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Abstract 
One of the most important problems in current 
computer networks is the congestion control. 
Computer networks have experienced an explosive 
growth over the past few years and with the 
growth have come severe congestion problems.  
The Transmission Control Protocol (TCP) was 
proposed and implemented to prevent the 
congestion collapses. TCP has been the most 
popular and widespread protocol since the arrival 
of the Internet. In this paper we propose a fuzzy 
technique inspired by TCP Vegas for better 
adjustment of congestion window in sight of better 
throughput and reducing packet loss. 

Keywords: Congestion, Congestion Window, 
Fuzzy Vegas, Fuzzy TCP, TCP, Fuzzy, Vegas. 

 

Introduction 
During the past few years, it has gone through several 
phases of improvement, and many new features such 
as fast retransmit and fast recovery have been added. 
Over the years, several different flavors of TCP have 
been introduced, such as TCP Tahoe [1], TCP Reno 
[2], TCP New Reno [3] and TCP Vegas [4]. 

This paper attempts to go beyond this earlier work; to 
provide some new insights into congestion control, 
and to propose modifications to the implementation of 
TCP. 

The main results reported in this paper show better 
throughput compared with all pervious different 
flavors of TCP and more efficient use of the available 
bandwidth by reducing packet loss and packet 
retransmission.  

The main objective of current study is to use fuzzy 
logic capabilities to dynamically tune the congestion 
window. Note that in our proposed approach, the 

algorithms for the sending side have only been 
treated.   

This paper is organized in seven sections. The first 
section outlines TCP Variants except TCP Vegas. 
Section 2 then describes the techniques employed by 
TCP Vegas coupled with the insights that led us to the 
devised technique, the next section, provides the basis 
for our technique and explains fuzzy based congestion 
window controller, Section 4 provides some 
simulations scenarios and evaluation of our approach 
and shows the results of the conducted experiments in 
NS2. Finally, sections 5 and 6 make some concluding 
remarks and issue future fields of work. 

1. TCP Variants 
1.1. TCP Tahoe 

Tahoe is distributed as a standard with 4.3BSD 
UNIX; hence one of the most widely adopted versions 
of TCP. In addition, this is the original 
implementation of Van Jacobson’s proposed 
mechanisms [1], a follow up of the original TCP that 
was standardized in RFC 793. Tahoe includes three 
main features: Slow Start, Congestion Avoidance, and 
Fast Retransmit. 

Under Slow Start, the connection starts out with 
congestion window size, cwnd, at cwnd=1 
(packet).Thereafter, the cwnd is incremented for every 
ACK received indicating the receipt of a new packet. 
This results in an exponential increase for the cwnd 
size, doubling every round trip time (RTT). We 
abbreviate the Slow Start threshold as ssthresh, and 
perform Slow Start operation while cwnd <ssthresh. 

The sender defines the window size W as the 
minimum of (cwnd, RMSS), where RMSS is the 
receiver’s maximum segment size. During Congestion 
Avoidance (cwnd = ssthresh), we assume that packet 
losses imply network congestion. Tahoe deals with 
such situations in the following manner: 
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1. If loss occurs when cwnd=W, then the network can 
presumably handle somewhere between 0.5W and W 
packets. 

2. ssthresh is adjusted to ssthresh=0.5W, and the state 
of TCP is reverted to Slow Start where cwnd = 1. 

3. upon the receipt of a new ACK with 
cwnd>ssthresh, then we increase cwnd by 
cwnd+=1/cwnd – resulting in an additive increase 

Fast Retransmit saves Tahoe from resetting on 
timeouts due to lost packets. Duplicate ACKs 
(repeated ACKs with the same sequence number, 
dupACKs) indicate a possible packet loss, and Tahoe 
reverts to the Slow Start stage. It begins 
retransmission immediately upon receiving three or 
more dupACKs instead of waiting for timeout before 
realizing packet losses. 

1.2. TCP Reno 
Reno came about in 1990, and includes all the 
mechanisms previously implemented in Tahoe. 
However, Reno extends the congestion control 
scheme by coming with the addition of Fast 
Recovery, as well as delayed ACKs and header 
prediction (common-case code in-lined)[2]. 

Like Tahoe, the Congestion Avoidance state starts 
when cwnd=ssthresh. As cwnd exceeds ssthresh, 
cwnd is increased by just 1/cwnd for every ACK 
received, growing linearly. Fast retransmit works 
similarly in that a retransmission is initiated upon the 
receipt of three dupACKs. What is different from 
Tahoe is when Reno transitions to Fast Recovery. 
When the third dupACK is received, we adjust 
ssthresh=0.5cwnd and cwnd=ssthresh+3 (since three 
ACKs, even dupACKs, indicate that the receiver has 
absorbed three additional packets after the first lost 
packet). Reno then works with cwnd, incrementing it 
as each additional dupACK is received. As Reno 
finally receives a proper ACK of the retransmitted 
packet, we reset cwnd to cwnd=ssthresh again (half of 
its value prior to Fast Recovery). 

In short, each of the dupACKs notifies the TCP 
sender that a single packet has cleared the network 
(hence generating an ACK response). Fast Recovery 
temporarily inflates cwnd during the recovery of the 
lost segment, while sending new packets with each 
subsequent dupACK to maintain selfclocking. 

When the lost packet is recovered, it again deflates 
cwnd=cwnd/2. As a result, Reno uses Fast Recovery 
to smoothly transition to Congestion Avoidance. One 
glaring disadvantage of Reno is the way it handles 
multiple packet losses within a data window W. Reno 
will initiate the Fast Recovery procedure multiple 
times due to the multiple losses, hence affecting the 
cwnd and ssthresh values continuously. In the end, 
this often leads to timeouts, resulting in a cwnd reset 
(cwnd=1) and diminishing throughputs. Additionally, 

Reno does not handle burst traffic (such as Pareto 
sources) very well – under its ACK framework, the 
protocol retransmits just one lost packet per RTT. 

1.3. TCP New Reno 
New Reno intelligently improves on the mishaps of 
Reno, in particular the Slow Start and Fast Recovery 
aspects. It adapts more gradually to a new window, 
and also addresses multiple losses in one window 
gracefully [3]. 

Before we proceed with the explanation of New Reno, 
let us first define partial ACKs, or parACKs. 

A partial ACK is an ACK for some but not all of the 
packets that were outstanding at the start of the Fast 
Recovery period. ParACKs do not transition New 
Reno out of Fast Recovery. Instead, the parACKs 
received during Fast Recovery are treated as an 
indication that the packets immediately following the 
ACKed packets are lost and should be retransmitted. 
Thus, when multiple packets are lost, New Reno can 
recover without a retransmission timeout. New Reno 
shines when multiple packet losses are experienced 
during a given data window W. During Fast 
Recovery, parACKs greatly reduces the possibility of 
timeouts, since the running count is reset periodically 
(for each and every ACK – termed slow-but-steady; 
or for the first in a series of ACKs only – dubbed 
impatient variant). 

At next section we explain TCP Vegas as a basis of 
our approach and motivation of A Fuzzy Based TCP 
Congestion Controller.  

2. TCP Vegas 
TCP Vegas was first introduced by Brakmo et al. in 
[4].It primarily enhances the Congestion Avoidance 
and Fast Retransmission algorithms of TCP Reno [2]. 
There are several changes made in TCP Vegas. 

New retransmission mechanism: TCP Vegas 
introduces three changes that affect TCP’s (fast) 
retransmission strategy. First, TCP Vegas measures 
the RTT for every segment sent. The measurements 
are based on fine-grained clock values. Using the 
fine-grained RTT measurements, a timeout period for 
each segment is computed. When a duplicate 
acknowledgement (ACK) is received, TCP Vegas 
checks whether the timeout period has expired. If so, 
the segment is retransmitted. Second, when a Non-
duplicate ACK that is the first or second after a fast 
retransmission is received, TCP Vegas again checks 
for the expiration of the timer and may retransmit 
another segment. Third, in case of multiple segment 
loss and more than one fast retransmission, the 
congestion window is reduced only for the first fast 
retransmission. 

Congestion avoidance mechanism: TCP Vegas does 
not continually increase the congestion window 
during congestion avoidance. Instead, it tries to detect 
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incipient congestion by comparing the measured 
throughput to its notion of expected throughput. The 
congestion window is increased only if these two 
values are close, that is, if there is enough network 
capacity so that the expected throughput can actually 
be achieved. The congestion window is reduced if the 
measured throughput is considerably lower than the 
expected throughput; this condition is taken as a sign 
for incipient congestion. 

Modified slow-start mechanism: A similar 
congestion detection mechanism is applied during 
slow-start to decide when to change to the congestion 
avoidance phase. To have valid comparisons of the 
expected and the actual throughput, the congestion 
window is allowed to grow only every other RTT. 

The congestion avoidance mechanism that TCP Vegas 
uses is quite different from that of TCP Tahoe or 
Reno. TCP Reno uses the loss of packets as a signal 
that there is congestion in the network and has no way 
of detecting any incipient congestion before packet 
losses occur. Thus, TCP Reno reacts to congestion 
rather than attempts to prevent the congestion. TCP 
Vegas uses the difference between the estimated 
throughput and the measured throughput as a way of 
estimating the congestion state of the network.� 

TCP Vegas sets BaseRTT to the smallest measured 
Round Trip Time (RTT), and the expected throughput 
is computed according to following equation: 

BaseRTT
cwnd

Expected =                                       (1) 

Where cwnd is the current window size. With each 
packet being sent, TCP Vegas records the sending 
time of the packet by checking the system clock and 
computes the round trip time by computing the 
elapsed time before the ACK comes back. It then 
computes Actual throughput using this estimated RTT 
according to following equation: 

RTT
cwnd

Actual =                                                    (2) 

Then, TCP Vegas compares Actual to Expected and 
computes the difference Delta as below: 

ExpectedActualdelta −= ������������������������������  (3) 

The Delta is used to adjust the window size. To 
achieve this, TCP Vegas defines two threshold values, 
�, � (�<�). If Delta < �, the window size is increased 
linearly during the next RTT. If Delta > �, then TCP 
Vegas decreases the window size linearly during the 
next RTT. Otherwise, it leaves the window size 
unchanged. 

As mentioned above, the TCP Vegas tunes the 
congestion windows linearly. The main problems of 
TCP Vegas is that it only compare the Delta with two 
fixed thresholds and it does not consider the distance 

between Delta and two thresholds �,�. The main 
objective of current study is to use fuzzy logic 
capabilities to dynamically tune the congestion 
window. To do this, if the distance between Delta and 
�,� is very low, low, high or very high , we can 
change the window size very low, low, high or very 
high, respectively. 

Another Fuzzy approach that focused on congestion 
control using fuzzy control for end-to-end TCP has 
been proposed in [5]. It uses an on-line adaptive fuzzy 
system at the source to find the best possible weighted 
combination among the available window allocation 
policies. 

3. Fuzzy based TCP congestion controller  
In the pervious sections we introduces the linear 
adjustment of congestion window in Vegas and 
explained that we can use the distance of delta from � 
or � as a factor for more accurate adjustment of 
congestion window(cwnd) in TCP. This is a 
motivation for using fuzzy controller to adjust cwnd.  

 We propose a fuzzy based TCP congestion controller 
using a single-input single-output fuzzy controller. 
The input parameter to the controller is delta. The 
output of fuzzy controller, Adjust, is used to tune the 
value of congestion window accurately.  The input 
and output Fuzzy sets of the linguistic variables are 
shown in figure 1 and figure 2, respectively. 

 

 

 

 

In figure 2, the awnd parameter represents the average 
of the send window size. The output of fuzzy 
controller (Adjust) is added to the current window size 
and the new window size is calculated. The proposed 
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fuzzy controller uses the following rules in its rule 
base: 

Rule 0: if delta is d0 then Adjust A10 

Rule 1: if delta is d1 then Adjust A9 

Rule 2: if delta is d2 then Adjust A8 

Rule 3: if delta is d3 then Adjust A7 

Rule 4: if delta is d4 then Adjust A6 

Rule 5: if delta is d5 then Adjust A5 

Rule 6: if delta is d6 then Adjust A4 

Rule 7: if delta is d7 then Adjust A3 

Rule 8: if delta is d8 then Adjust A2 

Rule 9: if delta is d9 then Adjust A1 

Rule 10: if delta is d10 then Adjust A0 

 

Using the single tone fuzzifier, product inference 
engine and center of average defuzzifier, the final 
output of fuzzy controller is calculated as below: 

Adjust= f(delta)=

(delta)�

(delta)�A

l

l

d
l

d
l

l

�

�

=

=
10

0

10

0

.
                     (4)                  

Where l is the rule number and lA  is the center of 
fuzzy set used in the Then part of l th rule. 

 

4.  Performance Evaluation 
To evaluate the performance of the proposed fuzzy 
controller, we used the NS2 simulator [6]. The 
proposed model which is called Fuzzy Vegas was 
implemented in the NS2 simulator.  

Figure 3, shows the structure of first simulated 
network.

 
In the simulation scenario, the connection between 
(S1, S4) is TCP and for (S2, S5), (S3, S6) the UDP 
protocol is used. The S1, S2 and S3 transmit data and 
the S4, S5, S6 receive the data packets. All queues in 
the nodes are based on Drop Tail strategy. 

An FTP traffic source is attached to node S1 and 
Constant Bit Rate (CBR) traffic with 1.5Mb/s sending 
rate attached to S2, S3. S2, S3 transmit data at t=5s and 
are stopped respectively at t=10s and t=30s. S3 restarts 
to send packets at t=50s and it is stopped after 10s, S3 
restarts to send at t=60s and stops at t=70s the same as 
S2. The node S1 starts at t=0s and is stopped at the end 
of the simulation. 

In this scenario S1 is once simulated with TCP Vegas 
agent and another time with the Fuzzy Vegas. The 
network throughput for connection between S1 and S4 
is plotted versus the simulation time in figure 4. In 
figure 5, the variation of cwnd is plotted versus the 
simulation time for both of them. As it can be seen, 
the proposed Fuzzy Vegas can tune the cwnd in a 
much better form than TCP Vegas does. In table 1, for 
both TCP Vegas and Fuzzy Vegas, the number of 
duplicate ACK packets received by the sender has 
been shown. 
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Fig. 4 Throughput versus simulation time  
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Fig. 5 The cwnd versus simulation time 

Drop tail strategy at R1 

 

Based on the results shown in figures 4, 5 and table 1, 
it can easily be seen that the proposed Fuzzy Vegas 
has a better performance than the traditional TCP 
Vegas. 
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Table 1 Total Number of Duplicate Acknowledge                      
Received by the Sender 

 Fuzzy Vegas Vegas 

Drop Tail 36 282 

RED 2153 2217 

We repeated the above scenario on the simulated 
network shown in figure 3, with queue based on RED 
strategy for R1. Results of this experiment includes 
throughput for connection between S1 and S2, cwnd 
adjustment and duplicate ACK packet received with 
both TCP Vegas and Fuzzy Vegas present in figure 6, 
7 and table 1. 

Based on the results shown in figures 4-7 and table 1, 
it can be easily seen that the proposed Fuzzy Vegas 
has a better performance compared with the 
traditional TCP Vegas. 
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Fig. 6 Throughput versus simulation time  
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Fig. 7 The cwnd versus simulation time 

RED strategy at R1 

The Structure of the second simulation is similar to 
first simulation with some changes at connection 
bandwidth and delays, and also the length of the 
scenario. The structure of the second simulation 
network is shown in figure 8. 

All queues in the nodes are based on Drop Tail 
strategy. 

 S2 and S3 are again UDP source and S5, S6 are sinks 
respectively. The Connection between S1 and S4 is 
TCP. S2 and S3 transmit data at constant bit rate of 
0.5Mb/s, S2 starts sending packets at t=0s and doesn't 
stop before the end of the simulation. S3 starts at t=15 
and stops at t=25. S1 is a source of FTP traffic, it 
starts sending packets at t=0s and continues till the 
end. 

S1 was attached to the TCP variants presented in 
section 1 and the throughput of the TCP connection 
between S1 and S2 was measured each time. The 
measured throughput is plotted versus time in figure 
9.

0

0.05

0.1

0.15

0.2

0.25

T
im

e 3

5.
68

8.
36

11
.0

4

13
.7

2

16
.4

19
.0

8

21
.7

6

24
.4

4

27
.1

2

29
.8

32
.4

8

35
.1

6

37
.8

4

40
.5

2

43
.2

45
.8

8

48
.5

6

Time(s)

T
h

ro
u

g
h

p
u

t(
M

b
/s

)

Fuzzy Vegas Vegas Newreno Reno

 
Fig. 9 Throughput versus simulation time  

 

Table 2 shows the total duplicates acknowledge 
received by sender. 

 

Table 2 Total Number of Duplicate Acknowledge                
Received by Sender 

 Duplicate Acknowledge 

TCP Reno 5128 

TCP New Reno 12117 

TCP Vegas 4032 

TCP Fuzzy Vegas 322 
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The Final simulation was conducted to evaluate the 
influence of increasing the number of nodes on the 
simulated network on the performance of the 
proposed model. Here we increase the total number of 
nodes in the simulated network to 20.  

Figure 10 shows the details of the simulated network. 
All queues in the nodes are based on Drop Tail 
strategy again. 

 
S1 and S11 are TCP connections and connection of 
other pairs of nodes are UDP, S1 starts sending FTP 
traffic at t=30s and stops at t=150s, others start 
sending packets at constant bit rate at t=5s, t=10s … 
t=45s respectively, and stop accordingly at t=85s, 
t=90s, t=125s. 

The throughput for connection between S1 and S4 is 
plotted versus simulation time in figure 11. 
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Fig. 11 The Throughput versus simulation time 

 

5. Future Works 
As mentioned in section 3 and 4, Vegas and our 
proposed approaches use static thresholds (�, �). 

Our future work will focus on dynamically adjusting 
these thresholds  with fuzzy controller to achieve 
better performance, also we will continue to study on 
more fuzzy variables for the proposed fuzzy based 
TCP congestion controller in this paper. 

More accurate evaluating can be performed for the 
proposed fuzzy based TCP congestion controller at 

other simulation situations or real network test beds 
for better challenges. 

Conclusions 
Fuzzy congestion window controller achieved better 
performance by integrating a fuzzy controller and 
nonlinear adjusting end to end congestion windows in 
TCP. 

Our experiments and simulations show better 
throughput and lower packet loss and more sensitivity 
of congestion window to the parameters of network. 
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