

Acinonyx: Dynamic Flow Scheduling for Virtual Machine Migration in SDN-enabled Clouds

The 16th IEEE International Symposium on Parallel and Distributed Processing with Applications

Adel Nadjaran Toosi

Faculty of Information Technology
Monash University
Email: adel.n.toosi [AT] monash.edu
Homepage: http://adelnadjarantoosi.info

Rajkumar Buyya

CLOUDS Laboratory
School of Computing and Information Systems
The University of Melbourne

Adel Nadjaran Toosi Slide 1/22

Outline

- Virtualization and Live VM Migration
- SDN and SND-enabled Cloud Data Centres
- Research Question
- ACINONYX
 - Dynamic Flow Scheduling for VM migration
- System Architecture
- Performance Evaluation
 - with a Prototype and a real-world testbed
- Summary and future directions

Adel Nadjaran Toosi Slide 2/22

Virtualization

Virtualization

 Critical building block of the operation and maintenance in cloud data centres

Virtual Machine (VM)

- A substitute for a real machine
- Allowing for multiple OS (isolated from one another), on the same physical machine.

Live VM migration

- Relocating running VMs between servers with no or minimum impact on the VM's availability.
- hardware maintenance, load balancing and consolidation, energy saving, and disaster recovery.

Adel Nadjaran Toosi Slide 3/22

VM Migration Impacts on the Network

Live VM migration

- Transfer from Source to Destination
 - VM's CPU state
 - All memory pages
 - Disks

Adverse Impacts on network

- Elephant flows over the network links
- Causing network congestion for other applications

Focus of this work

- The selection of network paths for VM migration to avoid network congestion.
- Is possible to reduce live VM migration time and network overhead by dynamically scheduling flows in a cloud data centre?

Adel Nadjaran Toosi Slide 4/22

Software-Defined Networking

- Separation of control plane from data forwarding plane
- Platform is decoupled from infrastructure
- Centralized controller, network-wide control by controller SW that performs routing and traffic engineering

Adel Nadiaran Toosi

MONASH University

SDN Benefits

- Programmable network
- Enables dynamic configuration of networking
- Open opportunities for innovation

Adel Nadjaran Toosi Slide 6/22

Data Centre Network

Network topology

MONASH University

- o Fat tree, VL2, PortLand, and Bcube
- Specialized hardware (middleboxes) implementing networking functions
- NAT, load balancing, WAN optimization, firewall...
- Specialized communication protocols for top tiers
 - Communication patterns between hosts change frequently

Adel Nadjaran Toosi Slide 7/22

Dynamic Flow Scheduling for Virtual Machine Migration

"Is it possible to reduce live VM migration time and overhead by dynamically scheduling flows in a cloud data center with multiple paths available between a given pair of physical hosts?"

Adel Nadjaran Toosi Slide 8/22

ACINONYX: Dynamic Flow Scheduling

Algorithm 1 Acinonyx Dynamic Flow Scheduling

```
Input: s, d
 1: while MIGRATION-IS-IN-PROGRESS() do
        G \leftarrow \text{GET-TOPOLOGY}()
        P \leftarrow \text{FIND-SHORTEST-PATHS}(G, s, d)
        min \leftarrow +\infty
        for p in P do
            max \leftarrow 0
            for link in p do
                 (b, f) \leftarrow \text{GET-BYTE-RATE}(link)
                r \leftarrow b - f
                if r > max then
10:
                     max \leftarrow r
11:
                end if
12:
            end for
13:
            if max < min then
14:
                path \leftarrow p
15:
                min \leftarrow max
16:
            end if
17:
        end for
18:
        mbr \leftarrow MAXBYTERATE(currentPath)
19:
        if mbr - min > mbr \times \alpha then
20:
            PUSH-FLOWS(path)
21:
        end if
22:
        SLEEP(\beta)
24: end while
```

System Architecture

Adel Nadjaran Toosi Slide 10/22

Performance Evaluation

- Real-world testbed for SDN-enabled cloud computing
- 8 heterogeneous servers
- Fat-tree topology
- Raspberry Pis (Pi 3 Model B) with Open vSwitch (OVS) as Switch
- OpenStack (Ocata release) as cloud platform
- OpenDaylight (ODL) as SDN controller

Slide 11/22

Hardware

CPU	Cores	Memory	Storage
Intel(R) Xeon(R) E5-2620	12	64GB (4 x 16GB DDR3	2.9TB
Intel(R) Xeon(R) X3460 @	4	16GB (4 x 4GB DDR3	199GB
Intel(R) Core(TM) i7-2600	4	8GB (2 x 4GB DDR3	399GB
	Intel(R) Xeon(R) E5-2620 @ 2.00GHz Intel(R) Xeon(R) X3460 @ 2.80GHz Intel(R) Core(TM) i7-2600	Intel(R) Xeon(R) E5-2620 12 @ 2.00GHz Intel(R) Xeon(R) X3460 @ 4 2.80GHz	Intel(R) Xeon(R) E5-2620 12 64GB (4 x 16GB DDR3 @ 2.00GHz 1333MHz) Intel(R) Xeon(R) X3460 @ 4 16GB (4 x 4GB DDR3 2.80GHz 1333MHz) Intel(R) Core(TM) i7-2600 4 8GB (2 x 4GB DDR3

USB 2.0 to 100Mbps Ethernet adapters

Raspberry Pis (Pi 3 MODEL B)

Adel Nadjaran Toosi Slide 12/22

Testbed

Adel Nadjaran Toosi Slide 13/22

More Photos

Traffic Generation and Routing

> Iperf3 tool

Conn-x	Time	Source	Destination	Length	\mathbf{BW}	Path
Conn-1	0	Compute-5	Compute-4	60s	10	8-5-1-3-7
Conn-2	25	Internet-1	Compute-2	120s	30	0-2-6
Conn-3	40	Compute-4	Compute-5	120s	60	7-3-1-5-8
Conn-4	125	Compute-8	Compute-2	120s	40	9-4-0-2-6
Conn-5	180	Internet-1	Compute-6	30s	50	0-4-8
Conn-6	185	Compute-5	Compute-8	60s	20	8-5-9
Conn-7	200	Compute-2	Compute-8	90s	40	6-2-0-4-9

Adel Nadjaran Toosi Slide 15/22

Experimental Results (EXP-1)

- > A live VM migration in OpenStack
 - o m1.small VM with Ubuntu-16.04 image
 - from Compute-1 to Compute-7
- > Results:

Metric	Static Routing	Acinonyx	
Migration Time (s)	287	256	
Average Throughput (Mbs)	32.0	34.4	

Adel Nadjaran Toosi Slide 16/22

The impact of the Sleeping Interval

The impact of Switching Ratio Factor

Multiple Migrations

- > m1.small VMs,
 - One from Compute-2 to Compute-7 and
 - One from Compute-3 to Compute-8.

(b) With Background Traffic

- Live VM migration is frequently used in cloud data centers
- Proposed a dynamic flow scheduling for live VM migration in SDN-enabled cloud data centers
- Showed live VM migration time can be reduced up to 10% compared to existing static routing
- Demonstrated the feasibility by building a working prototype over a practical testbed.

Adel Nadjaran Toosi Slide 20/22

Future work

- > To explore the impact *Acynonix* on the flows of applications running in the migrating VM.
- > To extend our approach for efficient flow scheduling of combined multiple migrations.
- Study the performance under the deployment of real-world applications exhibiting various network traffic characteristics
 - stream processing, data analytics, web applications, scientific workflows

Adel Nadjaran Toosi Slide 21/22

THANK YOU Questions?

