in the presence of uncertainty,” in JCAPS, 2013.

F. Islam, C. Paxton, C. Eppner, B. Peele, M. Likhachev, and D. Fox,
“Alternative paths planner (APP) for provably fixed-time manipulation
planning in semi-structured environments,” in /EEE International Con-
ference on Robotics and Automation, ICRA 2021, Xi’an, China, May 30
- June 5, 2021. 1EEE, 2021, pp. 6534-6540.

L. Li, M. A. Cheema, H. Lu, M. E. Ali, and A. N. Toosi, “Comparing
alternative route planning techniques: A comparative user study on
melbourne, dhaka and copenhagen road networks,” IEEE Transactions
on Knowledge and Data Engineering, 2021.

L. Li, M. A. Cheema, M. E. Ali, H. Lu, and D. Taniar, “Continuously
monitoring alternative shortest paths on road networks,” in Proceedings
of the VLDB Endowment, 2020, pp. 2243-2255.

[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

C. Hécker, P. Bouros, T. Chondrogiannis, and E. Althaus, “Most diverse
near-shortest paths,” in Proceedings of the 29th International Conference
on Advances in Geographic Information Systems, 2021, pp. 229-239.
A. Moghanni, M. Pascoal, and M. T. Godinho, “Finding shortest and
dissimilar paths,” International Transactions in Operational Research,
vol. 29, no. 3, pp. 1573-1601, 2022.

Z. Luo, L. Li, M. Zhang, W. Hua, Y. Xu, and X. Zhou, “Diversified top-k
route planning in road network,” Proceedings of the VLDB Endowment,
vol. 15, no. 11, pp. 3199-3212, 2022.

V. Akgiin, E. Erkut, and R. Batta, “On finding dissimilar paths,”
European Journal of Operational Research, 2000.

Y. Chen, M. G. Bell, and K. Bogenberger, “Reliable pretrip multipath
planning and dynamic adaptation for a centralized road navigation sys-
tem,” IEEE Transactions on Intelligent Transportation Systems, vol. 8,
no. 1, pp. 14-20, 2007.

M. Kobitzsch, “An alternative approach to alternative routes: Hidar,” in
European Symposium on Algorithms. Springer, 2013, pp. 613-624.
A. H. Jones, “Method of and apparatus for generating routes,” Aug. 21
2012, uS Patent 8,249,810.

Y.-J. Jeong, T. J. Kim, C.-H. Park, and D.-K. Kim, “A dissimilar
alternative paths-search algorithm for navigation services: A heuristic
approach,” KSCE Journal of Civil Engineering, vol. 14, pp. 41-49, 2010.
H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths
with diversity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 3, pp. 488-502, 2017.

T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B. Blumen-
thal, “Finding k-dissimilar paths with minimum collective length,” in
SIGSPATIAL, 2018, pp. 404-407.

T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B. Blumen-
thal, “Finding k-shortest paths with limited overlap,” The VLDB Journal,
vol. 29, no. 5, pp. 1023-1047, 2020.

I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Alternative
routes in road networks,” Journal of Experimental Algorithmics (JEA),
vol. 18, pp. 1-1, 2013.

R. Bader, J. Dees, R. Geisberger, and P. Sanders, “Alternative route
graphs in road networks,” in Theory and Practice of Algorithms in
(Computer) Systems: First International ICST Conference, TAPAS 2011,
Rome, Italy, April 18-20, 2011. Proceedings. Springer, 2011, pp. 21-32.
I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A
hub-based labeling algorithm for shortest paths in road networks,” in
International Symposium on Experimental Algorithms, 2011.

L.Li, M. A. Cheema, M. E. Ali, H. Lu, and H. Li, “Efficiently computing
alternative paths in game maps,” World Wide Web (WWW), 2023.

I. Pohl, “Bi-directional and heuristic search in path problems,” Ph.D.
dissertation, Stanford Linear Accelerator Center, USA, 1969.

A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver,
British Columbia, Canada, January 23-25, 2005, 2005, pp. 156-165.
M. Hilger, E. Kohler, R. H. Mohring, and H. Schilling, “Fast point-to-
point shortest path computations with arc-flags,” in The Shortest Path
Problem, Proceedings of a DIMACS Workshop, vol. 74, 2006, pp. 41-72.
U. Lauther, “An experimental evaluation of point-to-point shortest path
calculation on road networks with precalculated edge-flags,” in The
Shortest Path Problem, Proceedings of a DIMACS Workshop, vol. 74,
2006, pp. 19-39.

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,” in
Experimental Algorithms, 7th International Workshop, WEA, vol. 5038,
2008, pp. 319-333.

Y. Li, L. H. U, M. L. Yiu, and N. M. Kou, “An experimental study on
hub labeling based shortest path algorithms,” Proceedings of the VLDB
Endowment, vol. 11, no. 4, pp. 445-457, 2017.

E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM J. Comput., vol. 32, no. 5, pp.
1338-1355, 2003.

G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter, “Minimum time-
dependent travel times with contraction hierarchies,” ACM J. Exp.
Algorithmics, vol. 18, 2013.

B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Improving
time-dependent contraction hierarchies,” in /CAPS, 2022, pp. 338-347.
C. Chen, L. Gao, X. Xie, L. Feng, and Y. Wang, “2td path-planner:
Towards a more realistic path planning system over two-fold time-
dependent road networks [application notes],” IEEE Comput. Intell.
Mag., vol. 16, no. 2, pp. 78-98, 2021.

L. Gao, C. Chen, F. Chu, C. Liao, H. Huang, and Y. Wang, “MOOP:
an efficient utility-rich route planning framework over two-fold time-
dependent road networks,” IEEE Trans. Emerg. Top. Comput. Intell.,
vol. 7, no. 5, pp. 1554-1570, 2023.

C. Chen, L. Gao, X. Xie, and Z. Wang, “Enjoy the most beautiful
scene now: a memetic algorithm to solve two-fold time-dependent arc
orienteering problem,” Frontiers Comput. Sci., vol. 14, no. 2, pp. 364—
377, 2020.

M. Kobitzsch, M. Radermacher, and D. Schieferdecker, “Evolution and
evaluation of the penalty method for alternative graphs,” in ATMOS-13th
Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems-2013, vol. 33, 2013, pp. 94-107.

Ahmed Fahmin is a Ph.D. student at the Fac-
ulty of Information Technology, Monash University,
Australia. He completed his Master of Information
Technology with Distinction from The University of
Melbourne and has a Bachelor’s degree in Computer
Science and Engineering from Bangladesh Univer-
sity of Engineering and Technology (BUET). His
research areas encompass Eco-Friendly Navigation,
Applied Machine Learning, and Spatial Databases.

Bojie Shen is a Post-doctoral Research Fellow at the
Faculty of Information Technology, Monash Univer-
sity, Australia. He completed his Bachelor’s degree
(with Honors) in 2019 and subsequently earned
his Ph.D. in 2023, all within the same institution,
Monash University. Throughout his Ph.D. journey,
Dr. Shen has published several peer-reviewed pub-
lications featured in prestigious venues like AlJ,
AAAL IJCAI, ICAPS, and more. His research focus
lies in Route Planning, Heuristic Search, and Multi-
Agent Path Finding.

Muhammad Aamir Cheema is an Associate
Professor at the Faculty of Information Technology,
Monash University, Australia. He is the recipient
of 2012 Malcolm Chaikin Prize for Research Ex-
cellence in Engineering, 2018 Future Fellowship,
2018 Monash Student Association Teaching Award
and 2019 Young Tall Poppy Science Award. He
has also won two CiSRA best-research-paper-of-the-
year awards, two invited papers in the special issue
of IEEE TKDE on the best papers of ICDE, and
three best paper awards at ICAPS 2020, WISE 2013

and ADC 2010, respectively.

Adel N. Toosi is a Senior Lecturer and the Di-
rector of the DisNet Lab at the Department of
Software Systems and Cybersecurity, Monash Uni-
versity, Australia. He completed his PhD at the
University of Melbourne in 2015 and has a portfolio
of over 70 peer-reviewed publications in esteemed
venues. His publications have received over 4,000
citations, contributing to a current h-index of 30.
Beyond his citations and publications, Dr. Toosi
has significantly advanced the foundations of cloud
computing and played a vital role in creating tools

and technologies, such as CloudSim, InterCloud, SipaaS, Clouds-Pi, Con-Pi,
WattEdge, and AutoScaleSim.

Mohammed Eunus Ali is a Professor in the Depart-
ment of Computer Science and Engineering (CSE)
at Bangladesh University of Engineering and Tech-
nology (BUET). He is the group leader of Data
Science and Engineering Research Lab (DatalLab)
at CSE, BUET. His research areas cover a wide
range of topics in spatial databases, spatio-temporal
learning, and urban computing. Dr. Eunus’s research
papers have been published in top ranking journals
and conferences such as the VLDB Journal, TKDE,
DMKD, Information Systems, PVLDB, ICDE, and

UbiComp. He also served as a Program Committee member of many presti-
gious conferences that include SIGMOD, VLDB, AAAI, and SIGSPATIAL.

