
 641

A Fuzzy Based TCP Congestion Controller

Adel Nadjaran Tousi, Mohammad Hossien Yaghmaee
Computer Dept., Faculty of Engineering, Ferdowsi University of Mashhad

Institute for Studies in Theoretical Physics and Mathematics (I.P.M)
Emails: ad_na85@stu-mail.um.ac.ir, hyaghmae@ferdowsi.um.ac.ir

Abstract
One of the most important problems in current
computer networks is the congestion control.
Computer networks have experienced an explosive
growth over the past few years and with the
growth have come severe congestion problems.
The Transmission Control Protocol (TCP) was
proposed and implemented to prevent the
congestion collapses. TCP has been the most
popular and widespread protocol since the arrival
of the Internet. In this paper we propose a fuzzy
technique inspired by TCP Vegas for better
adjustment of congestion window in sight of better
throughput and reducing packet loss.

Keywords: Congestion, Congestion Window,
Fuzzy Vegas, Fuzzy TCP, TCP, Fuzzy, Vegas.

Introduction
During the past few years, it has gone through several
phases of improvement, and many new features such
as fast retransmit and fast recovery have been added.
Over the years, several different flavors of TCP have
been introduced, such as TCP Tahoe [1], TCP Reno
[2], TCP New Reno [3] and TCP Vegas [4].

This paper attempts to go beyond this earlier work; to
provide some new insights into congestion control,
and to propose modifications to the implementation of
TCP.

The main results reported in this paper show better
throughput compared with all pervious different
flavors of TCP and more efficient use of the available
bandwidth by reducing packet loss and packet
retransmission.

The main objective of current study is to use fuzzy
logic capabilities to dynamically tune the congestion
window. Note that in our proposed approach, the

algorithms for the sending side have only been
treated.

This paper is organized in seven sections. The first
section outlines TCP Variants except TCP Vegas.
Section 2 then describes the techniques employed by
TCP Vegas coupled with the insights that led us to the
devised technique, the next section, provides the basis
for our technique and explains fuzzy based congestion
window controller, Section 4 provides some
simulations scenarios and evaluation of our approach
and shows the results of the conducted experiments in
NS2. Finally, sections 5 and 6 make some concluding
remarks and issue future fields of work.

1. TCP Variants
1.1. TCP Tahoe

Tahoe is distributed as a standard with 4.3BSD
UNIX; hence one of the most widely adopted versions
of TCP. In addition, this is the original
implementation of Van Jacobson’s proposed
mechanisms [1], a follow up of the original TCP that
was standardized in RFC 793. Tahoe includes three
main features: Slow Start, Congestion Avoidance, and
Fast Retransmit.

Under Slow Start, the connection starts out with
congestion window size, cwnd, at cwnd=1
(packet).Thereafter, the cwnd is incremented for every
ACK received indicating the receipt of a new packet.
This results in an exponential increase for the cwnd
size, doubling every round trip time (RTT). We
abbreviate the Slow Start threshold as ssthresh, and
perform Slow Start operation while cwnd <ssthresh.

The sender defines the window size W as the
minimum of (cwnd, RMSS), where RMSS is the
receiver’s maximum segment size. During Congestion
Avoidance (cwnd = ssthresh), we assume that packet
losses imply network congestion. Tahoe deals with
such situations in the following manner:

 642

1. If loss occurs when cwnd=W, then the network can
presumably handle somewhere between 0.5W and W
packets.

2. ssthresh is adjusted to ssthresh=0.5W, and the state
of TCP is reverted to Slow Start where cwnd = 1.

3. upon the receipt of a new ACK with
cwnd>ssthresh, then we increase cwnd by
cwnd+=1/cwnd – resulting in an additive increase

Fast Retransmit saves Tahoe from resetting on
timeouts due to lost packets. Duplicate ACKs
(repeated ACKs with the same sequence number,
dupACKs) indicate a possible packet loss, and Tahoe
reverts to the Slow Start stage. It begins
retransmission immediately upon receiving three or
more dupACKs instead of waiting for timeout before
realizing packet losses.

1.2. TCP Reno
Reno came about in 1990, and includes all the
mechanisms previously implemented in Tahoe.
However, Reno extends the congestion control
scheme by coming with the addition of Fast
Recovery, as well as delayed ACKs and header
prediction (common-case code in-lined)[2].

Like Tahoe, the Congestion Avoidance state starts
when cwnd=ssthresh. As cwnd exceeds ssthresh,
cwnd is increased by just 1/cwnd for every ACK
received, growing linearly. Fast retransmit works
similarly in that a retransmission is initiated upon the
receipt of three dupACKs. What is different from
Tahoe is when Reno transitions to Fast Recovery.
When the third dupACK is received, we adjust
ssthresh=0.5cwnd and cwnd=ssthresh+3 (since three
ACKs, even dupACKs, indicate that the receiver has
absorbed three additional packets after the first lost
packet). Reno then works with cwnd, incrementing it
as each additional dupACK is received. As Reno
finally receives a proper ACK of the retransmitted
packet, we reset cwnd to cwnd=ssthresh again (half of
its value prior to Fast Recovery).

In short, each of the dupACKs notifies the TCP
sender that a single packet has cleared the network
(hence generating an ACK response). Fast Recovery
temporarily inflates cwnd during the recovery of the
lost segment, while sending new packets with each
subsequent dupACK to maintain selfclocking.

When the lost packet is recovered, it again deflates
cwnd=cwnd/2. As a result, Reno uses Fast Recovery
to smoothly transition to Congestion Avoidance. One
glaring disadvantage of Reno is the way it handles
multiple packet losses within a data window W. Reno
will initiate the Fast Recovery procedure multiple
times due to the multiple losses, hence affecting the
cwnd and ssthresh values continuously. In the end,
this often leads to timeouts, resulting in a cwnd reset
(cwnd=1) and diminishing throughputs. Additionally,

Reno does not handle burst traffic (such as Pareto
sources) very well – under its ACK framework, the
protocol retransmits just one lost packet per RTT.

1.3. TCP New Reno
New Reno intelligently improves on the mishaps of
Reno, in particular the Slow Start and Fast Recovery
aspects. It adapts more gradually to a new window,
and also addresses multiple losses in one window
gracefully [3].

Before we proceed with the explanation of New Reno,
let us first define partial ACKs, or parACKs.

A partial ACK is an ACK for some but not all of the
packets that were outstanding at the start of the Fast
Recovery period. ParACKs do not transition New
Reno out of Fast Recovery. Instead, the parACKs
received during Fast Recovery are treated as an
indication that the packets immediately following the
ACKed packets are lost and should be retransmitted.
Thus, when multiple packets are lost, New Reno can
recover without a retransmission timeout. New Reno
shines when multiple packet losses are experienced
during a given data window W. During Fast
Recovery, parACKs greatly reduces the possibility of
timeouts, since the running count is reset periodically
(for each and every ACK – termed slow-but-steady;
or for the first in a series of ACKs only – dubbed
impatient variant).

At next section we explain TCP Vegas as a basis of
our approach and motivation of A Fuzzy Based TCP
Congestion Controller.

2. TCP Vegas
TCP Vegas was first introduced by Brakmo et al. in
[4].It primarily enhances the Congestion Avoidance
and Fast Retransmission algorithms of TCP Reno [2].
There are several changes made in TCP Vegas.

New retransmission mechanism: TCP Vegas
introduces three changes that affect TCP’s (fast)
retransmission strategy. First, TCP Vegas measures
the RTT for every segment sent. The measurements
are based on fine-grained clock values. Using the
fine-grained RTT measurements, a timeout period for
each segment is computed. When a duplicate
acknowledgement (ACK) is received, TCP Vegas
checks whether the timeout period has expired. If so,
the segment is retransmitted. Second, when a Non-
duplicate ACK that is the first or second after a fast
retransmission is received, TCP Vegas again checks
for the expiration of the timer and may retransmit
another segment. Third, in case of multiple segment
loss and more than one fast retransmission, the
congestion window is reduced only for the first fast
retransmission.

Congestion avoidance mechanism: TCP Vegas does
not continually increase the congestion window
during congestion avoidance. Instead, it tries to detect

 643

incipient congestion by comparing the measured
throughput to its notion of expected throughput. The
congestion window is increased only if these two
values are close, that is, if there is enough network
capacity so that the expected throughput can actually
be achieved. The congestion window is reduced if the
measured throughput is considerably lower than the
expected throughput; this condition is taken as a sign
for incipient congestion.

Modified slow-start mechanism: A similar
congestion detection mechanism is applied during
slow-start to decide when to change to the congestion
avoidance phase. To have valid comparisons of the
expected and the actual throughput, the congestion
window is allowed to grow only every other RTT.

The congestion avoidance mechanism that TCP Vegas
uses is quite different from that of TCP Tahoe or
Reno. TCP Reno uses the loss of packets as a signal
that there is congestion in the network and has no way
of detecting any incipient congestion before packet
losses occur. Thus, TCP Reno reacts to congestion
rather than attempts to prevent the congestion. TCP
Vegas uses the difference between the estimated
throughput and the measured throughput as a way of
estimating the congestion state of the network.�

TCP Vegas sets BaseRTT to the smallest measured
Round Trip Time (RTT), and the expected throughput
is computed according to following equation:

BaseRTT
cwnd

Expected = (1)

Where cwnd is the current window size. With each
packet being sent, TCP Vegas records the sending
time of the packet by checking the system clock and
computes the round trip time by computing the
elapsed time before the ACK comes back. It then
computes Actual throughput using this estimated RTT
according to following equation:

RTT
cwnd

Actual = (2)

Then, TCP Vegas compares Actual to Expected and
computes the difference Delta as below:

ExpectedActualdelta −= ������������������������������ (3)

The Delta is used to adjust the window size. To
achieve this, TCP Vegas defines two threshold values,
�, � (�<�). If Delta < �, the window size is increased
linearly during the next RTT. If Delta > �, then TCP
Vegas decreases the window size linearly during the
next RTT. Otherwise, it leaves the window size
unchanged.

As mentioned above, the TCP Vegas tunes the
congestion windows linearly. The main problems of
TCP Vegas is that it only compare the Delta with two
fixed thresholds and it does not consider the distance

between Delta and two thresholds �,�. The main
objective of current study is to use fuzzy logic
capabilities to dynamically tune the congestion
window. To do this, if the distance between Delta and
�,� is very low, low, high or very high , we can
change the window size very low, low, high or very
high, respectively.

Another Fuzzy approach that focused on congestion
control using fuzzy control for end-to-end TCP has
been proposed in [5]. It uses an on-line adaptive fuzzy
system at the source to find the best possible weighted
combination among the available window allocation
policies.

3. Fuzzy based TCP congestion controller
In the pervious sections we introduces the linear
adjustment of congestion window in Vegas and
explained that we can use the distance of delta from �
or � as a factor for more accurate adjustment of
congestion window(cwnd) in TCP. This is a
motivation for using fuzzy controller to adjust cwnd.

 We propose a fuzzy based TCP congestion controller
using a single-input single-output fuzzy controller.
The input parameter to the controller is delta. The
output of fuzzy controller, Adjust, is used to tune the
value of congestion window accurately. The input
and output Fuzzy sets of the linguistic variables are
shown in figure 1 and figure 2, respectively.

In figure 2, the awnd parameter represents the average
of the send window size. The output of fuzzy
controller (Adjust) is added to the current window size
and the new window size is calculated. The proposed

Adjust

A5 A6 A7 A8 A9 A10 A4 A3 A2 A1 A0

-aw
nd*0.7

-aw
nd*0.25

-aw
nd*0.43

-aw
nd*0.71

-aw
nd*1.6

1 2 3 4 5

µ (Adjust)

0

Fig.2 The fuzzy sets of Adjust

d0

� �

�
 –

 0
.2

5

�
 +

 0
.2

5

�
 +

 1

�
 +

 2

�
 +

 3

�
 +

 4

�
 +

 0
.1

25

�
 –

 0
.1

25

�
 –

 0
.3

75

�
 –

 0
.5

�
 –

 0
.6

25

�
 –

 0
.7

5

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

delta��

Fig. 1 The fuzzy sets of delta

µ(delta)

 644

fuzzy controller uses the following rules in its rule
base:

Rule 0: if delta is d0 then Adjust A10

Rule 1: if delta is d1 then Adjust A9

Rule 2: if delta is d2 then Adjust A8

Rule 3: if delta is d3 then Adjust A7

Rule 4: if delta is d4 then Adjust A6

Rule 5: if delta is d5 then Adjust A5

Rule 6: if delta is d6 then Adjust A4

Rule 7: if delta is d7 then Adjust A3

Rule 8: if delta is d8 then Adjust A2

Rule 9: if delta is d9 then Adjust A1

Rule 10: if delta is d10 then Adjust A0

Using the single tone fuzzifier, product inference
engine and center of average defuzzifier, the final
output of fuzzy controller is calculated as below:

Adjust= f(delta)=

(delta)�

(delta)�A

l

l

d
l

d
l

l

�

�

=

=
10

0

10

0

.
 (4)

Where l is the rule number and lA is the center of
fuzzy set used in the Then part of l th rule.

4. Performance Evaluation
To evaluate the performance of the proposed fuzzy
controller, we used the NS2 simulator [6]. The
proposed model which is called Fuzzy Vegas was
implemented in the NS2 simulator.

Figure 3, shows the structure of first simulated
network.

In the simulation scenario, the connection between
(S1, S4) is TCP and for (S2, S5), (S3, S6) the UDP
protocol is used. The S1, S2 and S3 transmit data and
the S4, S5, S6 receive the data packets. All queues in
the nodes are based on Drop Tail strategy.

An FTP traffic source is attached to node S1 and
Constant Bit Rate (CBR) traffic with 1.5Mb/s sending
rate attached to S2, S3. S2, S3 transmit data at t=5s and
are stopped respectively at t=10s and t=30s. S3 restarts
to send packets at t=50s and it is stopped after 10s, S3
restarts to send at t=60s and stops at t=70s the same as
S2. The node S1 starts at t=0s and is stopped at the end
of the simulation.

In this scenario S1 is once simulated with TCP Vegas
agent and another time with the Fuzzy Vegas. The
network throughput for connection between S1 and S4
is plotted versus the simulation time in figure 4. In
figure 5, the variation of cwnd is plotted versus the
simulation time for both of them. As it can be seen,
the proposed Fuzzy Vegas can tune the cwnd in a
much better form than TCP Vegas does. In table 1, for
both TCP Vegas and Fuzzy Vegas, the number of
duplicate ACK packets received by the sender has
been shown.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4.
43

8.
69

12
.9

5

17
.2

1

21
.4

7

25
.7

3

29
.9

9

34
.2

5

38
.5

1

42
.7

7

47
.0

3

51
.2

9

55
.5

5

59
.8

1

64
.0

7

68
.3

3

72
.5

9

76
.8

5

81
.1

1

85
.3

7

89
.6

3

93
.8

9

98
.1

5

Time(s)

Th
ro

ug
hp

ut
(M

b/
s)

Vegas

Fuzzy Vegas

Fig. 4 Throughput versus simulation time

Drop tail strategy at R1

0

5

10

15

20

25

30

35

5.
58

11
.1

8

16
.7

8

22
.3

8

27
.9

8

33
.5

8

39
.1

8

44
.7

8

50
.3

8

55
.9

8

61
.5

8

67
.1

8

72
.7

8

78
.3

8

83
.9

8

89
.5

8

95
.1

8

Time(s)

C
w

nd
 (N

um
be

r
of

 P
ac

ke
t)

Fuzzy Vegas

Vegas

Fig. 5 The cwnd versus simulation time

Drop tail strategy at R1

Based on the results shown in figures 4, 5 and table 1,
it can easily be seen that the proposed Fuzzy Vegas
has a better performance than the traditional TCP
Vegas.

 S1

S2

S3

R1 R2

S4

S5

S6

1.5Mb/s
10ms

1.5Mb/s
10ms

1.5Mb/s
 10ms

1.5Mb/s
20ms

1.5Mb/s
10ms

1.5Mb/s
10ms

1.5Mb/s
10ms

Fig. 3 The Simulated Network

 645

Table 1 Total Number of Duplicate Acknowledge
Received by the Sender

 Fuzzy Vegas Vegas

Drop Tail 36 282

RED 2153 2217

We repeated the above scenario on the simulated
network shown in figure 3, with queue based on RED
strategy for R1. Results of this experiment includes
throughput for connection between S1 and S2, cwnd
adjustment and duplicate ACK packet received with
both TCP Vegas and Fuzzy Vegas present in figure 6,
7 and table 1.

Based on the results shown in figures 4-7 and table 1,
it can be easily seen that the proposed Fuzzy Vegas
has a better performance compared with the
traditional TCP Vegas.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5.
38

10
.5

9

15
.8

21
.0

1

26
.2

2

31
.4

3

36
.6

4

41
.8

5

47
.0

6

52
.2

7

57
.4

8

62
.6

9

67
.9

73
.1

1

78
.3

2

83
.5

3

88
.7

4

93
.9

5

99
.1

6

Time(s)

T
h

ro
u

g
h

p
u

t(
M

b
/s

)

Fuzzy Vegas

Vegas

Fig. 6 Throughput versus simulation time

RED strategy at R1

0

5

10

15

20

25

30

35

5.
27

10
.5

6

15
.8

5

21
.1

4

26
.4

3

31
.7

2

37
.0

1

42
.3

47
.5

9

52
.8

8

58
.1

7

63
.4

6

68
.7

5

74
.0

4

79
.3

3

84
.6

2

89
.9

1

95
.2

Time(s)

C
w

n
d(

N
u

m
b

er
 o

f
P

ac
ke

t) Fuzzy Vegas

Vegas

Fig. 7 The cwnd versus simulation time

RED strategy at R1

The Structure of the second simulation is similar to
first simulation with some changes at connection
bandwidth and delays, and also the length of the
scenario. The structure of the second simulation
network is shown in figure 8.

All queues in the nodes are based on Drop Tail
strategy.

 S2 and S3 are again UDP source and S5, S6 are sinks
respectively. The Connection between S1 and S4 is
TCP. S2 and S3 transmit data at constant bit rate of
0.5Mb/s, S2 starts sending packets at t=0s and doesn't
stop before the end of the simulation. S3 starts at t=15
and stops at t=25. S1 is a source of FTP traffic, it
starts sending packets at t=0s and continues till the
end.

S1 was attached to the TCP variants presented in
section 1 and the throughput of the TCP connection
between S1 and S2 was measured each time. The
measured throughput is plotted versus time in figure
9.

0

0.05

0.1

0.15

0.2

0.25

T
im

e 3

5.
68

8.
36

11
.0

4

13
.7

2

16
.4

19
.0

8

21
.7

6

24
.4

4

27
.1

2

29
.8

32
.4

8

35
.1

6

37
.8

4

40
.5

2

43
.2

45
.8

8

48
.5

6

Time(s)

T
h

ro
u

g
h

p
u

t(
M

b
/s

)

Fuzzy Vegas Vegas Newreno Reno

Fig. 9 Throughput versus simulation time

Table 2 shows the total duplicates acknowledge
received by sender.

Table 2 Total Number of Duplicate Acknowledge
Received by Sender

 Duplicate Acknowledge

TCP Reno 5128

TCP New Reno 12117

TCP Vegas 4032

TCP Fuzzy Vegas 322

 S1

S2

S3

R1 R2

S4

S5

S6

0.5Mb/s
20ms

0.5Mb/s
20ms

0.5Mb/s
 20ms

0.7Mb/s
20ms

0.5Mb/s
20ms

0.5Mb/s
20ms

0.5Mb/s
20ms

Fig. 8 The Simulated Network

 646

The Final simulation was conducted to evaluate the
influence of increasing the number of nodes on the
simulated network on the performance of the
proposed model. Here we increase the total number of
nodes in the simulated network to 20.

Figure 10 shows the details of the simulated network.
All queues in the nodes are based on Drop Tail
strategy again.

S1 and S11 are TCP connections and connection of
other pairs of nodes are UDP, S1 starts sending FTP
traffic at t=30s and stops at t=150s, others start
sending packets at constant bit rate at t=5s, t=10s …
t=45s respectively, and stop accordingly at t=85s,
t=90s, t=125s.

The throughput for connection between S1 and S4 is
plotted versus simulation time in figure 11.

0

0.05

0.1

0.15

0.2

0.25

T
im

e

9.
7

19
.5

29
.3

39
.1

48
.9

58
.7

68
.5

78
.3

88
.1

97
.9

10
7.

7

11
7.

5

12
7.

3

13
7.

1

14
6.

9

Time(s)

T
h

ro
g

h
p

u
t(

M
b

/s
)

Fuzzy Vegas

Vegas

Fig. 11 The Throughput versus simulation time

5. Future Works
As mentioned in section 3 and 4, Vegas and our
proposed approaches use static thresholds (�, �).

Our future work will focus on dynamically adjusting
these thresholds with fuzzy controller to achieve
better performance, also we will continue to study on
more fuzzy variables for the proposed fuzzy based
TCP congestion controller in this paper.

More accurate evaluating can be performed for the
proposed fuzzy based TCP congestion controller at

other simulation situations or real network test beds
for better challenges.

Conclusions
Fuzzy congestion window controller achieved better
performance by integrating a fuzzy controller and
nonlinear adjusting end to end congestion windows in
TCP.

Our experiments and simulations show better
throughput and lower packet loss and more sensitivity
of congestion window to the parameters of network.

Acknowledgment
The authors would like to thank the anonymous
reviewers and their insightful comments and
suggestions helped to make this a much better paper
in particular by Ebrahim Bagheri.

Also we appreciate the helpful suggestions and
comments of our dear colleague Mohsen Amini.

References
[1] V. Jacobson, “Congestion avoidance and control”

In Proceedings of SIGCOMM ’88

[2] L. S. Brakmo, S. W. O’Malley and L. Peterson,
“TCP Vegas: End to End Congestion Avoidance
on a Global Internet,” IEEE Journal on selected
areas in communication, Vol. 13, No. 8, October
1995

[3] M. Allman, V. Paxson and W. and Stevens, “TCP
Congestion Control.” Request for Comments
(Standards Track) RFC 2581, Internet
Engineering Task Force, April 1999

[4] S. Floyd, and T. Henderson., “The New Reno
Modification to TCP's Fast Recovery Algorithm.”
Request for Comments (Experimental) RFC
2582, Internet Engineering Task Force, April
1999.

[5] P.Carbonell, Z. P. Jiang, S. S. Panwar, “Fuzzy
TCP: A Preliminary Study”, Proceedings Of the
15th IFAC World Congress (IFAC 2002),
Barcelona, Spain, July 21-26, 2002.

[6] NS-2 Network simulator
http://www.isi.edu/nsnam/ns/

 S1

S2

S10

R1 R2

S11

S12

S20

0.5Mb/s
10ms

0.5Mb/s
10ms

0.5Mb/s
 10ms

3.5Mb/s
25ms

0.5Mb/s
10ms

0.5Mb/s
10ms

0.5Mb/s
10ms

Fig. 10 The Simulated Network

. . .

. . .

