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A B S T R A C T

Resource management in computing is a very challenging problem that involves making
sequential decisions. Resource limitations, resource heterogeneity, dynamic and diverse nature
of workload, and the unpredictability of fog/edge computing environments have made resource
management even more challenging to be considered in the fog landscape. Recently Artificial
Intelligence (AI) and Machine Learning (ML) based solutions are adopted to solve this problem.
AI/ML methods with the capability to make sequential decisions like reinforcement learning
seem most promising for these type of problems. But these algorithms come with their
own challenges such as high variance, explainability, and online training. The continuously
changing fog/edge environment dynamics require solutions that learn online, adopting changing
computing environment. In this paper, we used standard review methodology to conduct this
Systematic Literature Review (SLR) to analyze the role of AI/ML algorithms and the challenges
in the applicability of these algorithms for resource management in fog/edge computing
environments. Further, various machine learning, deep learning and reinforcement learning
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techniques for edge AI management have been discussed. Furthermore, we have presented the
background and current status of AI/ML-based Fog/Edge Computing. Moreover, a taxonomy of
AI/ML-based resource management techniques for fog/edge computing has been proposed and
compared the existing techniques based on the proposed taxonomy. Finally, open challenges
and promising future research directions have been identified and discussed in the area of
AI/ML-based fog/edge computing.

1. Introduction

Most modern web applications now follow the standard practice of tapping into the remote computing resources provided by
loud data centers [1]. Mobile phones, wearables, and other user devices, as well as sensors in a smart city or factory, all create
ata that is often sent to remote clouds for processing and storage [2]. Due to the likelihood of a rise in communication latencies
hen billions of devices are linked to the Internet, this computing architecture is impractical for the long term [3]. The increased

ommunication latencies will negatively affect applications and lower the Quality of Service (QoS) [4]. Bringing computing resources
earer to end devices and sensors and employing them for data processing is an alternate computing strategy that can help with
he aforementioned issue (even if only partially) [5]. This might lessen the load placed on the cloud and speed up communications.
he recent fashion in computing research is to implement this concept by moving part of the processing power currently housed in
uge data centers to the network’s periphery, where it will be closer to end-users and sensors [6]. Internet of Things (IoT) devices
uch as routers, gateways, and switches may be equipped with computer resources, or specialized ‘‘micro’’ data centers may be built
ithin public/private infrastructure for the ease of access and security [7]. ‘‘Edge computing’’ refers to a computing model that takes

advantage of network edge resources. ‘‘Fog computing’’ refers to a paradigm that employs both on-premises hardware and cloud services [8].
Edge resources differ from cloud resources in several ways [9–11]: (a) they are resource constrained, meaning they have fewer
computational capabilities due to edge devices’ smaller processors and lower power budgets; (b) they are heterogeneous, meaning
that different processors use different configurations; and (c) their workloads adjustment and applications fight for them. Hence,
one of the major difficulties in fog and edge computing is managing resources.

1.1. Resource management issues in Fog/Edge computing

In recent years, IoT applications (e.g. smart homes, self-driving cars, smart agriculture, smart healthcare) have improved people’s
quality of life [12]. The increase in IoT applications has also increased a number of IoT devices such as sensors, smart CCTV
cameras, smart gadgets, and other smart devices. These IoT applications generate a massive amount of data [13]. According to
a report by International Data Corporation, in 2025 data generation from IoT devices will reach 79.4 zettabytes [14]. Traditional
cloud infrastructure is not designed to handle such a huge amount of data [15]. The large amount of data generated from the
actuators, mobile devices and sensors, has incorporated latency, network bandwidth and security challenges to cloud infrastructure
for time-sensitive applications [16]. To overcome these challenges, the emerging distributed computing paradigm ‘‘fog computing’’
and ‘‘edge computing’’ as an extension of Cloud computing has drawn the attention of the industrial and research community [17].
Fog/edge computing provides computing, network and storage services and control close to the data origin by combining distanced
resources between cloud and end devices [18]. Though the resources in fog/edge are more limited in capability than cloud resources,
they can play an important role in processing data for time-sensitive or real-time applications [19]. It enables location awareness,
user mobility support, real-time interactions, low latency, high scalability, and interoperability that cloud-based systems could not
support [20]. But the increase in IoT applications and limited resources in fog/edge computing environments has made efficient
resource management very crucial.

1.2. Need of AI/ML for Fog/Edge computing

With the increase in the use of IoT and Machine Learning (ML), cloud and fog/edge workloads are becoming increasingly diverse
and dynamic. The confluence of fog and AI for improvement in human quality of life necessitates the use of smart management
of fog resources. In traditional cloud computing platforms, resource management is done using traditional heuristic approaches
without considering diverse and dynamic workloads [21]. Most of these methods (e.g., Threshold-based method) are static heuristics
configured offline to certain workload scenarios. They are not able to scale applications in and out at run time based on the pattern
and behavior of workload [22]. The performance of heuristic methods can also be drastically downgraded when the system is scaled
up. Resource contention is also a major problem in fog environments where co-located applications compete for shared resources
in such policies and cause performance deterioration and Service Level Agreement (SLA) violation [23]. The shift of application
structure from monolithic applications to micro-services and serverless has also increased the complexity [24]. Dependency in
micro-services may cause Service Level Objective (SLO) violations due to communication costs and higher resource demands in
fog computing.

The fast-rising diversity of workloads, the complexity of applications and the near optimum requirement of QoS parameters
of some IoT applications in Fog/Cloud environments, motivate the utilization of AI/ML techniques to optimize their resource
management policies [25]. AI and ML models could be used to model and predict application and infrastructure level metrics that
2
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could also assist in task/resource orchestration by improving the quality of resource provisioning decisions [26]. Also, ML method
can be directly used for resource management decisions for high accuracy and lower time overhead in large-scale systems [27]. ML
algorithms e.g., Support Vector Machine (SVM), and polynomial regression, can be used to explore relations between performance
metrics [1], the K-means algorithm can be used for the detection of abnormal system behaviors, Reinforcement learning models
can be adopted for decision-making for resource provisioning, advanced Recurrent neural network can be used for the analysis
of resource utilization or regression of application performance metrics and SVM can also be utilized for dependency analysis of
application components [28].

1.2.1. Motivation
In the fog/edge computing context, AI/ML-based solutions have been employed for a variety of goals, including resource

fficiency, load balancing, energy efficiency, SLA assurance, etc. Therefore in this article, we aim to investigate ‘‘AI for fog/edge
omputing’’ and its components for the realization of fog/edge-enabled AI.

• AI/ML-based resource management techniques have demonstrated potential for managing resources and deploying applications
in cloud computing. Hence, aim to outline the evolution and principles of AI/ML-based resource management in fog/edge
computing in recent studies.

• Existing survey papers do provide light on AI/ML-based resource management for fog/edge computing, but this area of study is
rapidly growing as new AI/ML models are integrated. In order to uncover new research problems, trends, and potential future
directions, a new Systematic Literature Review (SLR) of AI/ML-based resource management systems for fog/edge computing
is required.

.3. Related surveys and contributions

Many reviews/surveys have been conducted that discuss the role of AI/ML in fog/edge computing. Ghobaei-Arani et al. [12]
eviewed solutions for resource management approaches in fog computing. They presented a taxonomy of resource management
ethods considering six dimensions, resource planning, load balancing, task offloading, resource allocation, resource provisioning,

nd application placement. They presented a thorough analysis of several case studies and their methodologies but focused on
eneral approaches and partially discussed AI approaches. They did not provide any classification of AI-based solutions. Zhong
t al. [1] presented a review of machine learning approaches for container orchestration issues from resource management. They
roposed a taxonomy to classify current research by its common features. Duc et al. [29] investigated machine learning-based
esource provisioning in joint edge–fog–cloud environments, and surveys technologies, mechanisms, and ML-based methods that
an be used to improve the reliability of distributed applications in diverse and heterogeneous network environments. Casalicchio
t al. [30] explored the problem of autonomic container orchestration and presented a taxonomy of container technology, container
ools, and architecture, but they only provided a generalized discussion on container technology not specific to edge or fog. Another
eview [31] addressed the confluence of edge computing and AI. This work has two-dimensional agenda: the use of edge computing
or AI and the use of AI for Edge. They only focused on computational offloading and mobility management with AI methods and only
iscussed a few AI-based works for these issues. Kansal et al. [32] presented a review of data-driven approaches for fog management
ssues. They are classified based on the technology used, QoS factors, and data-driven strategies. However, they generically reviewed
ll the data-driven techniques and do not present any classification or taxonomy of AI techniques.

Although existing survey articles provide new insights into AI/ML-based resource management for fog/edge computing, the
esearch field is constantly expanding with the integration of new AI/ML models. Therefore, new reviews of AI/ML-based resource
anagement approaches are needed to identify emerging research challenges and possible future directions. Further, none of the

xisting surveys have used the Systematic Literature Review (SLR) approach to conduct the survey. In this work, we followed a
ystematic review methodology as per the ‘‘Centre for Reviews and Dissemination (CRD) guidelines’’ given by Kitchenham [33] to
onduct this review on AI/ML-based resource management in Fog/Edge computing. Table 1 compares the related surveys with our
LR based on important key parameters.

.3.1. Our contributions
The main contributions of this Systematic Literature Review (SLR) are summarized as follows:

• Review AI/ML approaches used for the realization of AI/ML for fog/edge computing.
• Offer a comprehensive literature review to discuss the background and current status of AI/ML-based resource management

approaches in fog/edge computing environments.
• Propose a taxonomy of the most common AI algorithms used for resource management in fog/edge computing environments.
• Compare existing studies using various parameters related to identified categories through the proposed taxonomy.
• Identify open issues and future directions for the confluence of edge and AI as Edge AI.

1.4. Article organization

The rest of this article is structured as illustrated in Fig. 1. In Section 2, the review methodology is described. Section 3 presents
he background and current status of AI based resource management approaches, Section 4 gives a detailed review of AI/ML-
ased techniques used for resource management issues and their current status. Section 5 presents a taxonomy of frameworks and
omparison analysis in AI-based edge and fog computing. Section 6 discusses result outcomes and Section 7 provides open issues
3

nd future directions. Finally, Section 8 concludes the paper.
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Table 1
Comparison of related surveys with our Systematic Literature Review (SLR).

Work [12] [30] [31] [1] [34] [35] [36] [29] [37] [38] [39] [32] Our SLR

Year 2020 2019 2020 2022 2020 2019 2018 2019 2021 2022 2021 2022 2022

Environment
IoT ✓ ✓ ✓ ✓ ✓

Edge ✓ ✓ ✓

Fog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cloud ✓ ✓ ✓ ✓

AI Method
Machine learning ✓ ✓ ✓ ✓

Deep learning ✓ ✓ ✓

Reinforcement
learning

✓ ✓ ✓ ✓

AI for Fog/Edge

Resource
Discovery

✓ ✓

Resource
Estimation

✓ ✓ ✓

Application
Placement

✓ ✓ ✓ ✓ ✓

Resource
Orchestration

✓ ✓ ✓ ✓

Resource
Scheduling

✓ ✓ ✓

Resource
Provisioning

✓ ✓ ✓ ✓ ✓ ✓

Task offloading ✓ ✓ ✓ ✓

Load balancing ✓ ✓ ✓

Taxonomy ✓ ✓ ✓ ✓ ✓ ✓ ✓

Classification ✓ ✓ ✓ ✓ ✓ ✓

Systematic Literature Review (SLR) ✓

2. Review methodology

This work is a Systematic Literature Review (SLR) of AI/ML-based resource management in Fog/Edge computing. We followed
systematic review methodology as per the ‘‘Centre for Reviews and Dissemination (CRD) guidelines’’ given by Kitchenham [33] to

ollect the most relevant studies on this issue. The following steps are included in the process of reviewing this article: (i) establishing
he evaluation process; (ii) describing the evaluation criteria; (iii) creating the taxonomy; (iv) performing the analysis; (v) contrasting
he different previous studies; (vi) analyzing the finding and outcomes; and (vii) emphasizing promising research directions.

.1. Planning the review

Creating research questions is the first step in designing the rules of evaluation. We used these carefully constructed queries to do
dditional searches across a variety of data sources. The review method identifies and accumulates relevant data for the intended
nvestigation. Articles are either taken into consideration or discarded heavily due to the evaluation procedure. The selection of
his task by a single researcher might potentially instill bias in the study. This Systematic Literature Review was thus conducted by
plitting among all of the contributors of this paper. Each author has written a document that outlines their thoughts on the review
rocess and distributed it to other team members. Over a set period of time, this cycle has replicated itself. After much debate
ver several versions, the review guidelines have been completed. Several online databases have been combed thoroughly. Fig. 2
epresents the evaluation process.

.2. Research questions

In order to better understand AI/ML for fog/edge computing, we plan to do a comprehensive overview of the field. Researchers
ay use the results of this study to have a better grasp of the state of AI/ML-based fog/edge computing and to pinpoint fruitful

venues for further investigation. Planning the review procedure requires the Research Questions (RQ). Table 2 displays the research
uestions, the rationale behind them, and the relationships between various parts and subsections of our literature review to
emonstrate how we are addressing these RQs using Systematic Literature Review (SLR).

.3. Sources of information

A comprehensive search of electronic sources is essential for a thorough literature evaluation. In an effort to improve the
robability of locating relevant research publications, we have selected the following collection of data sources:

• Wiley Interscience (www3.interscience.wiley.com)
4
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Fig. 1. The organization of this Systematic Literature Review (SLR).

Fig. 2. Process of review methodology.

• Springer (www.springerlink.com)
• ACM Digital Library (www.acm.org/dl)
• IEEE eXplore (ieeexplore.ieee.org)
• ScienceDirect (www.sciencedirect.com)

• Semantic Scholar (www.semanticscholar.org)
5
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Table 2
Research questions, Motivation, Category and Mapping sections.

Sr. No. Research question Motivation Category Mapping
section

RQ1 What is the current status of
AI/ML-based fog/edge
computing?

The research question investigates
the many different subareas
within AI/ML-based fog/edge
computing.

Current Status &
Background and
Result Outcomes

Sections 3 and 6

RQ2 In fog/edge computing, what
resource management methods
are available that are based on AI
and ML?

The purpose of this question is to
delve into the numerous methods
employed in either the simulation
or real-time application of
AI/ML-based fog/edge computing.

AI For Resource
Management in
Fog/Edge and
Taxonomy

Sections 4 and 5

RQ3 What are the most important
sub-fields of AI/ML-powered
fog/edge computing?

This question is useful for
determining the nature of
research that has been conducted
utilising AI/ML-based fog/edge
computing.

Current Status &
Background and
AI For Resource
Management in
Fog/Edge

Sections 3 and 4

RQ4 Where are AI/ML-based fog/edge
computing frameworks stand
right now?

This inquiry probes the Multiple
models for AI/ML-driven fog/edge
computing that have been
established by scholars for use in
certain IoT use cases.

AI For Resource
Management in
Fog/Edge and
Taxonomy

Sections 4 and 5

RQ5 How can the efficiency of
AI/ML-based fog/edge computing
be measured, and what metrics
are used for this purpose?

The effectiveness of AI/ML-based
Resource Management Techniques
for fog/edge computing is
measured in terms of delay, cost,
and power usage, among others,
by the researchers.

Performance
Metrics

Section 3.8

RQ6 What kinds of workloads are
utilised to evaluate the efficacy of
AI/ML-based fog/edge computing
frameworks?

The survey identifies and
mentions the workloads utilised
by the fog/edge computing
system.

Workloads Section 3.10

RQ7 Which simulators are utilized for
fog/edge computing that is based
on AI/ML?

The paper identifies and discusses
the simulators utilised in the
fog/edge computing architecture
for AI/ML-based Resource
Management techniques.

Simulators Section 3.9

RQ8 What are the most common
applications of IoT-enabled
Edge/Fog AI?

Use cases for IoT-enabled
Edge/Fog AI are discovered and
discussed in the paper.

Edge/Fog AI and
Usecases of IoT
enabled
Edge/Fog AI

Sections 3.1 and
3.2

RQ9 What are ML/DL/RL, Online and
Offline Learning Techniques for
Edge AI Management?

Various techniques for Edge AI
management are discovered and
discussed in the paper.

ML with
Fog/Edge and
ML-based
Resource
Management

Sections 3.4 and
3.7

RQ10 What are the techniques for Edge
AI Management?

Various Deep
Learning/Reinforcement Learning
techniques for Edge AI
management are discovered and
discussed in the paper.

AI For Resource
Management in
Fog/Edge

Section 4

RQ11 How will AI and machine
learning impact fog and edge
computing in the future?

Finding out where fog/edge
computing research is headed and
what problems remain
unanswered is crucial.

Open Challenges
and Research
Directions

Section 7

Additional Sources: In order to broaden our search for relevant research, we also consulted the following supplementary sources:

• Investigated the original sources included in the reference list.
• Technical Reports
• Edited Books and Text Books
6
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Table 3
Search strings for e-resources.

Sr. No. e-resource Search string Dates Source type Subjects

1 ieeexplore.ieee.org Abstract: Artificial Intelligence
or Machine Learning for Fog
Computing or Edge Computing

2015–2022 Conferences,
Journals,
Magazines and
Transactions

Fog Computing, Edge
Computing, Machine
Learning, Deep Learning,
Artificial Intelligence

2 www.springerlink.com Abstract: Artificial Intelligence
or Machine Learning for Fog
Computing, Edge Computing

2015–2022 Conferences,
Journals and
Magazines

Fog Computing, AI, ML,
DRL, RL, Edge
Computing

3 www.sciencedirect.com Abstract: Artificial Intelligence
or Machine Learning for Fog
Computing, Edge Computing

2015–2022 All sources Fog Computing, Deep
Learning, Artificial
Intelligence, Edge
Computing

4 www.onlinelibrary.wiley.com/ Abstract: Artificial Intelligence
or Machine Learning for Fog
Computing

2015–2022 Conferences,
Journals,
Magazines and
Transactions

Fog Computing, Edge
Computing, Machine
Learning, Deep Learning,
Artificial Intelligence

5 www.acm.org/dl Abstract: Article Title: Fog,
Full Text/Abstract: Artificial
Intelligence or Machine
Learning for fog or edge

2015–2022 Conferences,
Journals,
Magazines and
Transactions

AI/ML, Fog, Cloud, Edge

6 www.taylorandfrancis.com/ Abstract: Artificial Intelligence
or Machine Learning for
Fog/Edge Computing

2015–2022 Conferences and
Journals

Edge, Fog, AI, ML, DRL

7 www.inderscience.com/ Abstract: Artificial Intelligence
or Machine Learning for Fog
Computing

2015–2022 Journals All Subjects

8 www.semanticscholar.org Abstract: AI/ML for Fog/Edge
Computing

2016–2022 arXiv Preprints Fog Computing, Edge
Computing, Machine
Learning, Deep Learning,
Artificial Intelligence

9 Other Publishers Article Title: Fog, Full
Text/Abstract: AI/Ml for fog
or edge

2015–2022 All sources Edge, Fog, AI, ML, DRL

2.4. Search criteria

The determined search method from various online sources is presented in Table 3. The research articles featured here were
athered using the most widely-used Internet resources in the field of AI/ML for fog/edge computing. ScienceDirect, IEEE Xplore,
pringer, Taylor & Francis (T&F), ACM, Sage, Wiley, InderScience, and Google Scholar are only a few of the digital libraries from
hich the papers were retrieved. Finding relevant studies in the literature relies heavily on ‘‘Search string construction’’ and ‘‘Search
eywords choice’’. Search terms like ‘‘fog computing’’ and ‘‘edge computing’’ and related terms like ‘‘Artificial Intelligence’’ and
‘Machine Learning’’ and ‘‘Deep Learning’’ revealed relevant items. Combining the keywords with the boolean operators AND and
R produced the final string for search. The following sequence has the following specified format:

(Application placement) OR (Service placement) OR
Task scheduling) OR (Container placement) ) OR
VM placement) OR (Resource management) AND
(( Artificial Intelligence) OR (Machine Learning)) AND
Challenges) OR (Metrics) OR (simulators) OR (Workload) OR
Algorithms) OR (Methods))) AND (Edge computing) OR
Fog computing) Or (Cloud computing)]

Firstly, we constructed a search query based on the formulated research questions in Table 2. Table 3 details the evaluation
rocess’s search strings.

.5. Inclusion and exclusion criteria

AI/ML-based Fog/edge computing is a relatively new area of study, and only a small number of papers have addressed the
ey questions surrounding them prior to 2015. As a result, the number of articles covering the topic before 2015 was quite low.
ig. 2 displays the selection procedure of research papers from the Internet and digital library databases. The aforementioned search
erms and string combinations were utilized to narrow the available databases down to the most pertinent articles. Starting with
7
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publications that were not peer-reviewed or indexed by ISI, 320+ papers were chosen for the first phase. To find quality publications,
a research screening method has been done to exclude brief publications, non-peer-reviewed papers, low quality book chapters, and
low-quality studies that were not capable of delivering any technical knowledge and scientific argument. By the end of the process,
135 articles from prestigious journals and conferences had been hand-picked for this evaluation. In Section 5, the suggested taxonomy
is explained alongside an analysis of each work that fits into it.

The elimination of research was performed using the following criteria to pick the rigorous quality publications:

• Neither the journal nor the conference are indexed.
• The articles present any survey and analysis work.
• These are the documents that were not written using the English language.
• Works that do not undergo a rigorous peer review procedure.

2.6. Quality assessment

There are several research publications on AI/ML for fog/edge computing in a wide variety of journals and proceedings from
onferences. After applying the exclusion and inclusion criteria, we conducted a quality evaluation of the selected papers to choose
he most relevant ones for further consideration. To evaluate the studies’ overall quality, we checked them against critical factors
uch as objectivity, internal consistency, and bias using the CRD recommendations [33]. We have established quality evaluation
orms as presented in Appendix A to evaluate high-quality research papers for this systematic review of the literature. We have
sked both broad, exploratory questions and in-depth, exploratory ones. Preliminary Examining questions are a helpful tool for
ocating high-level research publications that are associated with AI/ML in Fog/Edge Computing. In addition, specific questions are
sed to choose the research papers that are the most pertinent to the primary context of AI/ML in Fog/Edge Computing.

.7. Data extraction

The methodology for extracting data from the 135 research papers included in this analysis was detailed in Appendix B. Initiating
he data-gathering process inspired us to create this data extraction form in order to answer the research questions. Our carefully
tated selection criteria allowed us to identify the best works on AI/ML for fog/edge computing from a wide range of prestigious
ournals and conferences as listed in Appendix C. In addition, we have reached out to a number of authors in order to collect the
ecessary information regarding scholarly works. In this SLR, we used this procedure to retrieve the data:

• A set of authors read through all 135 publications to collect the necessary information.
• Other authors used random samples to verify the accuracy of data collection.
• Any issue that arose throughout the cross-checking procedure was discussed and settled in a number of meetings.

.8. Acronyms

Abbreviations utilized in the systematic literature evaluation are given in Appendix D.

. AI/ML for Fog/Edge computing: Background and current status

In this section, we discuss the background concepts, including AI and ML with Fog/Edge Computing. Further, this section presents
ther concepts such as resource management in Fog/Edge computing, categorization of resource management approach in Fog and
dge computing, IoT applications, performance metrics, workloads and simulators. Fig. 3 represents a broad taxonomy of AI/ML
or Fog/Edge Computing.

.1. Edge/Fog AI

The emerging computing model named fog and edge computing can alleviate the problem of bringing the computational resources
loser to the end user. These computing models offered the services to several latency-sensitive IoT applications such as vehicular
etworks, agriculture, healthcare, smart home, and transportation system [40], where cloud models fall behind in handling the
ervices with minimum response time [41]. The fog/edge paradigm supports low latency, high mobility, and interoperability with
esource constraints for IoT applications [42]. The contemporary research trend resides in the decentralization of resources towards
he edge of the network. In contrast to cloud resources, edge resources need distinctive managerial techniques because of underlying
eterogeneous resources, dynamic workload, scalable data centers, and last but not least, unpredictability, fluctuating interactions
nd multi-tenancy across end users [43]. The dynamic workloads make the process even more complex when real-time applications
re competing for limited resources [44]. Failure recovery, data redundancy, high cost, power consumption, and privacy are still
ssues with the emerging computing paradigm, it necessitates the management of fog/edge resources is considered one of the
ignificant challenges and needs to be addressed by the intelligent solution to improve the performance metrics and resolve the
entioned issues [45]. Resource provisioning, task offloading, resource scheduling and allocation, service placement, and load

alancing are the components of resource management [46]. Each component of resource management and its related issues are
8

iscussed briefly.
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Fig. 3. Taxonomy of AI/ML for Fog/Edge computing.

3.1.1. Resource provisioning
Resource provisioning is defined as selection, deployment, and run time management of software and hardware resources for

the efficient performance of applications. There are fluctuations in IoT devices’ workload that leads to the issue of over and under
provisioning. In the case of overprovisioning, a greater number of resources are allocated as compared with the required IoT
workload, and IoT users must pay more for the services used [47]. In case of under provisioning, a smaller number of resources are
allocated for IoT services, as per the requirement of IoT workload and it increases the possibility of SLA violations [48]. Hence, an
efficient mechanism is needed to overcome the mentioned challenges and provide the resources based on the service demands.

3.1.2. Task offloading
It is problematic to take the offloading decision at runtime due to the complex architecture of fog and edge networks with resource

constraints and allocate the best possible resource (cloud or fog) for computation-intensive tasks. The most common applications it
supports are virtual reality, vehicular networks, and multimedia delivery [12]. We required an intelligent agent to decide, where
the IoT devices-based workload will be processed and return the results within the deadline. The offloading decision are depending
upon several factors like types of workloads, deadlines, priority, communication link, the capacity of fog nodes, and IoT devices.
The main aim is to, utilize the link, and improve the latency and power consumption.

3.1.3. Resource scheduling and allocation
The number of fog/edge nodes are available to process the IoT requests, but required an efficient scheduling technique that will

search the optimal resources for the upcoming workload and execute it within the deadline [49]. The scheduling of IoT service
requests with objective function over the heterogeneous fog/edge nodes belongs to the class of NP-Complete and it is difficult to
find the exact solution to the problem [50]. Resource scheduling and allocation is a different problem in the edge/fog paradigm
with additional entities as compared with the cloud paradigm, and becomes a double mapping problem under-provisioning and IoT
services demands [51].

3.1.4. Service placement
The objective of service placement is to look at the optimum resources for IoT services, and deploy over the virtualized edge/fog
9

nodes to enhance the QoS metrics, while maintaining the SLA [37]. An IoT application can be mapped with more than one fog/edge
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node or multiple services can be placed over a single fog node, depending upon the requirement of services and computation capacity
of resources.

3.1.5. Load balancing
It is one of the vital issues to distribute the workload over the virtualized fog nodes in balancing mode and avoid the possibility

f over or underutilization of resources [52]. The goal of load balancing in edge/fog computing is to reduce the response time
or latency-sensitive applications and address the challenges like network delay, high waiting time, and scalability to improve the
ystem performance with potential solutions [53].

There are many resource management solutions are existed for the cloud paradigm, but cannot apply the same for fog/edge
omputing due to different network conditions, and characteristics, more distributed infrastructure, and processing capabilities of
odes [50,53]. Hence, it is more challenging to address the issues of resource management in the fog/edge platform, as compared
o the cloud platform [54]. Several researchers are working in this direction to manage the resources of a heterogeneous network,
ccurate offloading decisions, optimal provisioning, intelligent scheduling techniques, best-effort service placement and efficient
orkload sharing for load balancing, but no one has explored all the mentioned challenges entirely despite its importance for

eal-time applications, hence it opened the door for the new researchers to propose a novel solution for the existing issues.

.2. Usecases of IoT enabled Edge/Fog AI

IoT has attracted significant research interests from both industry and academia and facilitates varied novel applications,
ncluding smart home, surveillance, smart healthcare and so on. Here, we present a brief summarization of different types of IoT
pplications.

.2.1. Healthcare
IoT solutions have been considered and deployed for health management systems by efficiently tracing agents (patients, medical

ractitioners, medical resources), automatic data sensing and authentication and it is defined as Internet of Health Things (IoHT) [55].
IoHT technology has redefined the healthcare system by health monitoring of patients anytime and anywhere for post-discharge
care, elderly health management and several other emergency situations like pandemic [56]. Wearable sensor is one of the major
components in IoHT where health-related parameters are collected in different time intervals and processed for smart e-healthcare
applications [57,58]. A framework with IoT-based wearable sensors coupled with machine learning methods has been proposed for
monitoring sport’s person health conditions by collecting health parameters and exercise traces [59]. Carlos et al. [60] presented
an IoHT-based deep learning framework for medical image (cerebral vascular accident image, lung nodule and skin images)
classifications [60]. Another work by Ray et al. [61] designed a prototype of a cost-effective and low-power sensor system that is
conducive to monitoring real-time intravenous (IV) fluid bag levels in e-healthcare applications. A collaborative edge-IoT framework,
named RESCUE is proposed in [62] for provisioning healthcare services specifically in exigency time by collecting patient’s location,
and health condition and predicting the route of nearby healthcare centers. The framework also devises latency-aware and power-
aware frameworks using IoT devices. Several research works have been carried out to mitigate COVID-19 by leveraging IoT-based
solutions using AI/ML [63,64]. Khan et al. [65] present Deep Collaborative Alerts-recommendation (DCA)-Internet of Medical Things
(IoMT), a location-aware knowledge-graph-based recommendation framework for an alert generation against COVID-19. FairHealth,
an IoMT framework is proposed in [66], where the fairness-aware resource scheduling method is deployed in 5G edge healthcare.
Another imperative issue in the healthcare domain is the privacy aspect since such collected health data is sensitive in nature [67].
To mitigate such issues, a secure IoMT framework is presented leveraging blockchain [68]. In particular, when IoMT devices send
data using a patient’s Personal Digital Assistant (PDA), the data is transacted on the blockchain by the cloud server. Similarly, in
the context of COVID-19, a blockchain-based privacy-preserving algorithm is proposed by Lv et al. [69] for contact tracing. The
authors investigate several practical challenges including protecting data security and location privacy, dynamically and effectively
deploying short-range communication IoT for activity-tracking and location-based services in large areas. The utility of IoT is
explored for vaccine supply chain distribution in India [70].

3.2.2. Smart-home
IoT solutions can provision smart home services including automatic control of domestic appliances, alarm generation, security

controls and developing an Internet-connected system. Gavrila et al. [71] present an IoT-based framework for seamless integration
with a Hybrid broadcast broadband TV-enabled television set in a smart home environment for a better user experience. A multi-
objective and smart residential load management framework is presented for energy management in smart-homes [72]. Specifically,
an IoT based controller manages the home loads and generates alerts if any malfunction in the household loads is detected. In the
smart-home context, cyberattacks cause potential harm to the occupants and compromise their safety. In this regard, Yamauchi
et al. [73] devised a novel method to detect such attacks by learning occupants’ behavior as sequences of events such as the
operation of home IoT devices and activities along with environmental variables (temperature, humidity, time of the day). The
method compares learned sequences and current sequences when an operation command is activated, and an anomaly is detected.
Kratos+, a multi-user and multi-device-aware access control mechanism is proposed in a similar context for allowing smart home
users to specify the access control demands [74]. Li et al. [75] present a human pose forecasting system for smart homes leveraging
graph convolutional neural network on the IoT edge for online learning. IoT Meta-Control Firewall (IMCF+) is proposed to mitigate
10

energy consumption and CO2 emission issues while also maintaining user comfort [76].
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3.2.3. Agriculture
IoT has brought dramatic improvements in agricultural production by enhancing the quality of agricultural products, reducing

abor costs, and effective farm management [77]. Alahi et al. [78] design a smart nitrate sensor that monitors nitrate concentrations
n ground and surface water. The system is supported by WiFi-based IoT that can send data directly to an IoT-based web server and
erves as a distributed monitoring system [79]. A cyber–physical system for crop evapotranspiration estimation is proposed [80]. A
radient-boosting decision tree along with a fuzzy granulation method is used on IoT data from Xi’an Fruit Technology Promotion
enter in Shaanxi Province, China for cherry tree evapotranspiration estimation and the proposed system achieved promising
ccuracy [81]. The continuous monitoring of crop growth is one of the most important aspects of precision agriculture. Bauer
t al. [82] design a complementary framework for low-cost crop sensing leveraging temporal variations of the signal strength
f low-power IoT radio communication [83]. Multidimensional feature compensation residual neural network (MDFC-ResNet)
ramework [84] identifies fine-grained crop disease using IoT technology and deep learning method.

.2.4. Smart transportation
IoT demonstrates a promising future in Intelligent Transportation Systems (ITS) by collecting, analyzing traffic/mobility-related

ata and developing a smart, safe, reliable and sustainable ITS [85]. A smart parking surveillance system (detecting parking
ccupancy) is proposed by using edge computing and real-time video feed [86]. Bansal et al. [87] propose DeepBus for identifying

surface irregularities (e.g., potholes) on roads using IoT sensor and machine learning methods. The system centrally hosts a map and
alerts users and authorities regarding pothole locations. Philip et al. [88] designed an IoT-based smart traffic control system where a
group of self-driving cars interact with road-side units and independently decide their lane velocities. IoT-based energy efficient ITS
framework is presented that can reduce energy consumption, noise pollution, waiting time and greenhouse gas emissions in smart
city environment [89]. Wan et al. [90] proposed a framework consisting IoTs of vehicles for vehicle number estimation which in
turn helps in vehicle localization. A predictive framework is designed for forecasting the parking space occupancy leveraging deep
learning-based ensemble technique [91] in IoT environment. The system specifically reduces the search time for parking and the
optimization of the flow of cars helps in better traffic management in congested areas of a city.

3.2.5. Spatial applications
Internet of Spatial Things (IoST) integrates spatial or location information in the core IoT architecture to facilitate location-aware

services [92,93]. Ghosh et al. [94] presented a mobility-aware IoST framework for time-critical applications (e.g., ambulance service,
disaster relief) for predicting optimal paths with less delay. Koh et al. [95] proposed a new location spoofing detection algorithm that
can be used for spatial tagging and location-based services in an IoT environment. A spatial-data driven IoT framework, STOPPAGE
is developed for predicting COVID-19 hotspot zones and efficient medical resource management in varied regions [96].

3.3. AI with Fog/Edge computing

IoT is a communication network created by objects that can connect to the Internet and communicate with each other [97]. It
has started to be used everywhere, from healthcare applications to military applications, and it is estimated that the number of IoT
devices will reach approximately 30 billion by 2030 [98]. Along with the vertical increase in the number of IoTs, the amount of data
that needs to be processed and produced by sensors has reached gigantic proportions. Processing this data in the cloud seems like
a logical solution at first because of its advantages, such as high processing power and storage capacity [99]. However, problems
such as [100] latency may occur in time-sensitive IoT applications such as instant patient follow-up.

Fog computing can be seen as an inspiring development to solve problems such as latency, power consumption, and network
traffic in Cloud-based IoT systems [101]. Unlike cloud data centers, Fog nodes are located close to the IoT layer. Thus, execution time
and bandwidth issues can be reduced [102]. On the other hand, fog nodes do not consist of devices with powerful processing power
and large storage ability such as cloud data centers [12]. Therefore, one of the difficulties that need to be solved in fog computing
is resource management, which consists of subheadings such as resource scheduling, task offloading and resource provisioning [9].

Resource management issue for Edge/Fog AI is addressed using diverse techniques. One of these methods is AI-based techniques
that have been gaining popularity recently. AI-based techniques used to solve resource management problems in Fog/Edge com-
puting can be summarized as Deep Learning (DL), Machine Learning (ML), Reinforcement Learning (RL), and Deep Reinforcement
Learning (DRL). AI-based techniques are very effective in dynamic resource scheduling [32]. In particular, DRL has been shown to
be very successful in dynamic complex problems and dynamic task offloading [32]. In addition, AI-based techniques such as neural
networking and RL were found to be more popular in resource estimation than mathematical models [103].

3.4. Machine Learning with Fog/Edge computing

AI and ML became an integral part of everyday application decision-making. It is used by recommender systems for tech giants
such as Google, Amazon, Netflix, and Facebook and in more complicated use cases such as self-driving cars [104], earthquake
prediction [105], and smart healthcare [106]. Due to the abundance of data sources at the edge, Fog/Edge computing received
increasing attention as an enabler of Machine Learning methods. In this section, we examine Centralized vs Decentralized ML
Methods and Online vs Offline ML for fog/edge computing.
11
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3.4.1. Centralized ML methods
AI and ML models feed on a tremendous amount of data generated by thousands to millions of mobile and IoT devices. Typically,

hese devices continuously stream the generated data into the cloud applications to be stored for later processing and analysis.
hese data are analyzed to extract certain features to help train AI/ML models. These models are trained on high-performance
ervers residing in the data centers of the cloud. Google Cloud, Microsoft Azure, Amazon AWS are the most common providers for
L-as-a-service where models can be trained on large amounts of data at scale. The interactions between the various services in the

og/Edge are another source of training data that can be leveraged to enable more intelligent ML-based applications to be deployed
nd enhance the service for the users. However, the major concern with this setting is the security and privacy of the collected data
sed for training which may contain private and sensitive information. Other major problems for centralized Fog/Edge-based ML
ethods are latency and communication transfer costs [107–109].

There are many centralized learning methods for the purposes of workload prediction to aid with the resource allocation problem
n literature [110–113]. Wang et al. [111] proposed a feasible solution for edge cloud resource allocation over time based on an
nline algorithm to solve sub-problems with logarithmic objectives. The algorithm is shown to achieve a parameterized competitive
atio, without requiring any a priori knowledge of the resource price or the user mobility. The results with real-world and synthetic
ata confirm the effectiveness of the proposed algorithm. Rosendo et al. [112] provided an overview of the main state-of-the-art
ibraries and frameworks for ML and data analytics on the Edge-to-Cloud Continuum. This work also covers the main simulation,
mulation, deployment systems, and testbeds. In addition, a holistic understanding of the performance optimization of applications
nd efficient deployment of AI/ML workflows is given. Nguyen et al. [113] proposed a market-based resource allocation framework
n which the services act as buyers and fog resources act as divisible goods in the market. The aim is to compute a Market Equilibrium
ME) solution at which every service obtains its favorite resource bundle under the budget constraint, while the system achieves
igh resource utilization. The work discusses both centralized and privacy-preserving distributed solutions.

.4.2. Decentralized ML methods
Centralized learning (CL) for learning ML models is becoming obsolete because it requires the collection of decentralized user

ata imposing security and privacy risks and expensive data transfer [114–118]. Hence, decentralized paradigms are being explored
s alternatives. Several techniques leverage decentralized learning methods for the purposes of workload prediction to aid with the
esource allocation problem [119–121].

• Federated Learning (FL): In FL architecture, the learners are end-user devices such as smartphones, sensors, or IoT devices;
training data is owned and stored at these devices; the learners train a global model collaboratively with the assistance of a
centralized FL (or aggregation) server [114,117,118,122,123]. As described in [114,118,122], the training of the global model
occurs over a series of rounds until the model converges to a satisfactory accuracy. In each round, a few clients are sampled to
update the model and a new model is produced. But, due to the server’s central role, FL faces challenges of synchronization,
reliability, and expensive communication [116]. At the start of each round, the server waits for available devices to check-in.
The server selects a subset of these devices which meet certain conditions, such as being idle and connected to WiFi and a
power source. Then, the server sends the global model along with the necessary configurations (i.e., hyper-parameter settings)
to the selected clients. The learners perform the same number of local optimization steps as set by the server. Then, the learners
send their updated models (or the delta) to the server. Finally, the server aggregates, with the global model, the model updates
sent by the clients, and then checkpoints the new global model to the local storage [122]. One of the main challenges in FL
use cases is the heterogeneity of the environment [114,116] which is studied and addressed by several works [117,118,123].

• Decentralized Learning (DL): It is an alternative approach for training common models on decentralized data, typically
in environments consisting of edge devices [115,124]. In DL, the learners, without centralized coordination, engage in
the learning process to train a model tailored to their common tasks and coordinate among themselves via peer-to-peer
communication. Thus, device groups can train a common model while each device preserves its data. However, due to a lack
of central coordination, the devices need to be available at the same time to iterate over the training process in a lock-step
fashion, causing training to be as fast as the slowest device. This hinders the scalability and efficiency as devices cannot train
at their own pace without being held back by slow learners [115,116].

There has been recent interest in techniques that leverage the non-conventional decentralized learning methods for the purposes
f workload prediction to aid with the resource allocation problem [119–121]. Zarandi et al. [119] provides an optimization of
he offloading decisions, computation resource allocation, and transmit power allocation for Edge IoT networks. The problem
s presented as a multi-agent Distributed Deep Reinforcement Learning (DDRL) problem which is addressed via double deep Q-
etwork (DDQN), where the actions are offloading decisions. Then, federated deep learning (FDL) is used to enhance the learning
peed of IoT devices (agents) by creating a context for cooperation between agents with minimal impact on their privacy. Fantacci
t al. [120] applies FL to train models for demand prediction. The proposed method achieves high accuracy levels on the predicted
pplication demand via aggregating the feedback received from the user models. Chen et al. [121] propose a two-timescale federated
eep reinforcement learning based on Deep Deterministic Policy Gradient (DDPG) to solve the joint optimization problem of task
ffloading and resource allocation to minimize the energy consumption of all IoT devices subject to delay threshold and limited
esources. The simulation results show that the proposed algorithm can greatly reduce the energy consumption of all IoT devices.
12
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Fig. 4. Online Machine Learning general scheme for Fog/Edge computing.

Fig. 5. Offline Machine Learning general scheme for Fog/Edge computing.

3.4.3. Online machine learning
One of the design options used when modeling ML method is Online ML. In this model, the learning algorithm is constantly

updated using new data [125]. Therefore, real-time data must be used in scenarios where Online ML is used for fog/edge computing.
An example is models that predict the stock market [126]. Fig. 4 shows the working scheme of Online ML [126]. ML parameters
are updated by being trained by a new set of data each time. The learning step continues as new data comes in, and this process
is quite fast and inexpensive. Online ML can be a suitable design option for scenarios where data flow is intense and constantly
changing.

3.4.4. Offline machine learning
Unlike Online ML, there is no continuous data flow in Offline ML or Batch Learning. The ML model is trained using a certain

number of data. After the model is trained, the test set performance is checked. If the test set performance is good enough, the
learning phase ends. In case the model needs to be trained using new data, old and new data are used together. Fig. 5 gives the
working diagram of Offline ML [126]. Compared to online ML, the amount of data used to train the model is larger. Therefore, it
is obvious that more CPU and RAM will be needed to train a model in Offline ML. In addition, with a large amount of data, it will
take longer to train the models. In Fog/Edge Computing, offline ML methods are often used to solve offloading problems.

3.5. Resource management in Fog/Edge computing

This computing architecture is not sustainable in the long run because of the expected increase in communication latencies
13

when billions of devices are connected to the Internet. Application performance will suffer and QoS may drop as a result of longer
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Fig. 6. The flow chart of resource management in fog and edge computing.

connection delays [127]. An alternative computing method that can aid with this problem is to bring computer resources closer to
end devices and sensors and use them for data processing. Communications might be sped up and cloud resources used could be
reduced [128]. In recent years, there has been a trend in Computer Science to put this theory into practice by relocating some
of the computing capacity now located in massive data centers to the network’s perimeter, making it more accessible to end-
users and sensors [129]. The Internet’s routers, gateways, and switches may have access to computing power, or ‘‘micro’’ data
centers may be set up in existing public and private networks for convenience and safety. Computing models that take advantage of
network edge resources are known as ‘‘edge computing’’. Fog computing is the practice of combining local hardware with remote
cloud resources. Edge resources are distinct from cloud resources in that they are resource limited. This means that they have less
computing capability than cloud resources because of the smaller processing units and reduced energy constraints of edge devices.
They also employ various configurations for different CPUs, making them heterogeneous [130].

3.6. Categorization of resource management approach in Fog and Edge computing

For the edge computing paradigm and the fog computing paradigm [131], the common denominator of the two is to sink the
computing resources in the cloud to the user side, and provide better services for those user devices that do not have enough resources
at a lower latency and energy consumption. To do this, we need to offload task data or place applications on another device or
multiple devices, these devices usually have more computing resources or fewer energy constraints than the user device [132].
Generally, resource management is closely related to task offloading, in order to make better offloading decisions, we need
to understand in detail the different resources in fog computing and edge computing scenarios, and these are all provided by
resource management technologies [133]. For example, the estimation, discovery, and matching for resources can be used to make
offload decisions, while resource allocation techniques can be used to perform offload decisions, and load balancing and resource
orchestration or consolidation are designed to improve resource utilization and speed up response across the system after offloading
tasks [134]. All in all, a better approach to resource management is to better offload task data or application placement to better
serve users. Fig. 6 shows the flow of resource management approaches in the edge and fog continuum for realizing Edge AI.

3.6.1. Resource estimation
Our estimates of resources under the two computational paradigms focus on the following five aspects [135]: computational

resources [136] (e.g., CPU computational frequency, the number of CPU cycles required for computing one bit data, etc.),
communication resources [137] (e.g., spectrum resources under Frequency division multiple access (FDMA) [138], length of time
allocated per user under Time-division multiple access (TDMA) [139], etc.), storage resources (e.g., memory for devices, flash
memory, etc.), data resources (e.g., some popular content), energy resources (e.g., battery power, virtual energy queues, etc.).

3.6.2. Resource discovery
For resource discovery, it is mostly about discovering which resources are available, where are they located, and how long can

they be used (especially devices with batteries). Regarding the implementation of resource discovery, there are two main ways:
centralized and distributed. Centralized [140,141] refers to selecting a device as a Cluster Header (CH) to record resources on other
devices in a cluster of many devices, or setting up a central resource agent as the CH to record resource information for other
14
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devices. Once the user has a need, the user sends a message requesting the service to a nearby node, and then the requested device
node will check whether it meets the user’s needs, if it does not meet, the node will send the user’s request packet to the CH of the
cluster where the node is located, and then the CH will retrieve the resource record table on it to find a node that meets the user’s
needs for the user; Distributed [142,143] refers to the fact that there is no CH to record the resources of other devices, when there
is user demand, send a request message to the surrounding agent nodes, and then the requested node checks whether it meets the
user needs, if not, the agent node (or the mobile device itself) sends resource request packets directly to all surrounding nodes by
broadcasting to ‘‘discover’’ the required resources.

3.6.3. Resource matching
With the continuous development of the era of big data, different types of sensors, mobile devices, edge servers, and fog nodes

ill be connected to the core network, and the number of devices connected together will be in the hundreds of millions. In the face
f so many resource-rich devices and edge nodes to choose from, we should not directly take all the resource nodes found as input
efore making an offload decision, which will increase the complexity of the offload optimization algorithm and make it difficult to
onverge. As with a complex neural network model [144], it is better to preprocess the collected raw data first, rather than directly
sing the collected data as input to the neural network. Resource matching plays the role of ‘‘data preprocessing’’.

For two different computing paradigms, the first thing we have to do is to identify malicious nodes [145], exclude malicious
odes by judging the data integrity of the nodes found, and then because the user needs of the two computing paradigms are not
nly computing, but also storage, acceleration networks, etc., so in addition to the initial matching and screening of resources such
s computing, communication, energy and other resources on nodes [146], it is also necessary to filter out devices with insufficient
rocessing power or insufficient energy, thereby reducing the dimensionality of input data for offloading decisions. Then, we also
eed to match and screen these nodes for reliability, security, social ratings, etc.

.6.4. Task offloading and resource allocation
Task offloading is the transfer of resource-intensive computational tasks to an external, resource-rich platform. Partial or full task

ffloading is usually done to accelerate resource-intensive and latency-sensitive applications [147]. Resource allocation is usually
irectly associated with task offloading, for the edge computing paradigm, usually we not only have to give offload decisions (Binary
ffloading [148,149] or partial offloading [150,151]), but also under the response time, energy constraints, or other constraints,
ive the resource allocation scheme of all devices [152–154], in order to meet the needs of users with different preferences.

.6.5. Load balancing
For task offloading, we generally formulate the offload strategy from the user’s point of view, in order to respond to the user’s

eeds faster and reduce the energy consumption of the user’s device [155]. However, the reality is that there may be many users
ho choose the same edge server or fog node for task offload in a period of time. Due to the resource heterogeneity of each device
ode, in the case of many task requests, there may be some resource-rich nodes with a too-heavy load, and some nodes will have
too-light load, then there will be a waste of resources for the entire system, and may lead to many user processes waiting for too

ong a time [156]. Then, in order to improve resource utilization more effectively and speed up the response, we must fully consider
he load of the system when making the offload decision, transfer the task data from each user device to all edge servers or fog
odes equally, or optimize the processing sequence of the task data of each user [157], which can not only alleviate the waste of
esources, but also shorten the waiting time of many processes and achieve load balancing of the entire system [156,158]. The load
e generally consider can be CPU load, amount of memory used, latency, or network load. Load balancing is defined as a technique

hat divides workloads into multiple devices (such as edge servers or fog nodes), so load balancing not only considers the needs of
sers, but also improves the resource utilization of the entire system from the perspective of the system.

.6.6. Resource orchestration
A lot of research work is to take load balancing into account before making offload decisions, but the reality may be that after the

ffload decision, some nodes are still selected by many user devices at the same time, resulting in high latency and low bandwidth
f the entire system, for example, when some edge servers or fog nodes have a good signal-to-noise ratio, or contain a lot of popular
ache content and high processing power [159]. These servers or nodes are often used by a large number of user devices. Therefore,
e need to perform resource orchestration of task offloading between nodes [160] to improve their service capabilities and the

oad balance of the entire system. Resource orchestration refers to the coordination of resource allocation of the entire system by
igrating offloaded user task data, etc., to each node.

.6.7. Application placement
In addition to the user’s data needing to be offloaded, sometimes we also need to place the application or model on the user’s

evice on the edge server or fog node, such as some latency-sensitive IoT applications: interactive online games, face recognition,
tc. Application placement [161] means that all or some of the compute-intensive components of an IoT application (e.g., services,
odules, applications, or models) can be placed (i.e., offloaded) executed and stored on edge servers or fog nodes to reduce the
15

xecution time of IoT applications and the energy consumption of IoT devices.
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3.6.8. Resource/server consolidation
In order to ensure that the placement of applications and the offloading of computing tasks can improve the performance of the

ntire system on the basis of completing user needs, we can not only re-orchestrate the user’s computing tasks or applications, but
lso consolidate the resources of the entire system, such as server consolidation with the help of Virtual Machine (VM) migration
echnology [162]; Save more energy for the entire system at the cost of increasing the latency of single or multiple users [149]; Or
rom the perspective of resource utilization [163], when the resource utilization is reduced to a certain threshold, resource migration
s carried out to achieve the purpose of consolidating resources.

.7. ML-based resource management in Fog/Edge computing

In general, ML algorithms can be broadly classified into (i) supervised learning and (ii) unsupervised learning. Supervised learning
ims to develop a model from a collection of training instances ((𝑋1, 𝑌1), (𝑋2, 𝑌2),…(𝑋𝑖, 𝑌𝑖)) where 𝑋𝑖 and 𝑌𝑖 represents the predictor

and label respectively. In unsupervised learning, the algorithms discover hidden patterns and learn the structure of the training data.
In the context of offline learning, the models learn over all the observations in a dataset at a go. First, we discuss the problems related
to resource management followed by different AI/ML-based offline learning techniques.

3.7.1. Supervised learning
It works by predicting Y outputs using the X inputs given to the algorithm to learn from [164]. In short, it consists of ML methods

that generate functions with training data. It is generally classified in two ways classification and regression algorithms [165]. It
gives better results in complex problems than unsupervised ML algorithms. On the other hand, since the prediction results depend
on the training data, the prediction success rate will decrease when there is bad training data. Intelligent Offloading problems in
Edge computing can be solved using Supervised Learning [166].

3.7.2. Unsupervised learning
Contrary to supervised learning, is the learning of correlations in data without input–output tags between data [167]. In short,

they are ML methods that produce functions according to the densities of the data and their neighborhood relations. It consists of
two main approaches: Dimensionality reduction and Cluster analysis [168]. Dimensionality reduction is also converted to a low
dimensional space [169], as high data will require more processing load. Cluster analysis involves grouping clusters of objects with
higher correlations to each other [170]. Resource management in Edge and Fog computing using Unsupervised Learning is still an
open research area.

• K-means Clustering: K-means clustering refers to the method of vector quantization to partition 𝑚 observations into 𝑘 clusters
where each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid). K-means clustering
is one of the popular methods in resource allocation that can be used for clustering different types of devices based on the
available resources in fog/edge computing environments. Such resources can be allocated according to the QoS requirements
of each cluster.

.7.3. Semi-supervised learning
It is a machine learning method used to combine lowly labeled data with high rates of unlabeled data. It is generally used where

atural Language Process (NLP) is used. It is frequently used for computation offloading problems in Edge and Fog computing [171].

• Graph Neural Network (GNN): GNN analyzes data represented as graphs for extracting inferences on node-level and
edge-level. Graph theory can be adopted where the network can be represented as graph topology. Chen et al. [172]
propose a GNN-based framework for resource allocation in wireless IoT networks. The framework specifically deals with the
computational and time complexity for conventional resource allocation and outperforms two tasks, namely, link scheduling
in Device-to-Device (D2D) networks and joint channel and power allocation. Wang et al. [173] present aggregation graph
neural network for resource allocation in decentralized wireless networks.

.7.4. Reinforcement learning
Standard RL is based on an agent being in connection with the environment by way of perception and action. The agent performs

n action based on the environment. The RL model is trained in an iterative manner. The agent upon receiving an input (I) along
ith an indication of the current state of the environment (S), the agent then chooses apt action, which is triggered as output [174].
he agent works with the objective to maximize reward points. The state can be defined as the snapshot of the environment at that

nstant particular in time. In the past decade, RL has expeditiously drawn interest amongst the machine learning and artificial
ntelligence communities. It is one of the dominant and potential techniques, which is immensely being utilized in several domains,
ncluding industry and manufacturing. Q-Learning and State-Action-Reward-State-Action (SARSA) are prominent algorithms of this
ategory that have been widely preferred by researchers in the arena of Fog/Edge computing [175]. Fog nodes often face challenges
n context to mobility amongst VMs/Containers and location awareness. Concurrently, it becomes expensive to move the VMs to a
ew location for which RL provides an efficient solution [176].
Resource Allocation Strategies: RL components such as action space, state space, reward, and Markov Decision Process (MDP)

mphasize decisions in different computing paradigms. The algorithms for predicting and deciding which resource to be allocated
nd when, i.e. optimized resource allocation can be done by following algorithms:
16
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• Deep Neural Network (DNN): A DNN is a category of an Artificial Neural Network (ANN) with many hidden layers placed
between the Output and Input layers [177]. It can perform real-time allocation of resources as it requires a simple operation.
The decisions are made based on experiences and learning, it is different from neural networks in terms of creativity and
complications and, hence, gives a global solution with minimal input data [178].

• Deep Q-Learning (DQN): Deep Q-Learning is a simple form of RL that utilizes action or Q-values that enhance the behavior
of a learning agent iteratively. In Deep Q-learning, the initial state is input to the neural network which in return output all
possible Q-values. It was developed by DeepMind in 2015 giving the benefits of both reinforcement learning and deep neural
networks [179].

• Double Deep Q-Network (DDQN): Double DQN uses Double Q-Learning to minimize overestimation by breaking down the max
operation in the target to action selection and evaluation. The difference between DDQN and DQN is that DDQN uses the main
value network for selecting an action [180].

• Deep Reinforcement Learning (DRL): It is a sub-field of ML that combines the benefits of both Deep Learning and Reinforcement
Learning. It is able to input large data sets and predicts what action to perform for optimizing an action. The two sub-algorithms
are used in this paradigm, namely, model-based and model-free reinforcement learning algorithms [181].

Table 4 shows the summary of RL-based resource allocation strategies for Fog/Edge Computing.

3.8. Performance metrics

Optimization and comparison of any AI-based fog and edge computing architectures are done on the basis of one or more
performance metrics, hence these metrics play an important role in the analysis of this architecture and also help to define the
merits and demerits of an architecture [187]. Performance metrics are mostly dependent on the type of layers/ computing model
where the architecture is performed. In general, any Fog/Edge computing architecture can be separated on the basis of the following
4 layers.

• IoT Layer: This layer is regarded as the first layer of any architecture. This layer is defined as where the IoT devices like
Raspberry pi or Arduino can do computation and can coordinate with other sensor nodes and forms a mesh topology-based
network. In this layer, the devices are responsible for sensing the data from the sensors and doing some minor operations.
This layer can be implemented without any interaction with edge, fog or cloud layers.

• Edge Computing Layer: This layer comes next to the IoT layer. This layer consists of switches and routers which are generally
termed gateways. This layer acts as an entry point to the fog and cloud layers. It is responsible for workload distribution and
traffic monitoring. It is also responsible for a few less expensive operations resulting in minimizing the response time and
optimizing the latency.

• Fog Computing Layer: Fog can be defined as the combination of edge and cloud. This layer is located near to edge and IoT
layer, and has the capability to perform the expensive operation in comparison to the edge layer. This layer helps to respond
to the request faster by computing the work rather than sending the request to the cloud.

• Cloud Computing Layer: This layer is the ultimate layer and most powerful layer. The operations which are highly expensive
and cannot be performed by any of the previous layers are performed in this layer.

The performance of the above-mentioned layers is measured in multiple terms.

3.8.1. Monitoring related metrics
These metrics are responsible for monitoring the performance of the entire architecture. Few such metrics are

1. Resource Utilization: This metric is defined as the amount or the percentage of the resource used or occupied by a specific
incoming workload.

2. Throughput : It can be considered as a ratio of the number of tasks arrived at to the number of tasks processed for a certain
interval of time.

3. Resource Load: It is defined as the measure of the number of tasks waiting in the queue to be executed along with the number
of tasks running.

4. Latency : It is the amount of time gap between actual response time and desired response time.
5. Maximum Running Resource: It is the highest number of resources used.
6. Virtual Machine Runtime: It is the time for which the VM is borrowed.
7. SLA Violation: It is defined as the number of tasks that have been delayed more than the time conceded.
8. Energy Consumption: It is described as the measurement of the energy required by a source to finish the execution of a

certain workload.
9. Fault tolerance: It can be defined as a ratio of the number of faults detected to the number of faults that exist.

3.8.2. Analysis related metrics
Analysis-related metrics are used for the analysis of the performance using monitoring-related metrics. Statistical methods like

machine learning or deep learning can be used for this purpose.

1. Statistical Analysis: This is the process where a huge amount of time series data is statistically analyzed and some meaningful
17
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Table 4
RL-based resource allocation strategies for Fog Computing (FC) and Edge Computing (EC).

Work Research
focus/Application area

Paradigm Method/ Algorithm Parameter Result

[176] Task offloading energy
efficiently in Vehicular
Fog Computing (VFC)
for smart villages

FC Fuzzy Reinforcement
Learning, Integrated
on-policy reinforcement
learning technique
(SARSA) and Greedy
heuristic

Total task service time,
energy consumption,
and average response
time

Outperforms over other
algorithms up to
15.38% and 46.73% in
terms of query response
time and energy
consumption
respectively.

[175] Computation offloading
in Virtual Edge
computing systems
(Sliced Radio Access
Networks)

EC Integrated Double Deep
Q-Network with
Q-Function
decomposition
technique (online Deep-
state–action-reward-
state–action-based RL
algorithm (Deep-SARL))

Maximizing Long term
utility performance

Outperforms over three
baseline schemes,
namely, mobile
execution, server
execution, and greedy
execution

[182] Intelligent offloading
system for vehicular
networks

EC Mobility-Aware Double
DQN (MADD), Dynamic
V2I Matching
Algorithm

Task scheduling and
resource allocation
(Quality of Experience)

Proposed MADD
algorithm performance
is 20% and 12% higher
than greedy and DQN
method, respectively

[183] Green Fog Computing
(Battery management)

FC Markov-Based
analytical model
integrated with
reinforcement learning
process

Job Loss Probability Effect of Battery Energy
Storage System (BESS)
varies on the system
according to the
number of servers

[184] Resource allocation
edge computing
network for multiple
user

EC Deep Q-Learning Data packet size,
Channel quality, and
waiting time

Deep Q-learning
outperforms the
random and equal
scheduling

[185] Intelligent Resource
Allocation Framework
(iRAF) for Edge
paradigm

EC Deep Neural Network
for prediction and
Monte Carlo Tree
Search (MCTS)
approach for generating
training data

Network states and task
characteristics like
utilization of edge
network resources, the
channel quality, latency
requirement of services,
etc

iRAF achieves 51.71%
and 59.27%
performance over deep
learning and greedy
search methods
respectively

[181] Task offloading scheme
on priority basis for
vehicular Fog
Computing

FC Soft Actor–Critic (SAC)
based Deep
reinforcement learning
algorithm

Entropy of policy and
Expected utility to be
maximized

High priority task
completed
preferentially while
having better
performance of task
completion and ratio
offloading delay

[186] Resource allocation in
Internet-of-Things
network

EC 𝜖-greedy Q-learning Long term weighted
sum cost (task
execution latency and
power consumption)

Achieved a better
trade-off between edge
and local computing
modes

3.8.3. Planing related metrics
Planning is the phase in which decision regarding optimization is taken such as VM migration and VM placement.

1. Decision Number : It is referred to the total number of decisions taken.
2. Contradictory Decision: It is the number of times an already made decision is reversed, due to an incorrect decision.
3. Completion Ratio: It is referred to as the ratio in which sources compete for resources.
4. Cache Hit Ratio: It is referred to as the success of a service caching system in reducing the data transmission across the

network.

.9. Simulators

Simulators are the first experimental setup in which architecture is tested before deployment. As any architecture has multiple
ayers, simulators differ from layer to layer.
18
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3.9.1. IoT layer simulators
IoT layers initially experiment in this environment. Two Popularly known simulators are:

1. SysML4IoT : Abstractions are provided by SysML4IoT to precisely specify various hardware and software services, data flows,
and personnel [188].

2. IOTSim: IOTSim [189] is a simulator that uses the MapReduce model, for IoT Big Data processing and simulations in the
cloud computing environment. Using this simulator makes the work easier and more cost-effective instead of renting entire
large-scale data centers.

3.9.2. Edge layer simulators
The edge layer is the next layer to the IoT layer, this layer consist of the Gateways and switches. A few well-known simulators

sed for the simulation of Edge layers are:

1. PureEdgeSim: PureEdgeSim [190] is a large-scale simulation framework for studying the IoT as a distributed, dynamic, and
highly heterogeneous infrastructure, as well as the applications that run on these things. It includes realistic infrastructure
models, allowing for research on the edge-to-cloud continuum. It covers all aspects of edge computing modeling and
simulation. It has a modular design, with each module addressing a different aspect of the simulation. For example, the
Datacenters Manager module is concerned with the creation of data centers, servers, and end devices, as well as their
heterogeneity. The Location Manager module, on the other hand, handles their geo-distribution and mobility. Similarly, the
Network Module is in-charge of allocating bandwidth and data transfer.

2. IoTsimEdge: IoTsimEdge [191] is the extension of IoTsim, which provides the testing of the Edge layer of architecture. This
helps its user to test the heterogeneous edge and IoT layer in a configurable manner. It is very user-friendly and easy to use.

3. SimEdgeIntel: SimEdgeIntel [192] is an edge simulator that provides the facility to easily deploy mobile with edge
intelligence. It provides researchers with detailed configuration options such as customized mobility models, caching
algorithms and switching strategies to test their resource management techniques.

.9.3. Fog layer simulator
A few majorly known Fog layer simulators are:

1. iFogSim: iFogSim [193] allows researchers to develop, deploy and test their IoT applications in fog–cloud infrastructure to
test custom-made resource management strategies. It provides a hierarchical fog architecture simulation with the first layer
made of sensors and actuators for the generation of data, and other layers simulate fog and cloud computing, network, and
storage resources.

2. iFogSim2: iFogSim2 [194] is an advanced version of iFogSim [193]. It offers advanced features like migration, mobility
support, dynamic distribution, and microservice orchestration with resource management.

3. RelIoT: RelIoT [195] is NS-3 simulator-based reliability framework for IoT networks. It enables researchers to design
customized network reliability management strategies by providing reliability-oriented analysis and predictions early in the
design cycle.

4. YAFS: YAFS (Yet Another Fog Simulator) is a discrete event-based simulator [196] used to model complex IoT application
scenarios in fog infrastructure. With the placement, scheduling, and routing strategy modeling facility, it also provides
dynamic module allocation and user movement features.

5. COSCO: COSCO [197] is a python-based simulator that provides the facility to develop and test scheduling policies for edge,
fog, and cloud-integrated environment. It provides seamless integration of scheduling policies with a simulated back-end for
enhanced decision-making. It also supports real deployment of real-world applications.

6. DeepFogSim: It is an extension of VirtFogSim which provides the execution of applications described by generally di-
rected Application Graphs [198]. DeepFogSim simulates the Conditional Neural Networks (CNNs) with early exit on
customized fog topology and performance of dynamic joint optimization and tracking of the energy and delay performance
of Mobile-Fog–Cloud systems.

7. iThermoFog : This simulator is used to measure the heat or temperature of Cloud Data Centers (CDC) [130]. This simulator
uses a Gaussian model to approximate the thermal characteristics of the fog layer server, and optimize the average
temperature by scheduling the task.

8. FogNetSim++: It is an extension of FogNetSim and provides the facility to simulate both networks with computing modeling
aspects of fog computing [199]. It supports low-level network details such as switching and packet routing.

.9.4. Cloud layer simulator
Cloud layer is the final layer of any architecture, which is responsible for storage and high-capacity computation. A few major

loud layer simulators are:

1. CloudSim: CloudSim [200] is the most widely used simulator for the simulation of Cloud layer architecture. Many
modifications and advances of CloudSim are brought like Dynamic Cloudsim, Container CloudSim, Network CloudSim, and
CloudSim Plus. The most recent version of CloudSim is CloudSim5, which combines various releases including containers, VM
extensions with performance monitoring features and modeling of Web applications on multi-clouds. This version of CloudSim
19

can also work with other Software-Defined Networking (SDN)/Service Function Chaining (SFC) simulation functions.
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Fig. 7. Taxonomy of AI-Based Techniques For Resource Management in Fog/Edge computing.

2. ThermoSim: ThermoSim [201] is similar to iThermoFog [130], but the CDC whose thermal profile optimization is the cloud
layer CDC. This simulator reduces the temperature of cloud CDC by proper scheduling of tasks.

3. IoTSim: IoTSim is built on top of Cloudsim simulator, it simulates the processing of IoT big data using the MapReduce model
in cloud [189].

.10. Workloads

Different researchers have used multiple execution traces and benchmarks for the simulation of workloads for AI applications.
ome of the well-known workload traces and benchmarks are:

1. DeFog : DeFog consists of five computation-intensive AI applications. These applications cover a diversity of workloads
such as deep learning-based object classification applications (YOLO), speech-to-text conversion applications (PocketSphinx),
geo-location based online mobile game applications (ipoke-Mon), IoT edge gateway applications (FogLamp), real-time face
detection from video streams application (RealFD) and Text audio synchronization or forced alignment (Aeneas). This
benchmark captures application-specific system performance metrics for different application domains [124].

2. AIOT BENCH : This benchmark is designed for evaluating IoT device intelligence. It covers different application domains
such as image recognition, speech recognition, and natural language processing [202].

3. RIoTBench: It is a real-time suit that captures both system level such as CPU, memory, network, and storage performance
metrics, and application-specific system performance metrics for different application domains. It evaluates distributed stream
processing systems for streaming IoT applications. It contains 27 IoT tasks classified across multiple categories [203].

4. Edge AIBench: This benchmark model four application scenarios namely: Smart home, autonomous vehicle, Intensive Care
Unit (ICU) patient monitoring, and Surveillance Camera for workload collaboration between three layers. Given models can
be executed using a federated learning framework available publically [204].

5. Bitbrain: Bitbrain traces consist of performance metrics of more than one thousand hosts of the heterogeneous cloud data
center [205]. These traces are categorized into two categories: (1) FastStorage and (2) Rnd workload trace datasets. They
consist of models of CPU, RAM, Disk and Bandwidth utilization characteristics. These traces are related to business-critical
workloads.

6. Azure2016: This dataset contains VM workload traces captured from November 16, 2016 to February 16, 2017. The
information captured in this dataset includes VM id, its subscription, VM role name, cores, memory, and disk allocations,
and minimum, average, and maximum VM resource utilization [206].

. AI based techniques for resource management in Fog/Edge computing

In this section, we discuss resource management-focused AI/ML techniques for enabling Edge/Fog AI and present a summary
f AI/ML-based resource management techniques for Fog/Edge Computing. Fig. 7 shows the taxonomy of AI-Based Techniques For
esource Management in Fog/Edge Computing.

.1. Machine learning techniques for Edge AI management

Machine learning is showing remarkable results in various fields. The promising results of machine learning in various domains
re also attracting researchers’ attention to the use of ML for modeling, classification, prediction, and forecasting related to resource
anagement in fog computing for enabling Edge AI [207]. When we discuss multi-tenant environments where infrastructure is used
20
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Fig. 8. Summary of Machine Learning-based resource management for Fog/Edge Computing.

by many applications which have different requirements, it is very obvious that tunning one application may have impacts on other
applications [208]. Also adding complexity to the problem, these applications are deployed on multiple heterogeneous distributed
resources. When dealing with different workloads, and heterogeneous distributed resources, it is better to analyze the workload
from application and infrastructure perspectives. Understanding workload behavior can lessen the complexity of the problem and
improve the performance of an application in edge AI [209]. Different works in the literature considered workload analysis using ML
algorithms. The IoT-enabled edge AI is also prone to temporal effects. There can be an increase in workloads on certain resources
at certain times. The prediction of workload behavior or spatio-temporal effects in advance can ease the resource orchestration
process. To facilitate auto scaling of resources, Liu et al. [210] proposed a workload pattern discrimination-based adaptive prediction
approach for infrastructure as a service. Due to the speed of workload change, they classified workload into two groups: fast time
scale data and slow time scale data. Fast time scale data had the feature of stochasticity and nonlinearity while slow time scale
data had the feature of linearity. For two datasets they used Support Vector Machine (SVM) and Linear regression (LR) for the
prediction of workload. Another work proposed use of auto-correlation measurement and similarity clustering for CPU workload
prediction on VMs [211]. A combination of random forest, SVM and neural network is used to predict future workloads to reduce
training time and increase the accuracy of the model [212]. Work in Ref. [213] addressed the issue of workload management using
decision trees. As fog environments are distributed and heterogeneous, and diverse IoT-based AI applications with different resource
requirements make a selection of optimal nodes for application placement to satisfy QoS and Quality of Experience (QoE) constraints,
more challenging. Addressing the application placement problem in mobile fog, Rahbari et al. proposed to use of classification and
regression trees. In order to manage power consumption in edge/fog-based smart building services, work in [214] used k-nearest
neighbors (KNN) and decision tree algorithms.

In another work, they addressed the application placement problem for smart city applications. They employed logistic regression
and support vector machine for job completion time approximation [215]. Addressing the resource scheduling problem, Liu
et al. [186] combined fuzzy c-mean clustering with particle swarm optimization. Using optimized fuzzy c-mean clustering they tried
to reduce the scale of resource search. They compared the proposed work with Fuzzy c-mean clustering and the objective function
value of optimized fuzzy c-mean showed faster convergence speed than the Fuzzy c-mean algorithm. Yadav et al. [145] also used
fuzzy c-mean clustering for task allocation in distributed systems to minimize the cost of the system. To minimize delay for IoT-based
applications in fog environment, Shooshtarian et al. [216] used hierarchical clustering to find the nearest neighbor node to the IoT
device to solve the resource allocation problem. Container orchestration is also investigated using ML methods by many researchers.
Researchers in Ref. [217] used a time series analysis model (ARIMA) combined with the docker container technique for resource
utilization prediction in containerized applications. Another work explored performance analysis of containerized applications using
21
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polynomial regression and k-means clustering. They classified multi-layer container execution structures based on the application
performance requirement in distributed resources [218]. Authors in [219] used SVM, Boosting decision tree, Random forest and
Naive Bayes for node performance prediction to improve resource scheduling decisions. Podolskiy et al. [220] used Lesso for the
self-adaptive problem of vertical elasticity for co-located containerized applications. Fig. 8 presents a summary of machine learning
algorithms that are used for the analysis and prediction of workload and resource usage to aid resource management in edge/fog
computing.

4.2. Deep learning techniques for Edge AI management

Currently, deep learning-based prediction models are the most promising architectures for computational intelligence. It shows
ood performance in various problems such as workload prediction, where traditional machine learning algorithms fail. CNNs can
e used to model wide spatial dependencies by extracting local features by adopting layers with convolutional filters [221]. Long
hort-Term Memory (LSTM) can be utilized for the prediction of fluctuating and volatile workload time series due to its capability
o capture long-term temporal dependencies [222]. For time series analysis, authors in [223] have presented a deep learning model
ased on the canonical polyadic decomposition for workload prediction for industry informatics. Sima and Saeed [224] used CNN
or predicting future cloud workload in advance for optimized resource allocation. For dynamic management of network resources,
ega et al. [225] also used CNN in their work. Their proposed strategy returns a cost-aware capacity forecast, which can be directly
sed by network operators to take re-allocation decisions that maximize their revenues. Authors in Ref. [185,226] addressed the
esource provisioning issue with Fully Convolutional Networks (FCNs). Tuli et al. [22] focused on straggler detection for the system’s
oS and used an encoder LSTM network for the analysis of tasks. Their proposed model analyzes the tasks and predicts which tasks
an be a straggler. Work in [227] also used Bi-LSTM to address the scheduling issue of fog-enabled Radio Access Networks (F-RAN).
or optimal performance, they used Bi-LSTM for the prediction of content popularity. Some of the recent work also used DNN as
surrogate model for QoS prediction to make scheduling decisions [177,178]. Considering accurate resource requests prediction

ssential for achieving efficient task scheduling and load balancing, Zhang et al. [228] used Deep Brief Network (DBN) for day and
our scale predictions of CPU and memory utilization. They evaluated their proposed technique with the Google dataset. Many
orks also improved prediction performance by ensembling multiple algorithms for workload prediction for fog computing [229].
o provide real time responses to vehicular applications, such as traffic and accident warnings in the highly dynamic Internet of
ehicles (IoV) environment. Lee et al. [230] used LSTM-based Deep Neural Networks (DNNs) to predict mobility behavior and
ovements of vehicles. They combined RL with LSTM-based DNN for resource allocation in Vehicular Fog Computing (VFC). In

heir other work, they also used Recurrent Neural Network (RNN) for resource allocation problems. To extract the time and space-
ased pattern of resource availability, they integrated the RNN into the DNN of the proximal policy optimization algorithm [230].
nother work [231] used a hybrid CNN-LSTM model for the prediction of multivariate workload in an attempt to extract complex

eatures of the VM usage components, then model temporal information of irregular trends in the time series components. They
valuated the proposed model for resource provisioning using bitbrains dataset and compared it with other predictive models.
o minimize the complexity and non-linearity of the prediction model, Yazdanian et al. [229] decomposed workload time series

nto its constituent components in different frequency bands and used ensemble Generative Adversarial Networks (GAN)/LSTM
or prediction of each sub-band workload time-series. The proposed model employs stacked LSTM blocks as its generator and 1D
onvNets as the discriminator. Graph Neural Network (GNN) analyzes data represented as graphs for extracting inferences on node-

evel and edge-level. Graph theory can be adopted where the network can be represented as graph topology. Chen et al. [172]
ropose a GNN-based framework for resource allocation in wireless IoT networks. The framework specifically deals with the
omputational and time complexity for conventional resource allocation and outperforms two tasks, namely, link scheduling in
2D networks and joint channel and power allocation. Wang et al. [173] present aggregation graph neural network for resource
llocation in decentralized wireless networks. Fig. 9 presents a detailed classification of deep learning-based algorithms used for
esource Management in Edge/Fog computing.

.3. Reinforcement learning techniques for Edge AI management

As resources are heterogeneous and capacity-constrained in edge, smart resource allocation is considered as one of the important
actors in enabling Edge AI. Considering edge/fog a pool of different resources like CPU, GPU, storage etc. efficient resource
llocation necessitates resource sharing. Reinforcement learning algorithms are the most experimented algorithms for resource
haring and allocation decision-making at the moment. Usually, MDP type problems are solved using policy gradient methods,
abular RL and deep Q-learning methods. Tabular methods such as Q and SARSA are not preferred by researchers due to their low
calability for modeling computing systems with thousands of devices.

Shi et al. [181] presented a deep reinforcement learning (DRL)-based scheme for task offloading for VFC application. They
roposed a soft-actor critic for the maximization of the policy of entropy and anticipated reward. Fu et al. [232] utilized a maximum
ntropy framework-based soft actor–critic DRL algorithm in VFC-enabled IoV for providing low bitrate variance live streaming
ervice for vehicles. To reduce the vehicle’s long-term mean cost with promising reliability and latency performance in VFC, a
eep Q Network (DQN) is presented for the switching problem. They designed the mobile network operator (MNO) preference
nd switching problem by simultaneously analyzing switching cost, cost variation by MNO and fog servers, and QoS variation
ithin MNOs [233]. In another work [234], a dual neural network of Deep Q-Learning method is implemented for resource slicing
22

anagement. They formulated a semi-MDP for the simultaneous allocation of resources. Considering computational offloading an
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Fig. 9. Summary of deep learning-based resource management for Fog/Edge computing.

mportant factor for enabling edge AI, another work considered energy-efficient vehicle scheduling for task offloading in VFC. To
esolve the high dimensionality issue caused by the increased number of vehicles in road-side units (RSU) coverage, an on-policy
einforcement learning-based scheduling algorithm combined with a fuzzy logic-based greedy heuristic, named Fuzzy Reinforcement
earning (FRL) is proposed. This greedy heuristic not only accelerates the learning process, but also improves long-term reward when
ompared to Q-learning algorithm [176]. Chen et al. [175] addressed offloading issue of virtual edge computing. They formulated
he offloading problem in a sliced radio access network as MDP. They resort to DNN based function approximator and drive a double
eep q network for making offloading decisions. Cheng et al. [235] proposed a policy gradient learning-based scheduler for task
cheduling in edge devices. The same approach Multi-agent Deep Deterministic Policy Gradient (DDPG)-based scheduling is adapted
or joint task partitioning and power control in fog computing networks.

Ning et al. [182] explored deep reinforcement learning for optimization of task scheduling and resource allocation in vehicular
etworks. They divided the problem into two sub-optimization problems. First is deciding the priority of the vehicles for the
uality of experience of users using a utility function. The second subproblem of resource allocation is formulated as the DRL
roblem. A deep Q network is improved by applying dropout regularization and double deep Q networks to deal with the defect of
verestimation. To address the resource provisioning issue in fog, work in Ref. [236,237] used Deep RL based on DQN. In addition,
ome authors experimented with Policy gradient learning for efficient resource provisioning resources [238]. One other work used
3C (Asynchronous Advantage Actor–Critic) and residual neural network for scheduling stochastic edge–cloud environment [239]
ome work also used the same RL model for workflow scheduling [240,241].

Liu et al. [186] also addressed the resource allocation problem for IoT-enabled edge AI and proposed a 𝜖– greedy Q-learning-based
optimum offloading algorithm. The problem is formulated as a weighted sum cost minimization problem with its objective function
including the task execution latency and the power consumption of both the edge device and the end device.

Since in the majority of IoT-based Edge AI systems, sensors produce a lot of data that needs to be processed within the deadline
of applications, the inherent lack of information in tasks arrival of such systems necessitates adaptive task scheduling. Intelligent
task scheduling not only minimizes task execution delays but also improves system key performance indicators (KPI) like reduced
energy consumption, and load balancing. DRL methods have shown some promising results in decision-making problems. There are
several works in the literature that explored RL for adaptive task scheduling. To minimize computation costs and long-term service
23

delays, a Double deep Q learning (DDQL) is proposed in work [180]. In order to achieve optimal action selection, each agent used
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Fig. 10. Summary of reinforcement learning-based resource management for Fog/Edge computing.

wo separate models for action selection and Q-value calculation. Each RL agent was embedded in the gateway device to schedule
asks and allocate resources to tasks. The RL agent tries to maximize cumulative reward to achieve reduced end-to-end delay. To
ease fluctuation in the results, they integrated the target network and experience replay mechanism in the DDQL-based scheduling
olicy. In order to maximize the long-term value of QoE, Sheng et al. [242] designed an intelligent task scheduling system using
model-free DRL algorithm. They formulated a task scheduling problem on heterogeneous virtual machines as an MDP problem

nd solved it with policy-based DRL. This work considered task satisfaction degree as reward and action is represented as a pair of
asks and VM. They decoupled real-time steps from scheduling steps in MDP formulation to make action space linear with a product
f the number of virtual VMs and queue size and to schedule multiple tasks in a single time step. In order to achieve ultra-low
atency and fairness in resource sharing, Bian et al. [243] proposed FairTS that ensures fairness between tasks and with ultra-low
verage task latency. One other factor that can degrade the performance of Edge AI applications is an imbalance in workload
istribution between resources in the system. The solution to this issue is offloading or redistribution of tasks. RL is investigated
or offloading decision-making in [244]. They formulated Offloading problem as MDP and proposed a DRL-based scheme to make
sers enable to make near-optimal decisions by considering uncertainties in the user device and cloudlet movements and resource
vailabilities. Another work used Deep Q Network (DQN) for making optimal actions on how main tasks will be offloaded and
ow many processed locally [245]. Chen et al. [121] propose a two-timescale federated deep reinforcement learning based on
eep Deterministic Policy Gradient (DDPG) to solve the joint optimization problem of task offloading and resource allocation to
inimize the energy consumption of all IoT devices subject to delay threshold and limited resources. The simulation results show

hat the proposed algorithm can greatly reduce the energy consumption of all IoT devices. Lee and Lee [230] utilized proximal
olicy optimization (PPO) RL for offloading problems in order to provide real-time responses for vehicular applications. PPO with
he ability to continuously learn dynamic environments can easily adjust to make resource allocation decisions accordingly. Some
orks [84,238] used Policy gradient learning for the deployment of DNN in Edge AI. For efficient real-time resource allocation and
ffloading in internet of vehicles, Hazarika et al. [246] utilized DDPG and twin delayed DDPG (TD3) algorithms. They compared
he proposed technique Soft Actor–Critic (SAC) and DDPG. Another work formulated resource allocation in Mobile Edge Computing
MEC) as an MDP problem in order to minimize system delay and solved it with hindsight experience replay (HER) improved
QN [247]. Fig. 10 presents a summary of reinforcement learning-based algorithms that are used separately or in a hybrid fashion
ith DL for resource management in Edge/Fog computing.

. Taxonomy

This section discusses the proposed taxonomy of frameworks and comparison analysis in AI-based edge and fog computing
24
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Fig. 11. Taxonomy of AI-based fog and edge computing frameworks.

5.1. Taxonomy of AI-based Fog and Edge computing

In this section, a comprehensive taxonomy of AI-based fog and edge computing approaches is proposed based on the existing
studies following a systematic review. The taxonomy of the framework is shown in Fig. 11, which includes infrastructure that
supports the platform, objectives that the proposed approach aims to achieve, deployed platform, the mechanism for resource
management, metrics for performance evaluations, the category of AI-based methods, and target application. Each taxonomy is
further classified into the detailed study of AI-based fog and edge computing framework.

Infrastructure: The AI-based fog and edge computing approaches can be supported by different infrastructure models including
single cloud, multi-cloud, hybrid cloud and community cloud with different focuses. For example, multiple clouds can work
collaboratively to complete the partitioned deep learning tasks in fog to edge environment.

Objectives: Based on our investigation, we notice that the existing major optimization objectives in AI-based fog and edge
computing approaches are improving resource efficiency, reducing energy consumption, decreasing cost efficiency, assuring SLA
and ensuring QoS.

Platform: The platform indicates how the fog and edge computing approach is deployed. The current mainstream platforms
include fog-to-fog, edge-to-fog, shared fog, fog-to-cloud and IoT-Fog-cloud.

Resource Management: One of the key challenges in fog and edge computing environments is managing the resources efficiently.
The current research has been conducted for resource matching that maps the suitable amount of resources to tasks, task offloading
that processes task collaboratively among fog and edge, load balancing that balances the workloads for different nodes, application
placement that deploys the fog/edge applications to devices, resource orchestration that automates the resource allocation, resource
discovery that provides the naming services of available services and resource estimation that predicts the amount the required
resources.

Metrics: Multiple metrics have been utilized to evaluate the performance of proposed approaches. The dominant metrics include
resource utilization, throughput, resource load, latency, maximum running resources, virtual machine runtime, SLA violations,
energy consumption and fault tolerance.

AI-based methods: The fog and edge environment has adopted AI-based methods to assist their management. Some existing
categories of AI-based methods include regression, classification, decision making and time series analysis, which can be applied to
workloads prediction, application feature analysis and making resource scheduling policies.

Target applications: The investigated approaches have been applied to support IoT applications in different areas including smart
25

cities, healthcare, transportation, agriculture, content delivery and etc.
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Table 5
Comparison of existing studies based on Taxonomy.

Approach Infrastructure Objectives Platform Resource management Metrics AI-based methods Target application

Rafique et al. [249] Multi-cloud Resource Efficiency Edge to fog Load balancing Resource utilization None Others

Golec et al. [97] Single Cloud Others (safety) IoT-Fog-cloud Resource matching Latency None Others

Golec et al. [100] Hybrid Cloud Resource Efficiency IoT-Fog-cloud Resource orchestration Running resources Classification Healthcare

Iftikhar et al. [102] Multi-cloud Resource Efficiency Edge to fog Resource orchestration Resource utilization Decision making Others

McChesney et al. [124] Hybrid Cloud Resource Efficiency Edge to fog Application placement Latency None Others

Aazam et al. [136] Multi-cloud Cost Efficiency Edge to fog Resource estimation Energy consumption Decision making Others

Aazam et al. [137] Hybrid Cloud QoS; Cost Efficiency IoT-Dog-cloud Resource estimation Resource utilization Decision making Others

Ahmed et al. [250] Multi-Cloud Resource Efficiency Fog to cloud Resource orchestration Throughput Classification Others

Bi et al. [149] Single Cloud Resource Efficiency IoT-Dog-cloud Task offloading Resource load Regression Others

Sim et al. [143] Multi-cloud Resource Efficiency Fog to fog Resource orchestration None None Others

Vu et al. [156] Hybrid Cloud Resource Efficiency Fog to cloud Resource orchestration Resource utilization None Smart cities

Yadav et al. [145] Multi-cloud QoS Fog to fog Application placement Running resources Decision making Others

Yao et al. [154] Multi-cloud QoS Edge to fog Task offloading Latency Decision making Others

Wu et al. [251] Hybrid Cloud QoS Edge to fog Resource orchestration SLA violation Decision making Others

Xue et al. [252] Hybrid Cloud Energy Efficiency Edge to fog Task offloading Energy consumption Decision making Others

Wu et al. [248] Hybrid Cloud Energy Efficiency Edge to fog Task offloading Energy consumption Decision making Others

Liu et al. [210] Single Cloud Resource Efficiency Edge to Cloud Resource Provisioning Cost, Resource Utilization Decision making Others

5.2. Comparison of existing studies based on taxonomy

Table 5 summarizes and compares the selected studies of AI-based fog and edge computing frameworks discussed in previous
ections in terms of infrastructure, objectives, platform, resource management, metrics, AI-based methods and target application.
or example, Golec et al. [100] applied their approach in a multi-cloud environment and aimed to improve resource efficiency under
he IoT-Fog-Cloud paradigm. They also utilized an AI-based approach for classification in resource orchestration to improve resource
tilization. Wu et al. [248] exploited the task offloading technique to reduce energy consumption and the proposed approach-based
I can help to make optimized decisions on when and how to manage offloaded tasks. Vu et al. [156] considered their scenario for
mart cities with a hybrid cloud model to improve resource utilization under fog to cloud environment. Based on our investigation
nd comparison, we can notice that AI-based approaches have been comprehensively applied in fog and edge environments and
ore applications can be further incorporated into this paradigm.

To summarize, the existing research works have covered all the types of dominant infrastructures including single cloud,
ulti-cloud and hybrid cloud. In terms of optimization objectives, most of the works focus on improving resource efficiency and
oS. As for the deployed platforms, Edge-to-Fog, IoT-Fog-Cloud, and Fog-to-Fog are the mainstream ones to support applications.
he techniques applied to optimize resource management are diverse, including load balancing, resource matching, resource
rchestration, application placement and task offloading. There are several metrics have been widely utilized to measure the
erformance of the proposed approach from different perspectives, including resource utilization, latency, energy consumption,
hroughput and SLA violation. The AI-based methods have been exploited for two main objectives, including classification, prediction
nd decision-making.

. Result outcomes

Our study highlights the systematic review of various articles in order to understand the prevailing status of fog/edge computing.
he extensive study comprises various driving forces responsible for making an impact on emerging paradigms in the form of open

ssues and future work. In total, we collected 320 articles, out of which 135 were shortlisted after the iterative selection process.
he articles emphasize the state-of-art work done in the domain of research management in fog/edge and how the implication
f intelligent paradigms like Artificial Intelligence, Machine Learning is inciting researchers. The taxonomy of our study has been
esigned with references to articles from the year 2015 to 2022. As depicted in Fig. 12, the majority of our referred papers are from
he year 2022. This accentuates the fact that our survey includes the latest work done by the research community.

The structure and methodology of the survey are inspired by the Systematic literature review (SLR) procedure by Kitchen-
am [33]. Furthermore, the identification of research questions channelizes the process flow of reviewing methodology. In a research
eview, the search process comprises the research topic which plays a significant role. The content in this paper has been accumulated
rom various sources including ACM Digital Library, IEEE Xplore, Springer Link, and other resources like Scopus, National Digital
ibrary and electronic scientific research databases. Fig. 13 describes the yearly bifurcation of various sources in the form of paper
ount from different publications that represent most of the articles are from IEEE journals, transactions and conferences as compared
ith other publishers. Further, we have rigorously reviewed every article and divided it into five sections review, survey literature

eview, Implementation in real and simulation environments and book chapters as shown in Fig. 14.
26
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Fig. 12. Year-wise publications of AI/ML based Fog/Edge computing papers.

Fig. 13. Bifurcation of research papers on the basis of publishers.

Fig. 14. Study type of research paper.

This study considers various aspects of fog/edge computing which have been categorized into resource relating aspects of resource
anagement further categorized as resource provisioning, task offloading and resource allocation), QoS parameters, and concerning

ther factors relating to real-world challenges like IoT, healthcare, security and privacy as shown in Fig. 15.
A major chunk of our survey is inspired by the resource aspect comprising 61 papers and QoS parameters including 49 papers.

he studies have been demonstrated in chronological order similar to other studies for the identification of state-of-art work in an
ffective manner.
27
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Fig. 15. Categorization of papers based on factors relating to fog/edge computing.

7. Open issues and future directions

Despite the fact that a significant amount of progress has been made in AI and ML thanks to fog and edge computing. Despite
this, there are a great number of problems and obstacles in this area that need to be solved. We have compiled a list of outstanding
challenges in this field based on the existing literature.

7.1. Heterogeneity

Fog and edge computing are meant to support IoT applications that will emerge in different programming languages (e.g., C,
Python, and Java), hardware architecture (e.g., ARM and AMD), processing units (e.g., CPU, GPU, and TPU), etc. Such heterogeneity
appears a highly challenging concern for the problem of resource management. That is, a resource manager, e.g., a resource balancer,
requires understanding such differences in decision-making. Otherwise, traditional homogeneous-based solutions would result in
considerable resource wastage and inappropriate decisions made by the resource manager. For instance, if some edge devices are
ARM-based and others are AMD-based architecture, the resource manager must adhere to this difference since IoT applications may
be incompatible with counterpart architectures. Another example is when fog devices provide unequal computation capacities. In this
case, the resource manager requires an understanding of the devices’ capacity to treat them proportionally. Otherwise, resources will
be wasted and the QoS will degrade. When AI-based solutions are approached, the heterogeneity becomes even further challenging
since AI models are agnostic to the heterogeneity while they perform completely differently on different devices. For instance, if
an edge device to run AI models is enabled with accelerators such as GPU which can provide higher precision and shorter latency,
the resource manager requires an understanding of such differences to other edge devices that lack accelerators. Otherwise, costly
accelerators will be undermined. Hence, heterogeneous resources at the edge will bring several opportunities for AI-based resource
management, only if the traditional solutions are redesigned to support them.

7.2. Environmental sustainability

Sustainability appears to be a first-class requirement of IoT applications, since many of them rely on renewable energy sources
such as solar irradiation. Sustainability is further important since edge devices are presumably constrained in computation resources.
With such characteristics, edge devices strive for resource efficiency, in terms of energy or computations. However, this appears to
conflict with the resource-hungry nature of AI models that demand a considerable amount of resources to be able to perform as
expected.

With the sustainability requirements of edge and resource-hungry features of AI models, it is very challenging to welcome AI at
the edge. The hardware sector at the edge side and the software developing sector on the AI have to progress towards this ambition.
However, as far as AI-based resource management is concerned, certain considerations can be assessed by the community. That is,
a trade off between how much benefit the AI-based solution, as compared to a non-AI-based solution, can achieve and how much
resource is consumed is a key question.

Another direction is, instead of asking about using AI-based solutions or not, what sort of AI-based solutions in terms of precision
should be used? For instance, models can train to perform on lightweight frameworks to remain edge-friendly, but provide weaker
precision. For instance, a resource manager can perform on the TensorFlow framework to make precise decisions, but consume a
considerable amount of resources; or can perform on TensorFlow Lite to consume fewer resources upon inferences, but provide
weaker precision. Hence, the open question is when and how to utilize AI-based solutions to satisfy the requirements of IoT
28

applications, while achieving desirable precision.
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7.3. Security versus efficiency

AI-based resource management solutions for IoT applications require to adhere to security concerns. While edge computing
s to not necessarily rely on the cloud, it brings its own limitations such as security. IoT applications in many domains such as
mart Home or Smart Healthcare, require the edge platform to adhere to such. The resource manager is a key component of an
dge platform, hence, requires re-architect to satisfy that. This appears challenging due to the distributed nature of edge platforms.
owever, when AI-based solutions are enabled, this becomes even further challenging since AI-based models continuously require
bservations of the IoT applications to obtain sufficient data for the training or inference. Hence, the open issue here is how to
atisfy AI requirements without degrading security. From another perspective, the security requirement itself can be driven by AI
tself where the resource manager can utilize AI to learn patterns, outliers and features that can affect the security of an AI-based
esource manager. An open question here would be how to leave such responsibilities to the resource manager through AI.

.4. AI for edge and AI at the edge

AI-based resource management represents a perfect example of AI for an edge while AI-based applications, such as object
etection, classification, etc, represent AI-based applications serving at the edge. Throughout this paper, AI for edge was discussed,
ut the cohabitation of AI applications and AI managers would raise several new opportunities and challenges. A key open issue is
ow to shift the resource manager’s focus from tuning the resources, e.g., by offloading, scheduling, etc, to tuning the AI application
o achieve the adaptation. This is important because AI applications can be tuned to consume different amounts of resources from
PU to accelerators. Even on CPUs, they can perform differently such that they affect the energy and computation resources variably.
ence, with AI both for and at the edge, there are many opportunities that require investigations.

.5. AI for serverless computing

While new AI applications are being used at the edge for certain use cases such as object detection for a smart traffic light, new
pplication deployment and development models are also entering the edge. Serverless computing with its Function-as-a-Service
FaaS) is one of the major technologies in this context. FaaS is an application development model that turns bulky applications into
ingle-purpose execution units, called functions, that are deployed upon event-based invocations and terminated after executions to
ave cost and resources. However, if long-running AI-based applications and resource managers stem into this area, several questions
ould raise that require investigation. For instance, would FaaS, whose billing model highly relies on the execution duration, still be

ost-efficient? would this ephemerality (executing and terminating) be a bonus for the AI-based resource manager to remain resource
fficient? Would the cold start of a function, the time duration from invoking to launching, deteriorate for AI-based applicants that
equire loading presumable heavy run-times?

.6. Resource federation

Distributed edge and fog devices require shared data and computation to function properly. Using AI-based managers for
nference requires such data to be collected regularly and may be of a bigger size than typical raw data. For instance, if a traditional
anager collects CPU usage of devices, an AI-based solution may collect other forms of data such as objects. Using AI-based managers

or training also requires much more data. Add to this demand the scatteredness and scale of a network in a distributed edge that
an span up to thousands of devices. Given a such scale, research areas around decentralized and federated AI-based resource
anagement appear highly important. The decentralization means each resource manager is in charge of a portion of the cluster.
he federation means while each portion works in isolation, they can collaborate with peers to use resources or to achieve a collective
oal. Such areas have already commenced in edge computing and AI, but little effort has been made, particularly in the area of
esource management which requires consideration.

. Summary and conclusions

In this work, we have conducted a systematic literature review on how machine learning and artificial learning-based solution
re utilized for the resource management problem in fog and edge computing environments. Recent research works have witnessed a
uickly growing trend of adopting AI-based methods to address the limitations of traditional heuristic approaches without sufficient
onsideration of diverse and dynamic factors in the environment. Compared with most traditional heuristic methods, AI-based
pproaches can be used to make accurate resource management decisions with lower time overhead, model and predict application
nd infrastructure metrics to improve the quality of services. Our work also advances the relevant surveys by considering fog
omputing and edge computing together with extensive comparisons

To summarize, we have noticed that AI-based methods have been applied in a wide range of scenarios, including resource
stimation, resource discovery, resource matching, task offloading, load balancing, resource orchestration, application placement,
nd resource consolidation. We also observe that the applications deployed on fog and edge computing environment ranges from
ealthcare, smart home, agriculture, smart transportation, and spatial. Significant efforts have been made to utilize advanced
I-based approaches, e.g. DNN, Q-learning, DQN, and reinforcement learning-based algorithms, to optimize resource utilization,
29

hroughput, SLA violations, energy consumption, and fault tolerance.
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Table 6
Preliminary examining questions.

Question Yes No

Q1. Does the article discuss the use of AI/ML in Fog/Edge Computing?
This report compiles findings from studies conducted on AI/ML in Fog/Edge Computing. This survey takes
into consideration all of the research publications, including case studies, experimental studies, and so on.

Q2. Is the primary emphasis of this paper the AI/ML-based management of resources in Fog/Edge
Computing?
Does this paper provide a method, approach, system, or framework for resource management that could be
used for AI/ML in Fog/Edge Computing?
Is the validity of this investigation ensured by utilising a simulated testbed for fog/edge computing?
Is the validity of this investigation ensured by utilising a real testbed for fog/edge computing?

Table 7
Specific questions.

Question Yes No

Q1: what resource management methods are available that are based on artificial intelligence and machine
learning?

Q2: Where are AI/ML-based fog/edge computing frameworks stand right now?

Q3: How can the efficiency of AI/ML-based fog/edge computing be measured, and what metrics are used for
this purpose?

Q4: Which simulators are utilized for fog/edge computing that is based on AI/ML?

Q5: What are the most common applications of IoT-enabled Edge/Fog AI?

Q6: What kinds of workloads are utilised to evaluate the efficacy of AI/ML-based fog/edge computing
frameworks?

In conclusion, although the relevant research progresses fast, there is no systematic literature review that combines fog and edge
omputing with an AI-based optimization framework in charge of the whole resource management process. Employing microservice
nd serverless can be a promising approach to further optimize the application and system performance with fine-grained resource
ontrol. This taxonomy work will assist the researcher to find the important research directions in edge and fog computing and
ill also help to choose the most suitable AI-based methods for efficient resource management under the hybrid paradigm under a
ynamic environment.
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ppendix A. A quality assessment forms

.1. Preliminary examining questions

Table 6 represents the list of questions used during the preliminary examination.

.2. Specific questions

Table 7 represents the list of questions used during evaluations.
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Table 8
Data items extracted from all articles.

Data item Description

Paper identifier Digital Object Identifier (DOI)
Online Publication Date Publication Year
Bibliographic Information Author(s) Name(s), Publication Date, Article Title, and Journal Name
Type of Article Conference, Workshop and Journal
Motivation What exactly are the primary aims of this work?
Innovation Mechanism and context/application
What is the Problem Statement The problem, as well as a description of it, is addressed and resolved in the research.
What is the method for managing resources? AI/ML-based Resource Management Technique for Fog/Edge Computing
Implementation Environment The technique is carried out utilising either a simulated or actual setting.
Performance Evaluation Which constraints were taken into account when the technique was analysed?
Workload Type How do you create a dataset for use in experiments?
Performance Metrics How are the results of a research evaluated using what kind of QoS metrics?
Drawbacks Where do you see the field of research going in the future?

Table 9
Appendix C: Journals, Workshops and Conferences.

Publication venue J/C/W # N

IEEE Transactions on Parallel and Distributed Systems J 4 4
IEEE Transactions on Cloud Computing J 6 11
IEEE Transactions on Services Computing J 4 6
IEEE Internet of Things Journal J 17 35
IEEE Transactions on Industrial Informatics J 7 13
IEEE Transactions on Vehicular Technology J 2 6
IEEE Transactions on Network and Service Management J 2 3
IEEE Transactions on Sustainable Computing J 1 3
IEEE/ACM Transactions on Networking J 1 2
IEEE Transactions on Mobile Computing J 3 6
IEEE Transactions on Wireless Communications J 2 5
IEEE Transactions on Green Communications and Networking J 2 4
IEEE Transactions on Computational Social Systems J 1 1
IEEE Transactions on Network Science and Engineering J 2 2
IEEE Transactions on Consumer Electronics J 1 1
IEEE Transactions on Industry Applications J 1 1
IEEE Transactions on Broadcasting J 1 1
IEEE Transactions on Intelligent Transportation Systems J 2 2
ACM Transactions on Internet Technology J 4 6
ACM Transactions on Internet of Things J 4 6
ACM Transactions on Sensor Networks J 1 1
IEEE Access J 8 41
Future Generation Computer Systems J 4 9
Journal of Parallel and Distributed Computing J 2 4
Journal of Systems and Software J 4 6
Software: Practice and Experience J 9 25
Journal of Network and Computer Applications J 3 5
Transactions on Emerging Telecommunications Technologies J 1 2
Internet of Things (Elsevier) J 7 12
IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid) C 1 2
Euromicro Conference on Software Engineering and Advanced Applications C 1 2
IEEE International Conference on Distributed Computing Systems (ICDCS) C 2 4
IEEE International Conference on Communications C 3 5
Australasian Computer Science Week Multiconference C 2 4
IEEE/ACM International Conference on Utility and Cloud Computing (UCC) C 1 1
International Conference on Service-Oriented Computing C 1 3
IEEE International Conference on Pervasive Computing and Communication (PerCom) Workshop W 1 2
IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) C 1 2
International Conference on Internet of Things C 1 4
IEEE International Conference on Networking, Architecture and Storage (NAS) C 1 2

Appendix B. Data items extracted from all articles

Table 8 shows the data items extracted from all articles.

ppendix C. Journals and conferences for publishing articles about AI/ML in Fog/Edge computing

Table 9 lists the top journals and conferences for publishing articles about AI/ML in fog/edge computing. Notations: J – Journal
including IEEE/ACM Transactions), C – Conference, W – Workshop, 𝑁 – The total number of papers that reported AI/ML-based
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Table 10
List of Acronyms.

Abbreviation Description

IoT Internet of Things
QoS Quality of Service
SLA Service-Level Agreement
VM Virtual Machines
ML Machine Learning
AI Artificial Intelligence
SLO Service Level Objectives
RQ Research Questions
FC Fog Computing
EC Edge Computing
IoHT Internet of Health Things
PDA Personal Digital Assistant
IMCF+ IoT Meta-Control Firewall
ITS Intelligent Transportation Systems
DL Deep Learning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
CL Centralized learning
FDMA Frequency Division Multiple Access
TDMA Time Division Multiple Access
CDC Cloud Data Centers
VFC Vehicular Fog Computing
DQN Deep Q Network
MNO Mobile Network Operator
FRL Fuzzy Reinforcement Learning
DDQL Double Deep Q Learning
MDP Markov Decision Process
ANN Artificial Neural Network
GNN Graph neural network
GPU Graphical Processing Unit
TPU Tensor Processing Unit

Resource Management Technique for Fog/Edge Computing as their primary research focus, # – The total number of publications
examined.

Appendix D. List of acronyms

Table 10 shows the list of acronyms.

eferences

[1] Z. Zhong, M. Xu, M.A. Rodriguez, C. Xu, R. Buyya, Machine learning-based orchestration of containers: A taxonomy and future directions, ACM Comput.
Surv. (2022).

[2] X. Dai, Z. Xiao, H. Jiang, M. Alazab, J.C. Lui, G. Min, S. Dustdar, J. Liu, Task offloading for cloud-assisted fog computing with dynamic service caching
in enterprise management systems, IEEE Trans. Ind. Inform. (2022).

[3] S.S. Gill, S. Tuli, M. Xu, I. Singh, K.V. Singh, D. Lindsay, S. Tuli, D. Smirnova, M. Singh, U. Jain, et al., Transformative effects of IoT, blockchain and
artificial intelligence on cloud computing: Evolution, vision, trends and open challenges, Internet Things 8 (2019) 100118.

[4] A. Hazra, P.K. Donta, T. Amgoth, S. Dustdar, Cooperative transmission scheduling and computation offloading with collaboration of fog and cloud for
industrial IoT applications, IEEE Internet Things J. (2022).

[5] A. Chakraborty, M. Kumar, et al., Journey from cloud of things to fog of things: Survey, new trends, and research directions, Softw. - Pract. Exp. (2022).
[6] J. Singh, et al., Fog computing: A taxonomy, systematic review, current trends and research challenges, J. Parallel Distrib. Comput. 157 (2021) 56–85.
[7] M. Sri Raghavendra, et al., DEEDSP: Deadline-aware and energy-efficient dynamic service placement in integrated Internet of Things and fog computing

environments, Trans. Emerg. Telecommun. Technol. 32 (12) (2021) e4368.
[8] V.C. Pujol, S. Dustdar, Fog robotics—Understanding the research challenges, IEEE Internet Comput. 25 (5) (2021) 10–17.
[9] S. Iftikhar, M. Golec, et al., FogDLearner: A deep learning-based cardiac health diagnosis framework using fog computing, in: Australasian Computer

Science Week 2022, 2022, pp. 136–144.
[10] V. Karagiannis, P.A. Frangoudis, S. Dustdar, S. Schulte, Context-aware routing in fog computing systems, IEEE Trans. Cloud Comput. (2021).
[11] I. Murturi, A. Egyed, S. Dustdar, Utilizing AI planning on the edge, IEEE Internet Comput. 26 (2) (2022) 28–35.
[12] M. Ghobaei-Arani, A. Souri, A.A. Rahmanian, Resource management approaches in fog computing: a comprehensive review, J. Grid Comput. 18 (1)

(2020) 1–42.
[13] C. Dehury, S.N. Srirama, P.K. Donta, S. Dustdar, Securing clustered edge intelligence with blockchain, IEEE Consum. Electron. Mag. (2022).
[14] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J.P. Jue, All one needs to know about fog computing and related

edge computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–330.
[15] P. Kansal, D. Sharma, M. Kumar, Introduction to fog data analytics for IoT applications, in: Fog Data Analytics for IoT Applications, Springer, 2020, pp.

19–38.
32

http://refhub.elsevier.com/S2542-6605(22)00155-X/sb1
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb1
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb1
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb2
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb2
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb2
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb3
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb3
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb3
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb4
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb4
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb4
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb5
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb6
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb7
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb7
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb7
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb8
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb9
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb9
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb9
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb10
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb11
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb12
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb12
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb12
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb13
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb14
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb14
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb14
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb15
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb15
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb15


Internet of Things 21 (2023) 100674S. Iftikhar et al.
[16] A.Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar, T. Hiessl, D. Kranzlmüller, M. Liyanage, S. Maghsudi, et al., Roadmap for edge AI: A
Dagstuhl perspective, ACM SIGCOMM Comput. Commun. Rev. 52 (1) (2022) 28–33.

[17] Y. Deng, Z. Chen, D. Zhang, M. Zhao, Workload scheduling toward worst-case delay and optimal utility for single-hop Fog-IoT architecture, IET Commun.
12 (17) (2018) 2164–2173.

[18] D. Lan, A. Taherkordi, F. Eliassen, L. Liu, S. Delbruel, S. Dustdar, Y. Yang, Task partitioning and orchestration on heterogeneous edge platforms: The
case of vision applications, IEEE Internet Things J. 9 (10) (2022) 7418–7432.

[19] J. Yang, et al., A federated learning attack method based on edge collaboration via cloud, Softw. - Pract. Exp. (2022) 1–18, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.3180.

[20] S.S. Gill, A manifesto for modern fog and edge computing: Vision, new paradigms, opportunities, and future directions, in: Operationalizing Multi-Cloud
Environments, Springer, 2022, pp. 237–253.

[21] S.S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, M. Golec, V. Stankovski, H. Wu, A. Abraham, et al., AI for next generation computing:
Emerging trends and future directions, Internet Things 19 (2022) 100514.

[22] S. Tuli, et al., Start: Straggler prediction and mitigation for cloud computing environments using encoder lstm networks, IEEE Trans. Serv. Comput.
(2021).

[23] Y.K. Teoh, et al., IoT and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning,
IEEE Internet Things J. (2021).

[24] M. Xu, et al., CoScal: Multi-faceted scaling of microservices with reinforcement learning, IEEE Trans. Netw. Serv. Manag. (2022).
[25] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M. Constantin, T. Moscibroda, G. Magalhaes, G. Bablani, M. Russinovich, Toward ml-centric

cloud platforms, Commun. ACM 63 (2) (2020) 50–59.
[26] T. Shao, et al., IoT-Pi: A machine learning-based lightweight framework for cost-effective distributed computing using IoT, Internet Technol. Lett. 5 (3)

(2022) e355.
[27] Z. Tang, X. Zhou, F. Zhang, W. Jia, W. Zhao, Migration modeling and learning algorithms for containers in fog computing, IEEE Trans. Serv. Comput.

12 (5) (2018) 712–725.
[28] K.-L.A. Yau, J. Qadir, H.L. Khoo, M.H. Ling, P. Komisarczuk, A survey on reinforcement learning models and algorithms for traffic signal control, ACM

Comput. Surv. 50 (3) (2017) 1–38.
[29] T.L. Duc, R.G. Leiva, P. Casari, P.-O. Östberg, Machine learning methods for reliable resource provisioning in edge-cloud computing: A survey, ACM

Comput. Surv. 52 (5) (2019) 1–39.
[30] E. Casalicchio, Container orchestration: A survey, Syst. Model. Methodol. Tools (2019) 221–235.
[31] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, A.Y. Zomaya, Edge intelligence: The confluence of edge computing and artificial intelligence, IEEE Internet

Things J. 7 (8) (2020) 7457–7469.
[32] P. Kansal, M. Kumar, O.P. Verma, Classification of resource management approaches in fog/edge paradigm and future research prospects: A systematic

review, J. Supercomput. 78 (11) (2022) 13145–13204.
[33] B. Kitchenham, Procedures for performing systematic reviews, Vol. 33, no. 2004, Keele University, Keele, UK, 2004, pp. 1–26.
[34] X. Yang, N. Rahmani, Task scheduling mechanisms in fog computing: Review, trends, and perspectives, Kybernetes (2020).
[35] K.H. Abdulkareem, M.A. Mohammed, S.S. Gunasekaran, M.N. Al-Mhiqani, A.A. Mutlag, S.A. Mostafa, N.S. Ali, D.A. Ibrahim, A review of fog computing

and machine learning: Concepts, applications, challenges, and open issues, IEEE Access 7 (2019) 153123–153140.
[36] H.F. Atlam, R.J. Walters, G.B. Wills, Fog computing and the internet of things: A review, Big Data Cogn. Comput. 2 (2) (2018) 10.
[37] Z.M. Nayeri, T. Ghafarian, B. Javadi, Application placement in Fog computing with AI approach: Taxonomy and a state of the art survey, J. Netw.

Comput. Appl. 185 (2021) 103078.
[38] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, D.-S. Kim, Reinforcement learning based resource management for fog computing environment:

Literature review, challenges, and open issues, J. Commun. Netw. (2022).
[39] S. Askar, Z.J. Hamad, S.W. Kareem, Deep learning and fog computing: A review, Int. J. Sci. Bus. 5 (6) (2021) 197–208.
[40] N. Kumari, A. Yadav, P.K. Jana, Task offloading in fog computing: A survey of algorithms and optimization techniques, Comput. Netw. 214 (2022)

109137.
[41] S.S. Gill, R.C. Arya, G.S. Wander, R. Buyya, Fog-based smart healthcare as a big data and cloud service for heart patients using IoT, in: International

Conference on Intelligent Data Communication Technologies and Internet of Things, Springer, 2018, pp. 1376–1383.
[42] A. N Toosi, C. Agarwal, L. Mashayekhy, S.K. Moghaddam, R. Mahmud, Z. Tari, GreenFog: A framework for sustainable fog computing, in: International

Conference on Service-Oriented Computing, Springer, 2022, pp. 540–549.
[43] B. Jennings, R. Stadler, Resource management in clouds: Survey and research challenges, J. Netw. Syst. Manage. 23 (3) (2015) 567–619.
[44] S. Tuli, et al., HealthFog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog

computing environments, Future Gener. Comput. Syst. 104 (2020) 187–200.
[45] İ. Kök, F.Y. Okay, S. Özdemir, FogAI: An AI-supported fog controller for next generation IoT, Internet Things 19 (2022) 100572.
[46] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, M. Faraji-Mehmandar, Resource provisioning in edge/fog computing: A comprehensive

and systematic review, J. Syst. Archit. 122 (2022) 102362.
[47] S. Iftikhar, et al., TESCO: Multiple simulations based AI-augmented Fog computing for QoS optimization, in: The 22nd IEEE International Conference on

Scalable Computing and Communications, ScalCom 2022, Hainan, China, 15-18 December 2022, 2022.
[48] D. Lindsay, et al., The evolution of distributed computing systems: from fundamental to new frontiers, Computing 103 (8) (2021) 1859–1878.
[49] S.S. Gill, et al., ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices, J. Syst. Softw. 154 (2019)

125–138.
[50] S. Tuli, et al., HUNTER: AI based holistic resource management for sustainable cloud computing, J. Syst. Softw. 184 (2022) 111124.
[51] S.S. Nabavi, et al., TRACTOR: Traffic-aware and power-efficient virtual machine placement in edge-cloud data centers using artificial bee colony

optimization, Int. J. Commun. Syst. 35 (1) (2022) e4747.
[52] A. Souri, Artificial intelligence mechanisms for management of QoS-aware connectivity in Internet of vehicles, J. High Speed Netw. (Preprint) (2022)

1–10.
[53] S. Iftikhar, et al., HunterPlus: AI based energy-efficient task scheduling for cloud-Fog computing environments, Internet Things 21 (2023) 1–17, 100667,

URL https://www.sciencedirect.com/science/article/pii/S2542660522001482.
[54] A. Souri, M.-Y. Chen, N.J. Navimipour, Computational intelligence methods for smart connectivity in IoT, J. Interconnect. Netw. (2022) 2202001.
[55] S. Tuli, et al., Next generation technologies for smart healthcare: Challenges, vision, model, trends and future directions, Internet Technol. Lett. 3 (2)

(2020) e145.
[56] H. Habibzadeh, K. Dinesh, O.R. Shishvan, A. Boggio-Dandry, G. Sharma, T. Soyata, A survey of healthcare Internet of Things (hIoT): A clinical perspective,

IEEE Internet Things J. 7 (1) (2019) 53–71.
[57] T. Wu, F. Wu, C. Qiu, J.-M. Redouté, M.R. Yuce, A rigid-flex wearable health monitoring sensor patch for IoT-connected healthcare applications, IEEE

Internet Things J. 7 (8) (2020) 6932–6945.
[58] S. Esmaeili, S.R.K. Tabbakh, H. Shakeri, A priority-aware lightweight secure sensing model for body area networks with clinical healthcare applications

in Internet of Things, Pervasive Mob. Comput. 69 (2020) 101265.
33

http://refhub.elsevier.com/S2542-6605(22)00155-X/sb16
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb16
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb16
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb17
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb17
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb17
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb18
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb18
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb18
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3180
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3180
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3180
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb20
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb20
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb20
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb21
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb21
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb21
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb22
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb22
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb22
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb23
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb23
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb23
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb24
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb25
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb25
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb25
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb26
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb26
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb26
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb27
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb27
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb27
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb28
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb28
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb28
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb29
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb29
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb29
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb30
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb31
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb31
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb31
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb32
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb32
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb32
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb33
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb34
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb35
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb35
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb35
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb36
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb37
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb37
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb37
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb38
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb38
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb38
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb39
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb40
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb40
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb40
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb41
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb41
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb41
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb42
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb42
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb42
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb43
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb44
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb44
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb44
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb45
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb46
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb46
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb46
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb47
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb47
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb47
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb48
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb49
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb49
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb49
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb50
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb51
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb51
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb51
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb52
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb52
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb52
https://www.sciencedirect.com/science/article/pii/S2542660522001482
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb54
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb55
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb55
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb55
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb56
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb56
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb56
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb57
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb57
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb57
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb58
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb58
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb58


Internet of Things 21 (2023) 100674S. Iftikhar et al.
[59] W. Huifeng, S.N. Kadry, E.D. Raj, Continuous health monitoring of sportsperson using IoT devices based wearable technology, Comput. Commun. 160
(2020) 588–595.

[60] C.M. Dourado, S.P.P. da Silva, R.V.M. da Nobrega, P.P. Reboucas Filho, K. Muhammad, V.H.C. de Albuquerque, An open IoHT-based deep learning
framework for online medical image recognition, IEEE J. Sel. Areas Commun. 39 (2) (2020) 541–548.

[61] P.P. Ray, N. Thapa, D. Dash, D. De, Novel implementation of IoT based non-invasive sensor system for real-time monitoring of intravenous fluid level
for assistive e-healthcare, Circuit World 45 (3) (2019) 109–123.

[62] J. Das, S. Ghosh, A. Mukherjee, S.K. Ghosh, R. Buyya, RESCUE: Enabling green healthcare services using integrated IoT-edge-fog-cloud computing
environments, Softw. - Pract. Exp. (2022).

[63] A. Kumar, et al., A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic, Future Gener. Comput. Syst.
115 (2021) 1–19.

[64] S. Tuli, et al., Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing, Internet Things 11 (2020) 100222.
[65] N. Khan, Z. Ma, A. Ullah, K. Polat, DCA-IoMT: Knowledge graph embedding-enhanced deep collaborative alerts-recommendation against COVID19, IEEE

Trans. Ind. Inform. (2022).
[66] X. Lin, J. Wu, A.K. Bashir, W. Yang, A. Singh, A.A. AlZubi, FairHealth: Long-term proportional fairness-driven 5G edge healthcare in Internet of medical

things, IEEE Trans. Ind. Inform. (2022).
[67] F. Desai, et al., HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing, Internet Things 17

(2022) 100485.
[68] N.K. Dewangan, P. Chandrakar, Patient-centric token-based healthcare blockchain implementation using secure Internet of medical things, IEEE Trans.

Comput. Soc. Syst. (2022).
[69] W. Lv, S. Wu, C. Jiang, Y. Cui, X. Qiu, Y. Zhang, Towards large-scale and privacy-preserving contact tracing in COVID-19 pandemic: a blockchain

perspective, IEEE Trans. Netw. Sci. Eng. (2020).
[70] S. Kumar, R.D. Raut, P. Priyadarshinee, S.K. Mangla, U. Awan, B.E. Narkhede, The impact of IoT on the performance of vaccine supply chain distribution

in the COVID-19 context, IEEE Trans. Eng. Manage. (2022).
[71] C. Gavrila, V. Popescu, M. Fadda, M. Anedda, M. Murroni, On the suitability of HbbTV for unified smart home experience, IEEE Trans. Broadcast. 67

(1) (2020) 253–262.
[72] A. Chatterjee, S. Paul, B. Ganguly, Multi-objective energy management of a smart home in real time environment, IEEE Trans. Ind. Appl. (2022).
[73] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, Y. Kato, Anomaly detection in smart home operation from user behaviors and home conditions, IEEE Trans.

Consum. Electron. 66 (2) (2020) 183–192.
[74] A.K. Sikder, L. Babun, Z.B. Celik, H. Aksu, P. McDaniel, E. Kirda, A.S. Uluagac, Who’s controlling my device? Multi-user multi-device-aware access control

system for shared smart home environment, ACM Trans. Internet Things 3 (4) (2022) 1–39.
[75] X. Li, D. Li, GPFS: A graph-based human pose forecasting system for smart home with online learning, ACM Trans. Sensor Netw. 17 (3) (2021) 1–19.
[76] S. Constantinou, A. Konstantinidis, P.K. Chrysanthis, D. Zeinalipour-Yazti, Green planning of IoT home automation workflows in smart buildings, ACM

Trans. Internet Things 3 (4) (2022) 1–30.
[77] Y. Liu, X. Ma, L. Shu, G.P. Hancke, A.M. Abu-Mahfouz, From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges,

IEEE Trans. Ind. Inform. 17 (6) (2020) 4322–4334.
[78] M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry, IEEE Trans. Ind. Electron.

64 (9) (2017) 7333–7341.
[79] A. Sengupta, et al., Mobile edge computing based Internet of agricultural things: A systematic review and future directions, Mob. Edge Comput. (2021)

415–441.
[80] T. Wang, X. Wang, Y. Jiang, Z. Sun, Y. Liang, X. Hu, H. Li, Y. Shi, J. Xu, J. Ruan, Hybrid machine learning approach for evapotranspiration estimation

of fruit tree in agricultural cyber-physical systems, IEEE Trans. Cybern. (2022).
[81] S. Singh, I. Chana, R. Buyya, Agri-info: Cloud based autonomic system for delivering agriculture as a service, Internet Things 9 (2020) 100131.
[82] J. Bauer, N. Aschenbruck, Towards a low-cost rssi-based crop monitoring, ACM Trans. Internet Things 1 (4) (2020) 1–26.
[83] S.S. Gill, I. Chana, R. Buyya, IoT based agriculture as a cloud and big data service: The beginning of digital India, J. Organ. End User Comput. (JOEUC)

29 (4) (2017) 1–23.
[84] W.-J. Hu, J. Fan, Y.-X. Du, B.-S. Li, N. Xiong, E. Bekkering, MDFC–ResNet: An agricultural IoT system to accurately recognize crop diseases, IEEE Access

8 (2020) 115287–115298.
[85] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, F.-Y. Wang, Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management,

IEEE Trans. Intell. Transp. Syst. 21 (10) (2019) 4063–4071.
[86] R. Ke, Y. Zhuang, Z. Pu, Y. Wang, A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices, IEEE Trans.

Intell. Transp. Syst. 22 (8) (2020) 4962–4974.
[87] K. Bansal, et al., DeepBus: Machine learning based real time pothole detection system for smart transportation using IoT, Internet Technol. Lett. 3 (3)

(2020) e156.
[88] B.V. Philip, T. Alpcan, J. Jin, M. Palaniswami, Distributed real-time IoT for autonomous vehicles, IEEE Trans. Ind. Inform. 15 (2) (2018) 1131–1140.
[89] S. Chavhan, D. Gupta, S.P. Gochhayat, C.B. N, A. Khanna, K. Shankar, J.J.P.C. Rodrigues, Edge computing AI-IoT integrated energy efficient intelligent

transportation system for smart cities, ACM Trans. Internet Technol. 22 (4) (2022) 1–18, URL http://dx.doi.org/10.1145/3507906.
[90] L. Wan, M. Zhang, L. Sun, X. Wang, Machine learning empowered IoT for intelligent vehicle location in smart cities, ACM Trans. Internet Technol. (TOIT)

21 (3) (2021) 1–25.
[91] F. Piccialli, F. Giampaolo, E. Prezioso, D. Crisci, S. Cuomo, Predictive analytics for smart parking: A deep learning approach in forecasting of iot data,

ACM Trans. Internet Technol. (TOIT) 21 (3) (2021) 1–21.
[92] K.A. Eldrandaly, M. Abdel-Basset, L.A. Shawky, Internet of spatial things: A new reference model with insight analysis, IEEE Access 7 (2019) 19653–19669.
[93] M. Sarwat, Spatial data systems support for the internet of things: Challenges and opportunities, Sigspatial Special 12 (2) (2020) 42–47.
[94] S. Ghosh, A. Mukherjee, S.K. Ghosh, R. Buyya, Mobi-iost: Mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications, IEEE

Trans. Netw. Sci. Eng. 7 (4) (2019) 2271–2285.
[95] J.Y. Koh, I. Nevat, D. Leong, W.-C. Wong, Geo-spatial location spoofing detection for Internet of Things, IEEE Internet Things J. 3 (6) (2016) 971–978.
[96] S. Ghosh, A. Mukherjee, S. Ghosh, R. Buyya, STOPPAGE: Spatio-temporal data driven cloud-fog-edge computing framework for pandemic monitoring and

management, Softw. - Pract. Exp. (2022).
[97] M. Golec, et al., BioSec: A biometric authentication framework for secure and private communication among edge devices in IoT and industry 4.0, IEEE

Consum. Electron. Mag. 11 (2) (2022) 51–56.
[98] L.S. Vailshery, IOT connected devices worldwide 2019–2030, Statista (2022) URL https://www.statista.com/statistics/1183457/iot-connected-devices-

worldwide/.
[99] M. Golec, et al., AIBLOCK: Blockchain based lightweight framework for serverless computing using AI, in: 2022 22nd IEEE International Symposium on

Cluster, Cloud and Internet Computing, CCGrid, IEEE, 2022, pp. 886–892.
[100] M. Golec, R. Ozturac, et al., IFaaSBus: A security-and privacy-based lightweight framework for serverless computing using IoT and machine learning,

IEEE Trans. Ind. Inform. 18 (5) (2021) 3522–3529.
34

http://refhub.elsevier.com/S2542-6605(22)00155-X/sb59
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb59
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb59
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb60
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb60
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb60
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb61
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb61
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb61
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb62
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb62
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb62
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb63
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb63
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb63
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb64
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb65
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb65
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb65
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb66
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb66
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb66
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb67
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb67
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb67
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb68
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb68
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb68
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb69
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb69
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb69
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb70
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb70
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb70
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb71
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb71
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb71
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb72
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb73
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb73
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb73
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb74
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb74
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb74
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb75
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb76
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb76
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb76
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb77
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb77
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb77
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb78
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb78
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb78
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb79
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb79
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb79
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb80
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb80
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb80
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb81
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb82
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb83
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb83
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb83
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb84
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb84
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb84
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb85
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb85
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb85
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb86
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb86
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb86
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb87
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb87
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb87
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb88
http://dx.doi.org/10.1145/3507906
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb90
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb90
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb90
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb91
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb91
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb91
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb92
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb93
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb94
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb94
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb94
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb95
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb96
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb96
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb96
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb97
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb97
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb97
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb99
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb99
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb99
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb100
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb100
http://refhub.elsevier.com/S2542-6605(22)00155-X/sb100


Internet of Things 21 (2023) 100674S. Iftikhar et al.
[101] M.S. Miah, M. Schukat, E. Barrett, An enhanced sum rate in the cluster based cognitive radio relay network using the sequential approach for the future
Internet of Things, Human-Centric Comput. Inf. Sci. 8 (1) (2018) 1–27.

[102] S. Iftikhar, M. Golec, et al., Fog computing based router-distributor application for sustainable smart home, in: 2022 IEEE 95th Vehicular Technology
Conference, VTC2022-Spring, IEEE, 2022, pp. 1–5.

[103] J. Guo, C. Li, Y. Chen, Y. Luo, On-demand resource provision based on load estimation and service expenditure in edge cloud environment, J. Netw.
Comput. Appl. 151 (2020) 102506.

[104] L. Li, K. Ota, M. Dong, Humanlike driving: Empirical decisionmaking system for autonomous vehicles, IEEE Trans. Veh. Technol. 67 (8) (2018) 6814–6823.
[105] Q. Wang, Y. Guo, L. Yu, P. Li, Earthquake prediction based on spatio-temporal data mining: An LSTM network approach, IEEE Trans. Emerg. Top.

Comput. 8 (1) (2020) 148–158.
[106] S.U. Amin, M.S. Hossain, G. Muhammad, M. Alhussein, M.A. Rahman, Cognitive smart healthcare for pathology detection and monitoring, IEEE Access

7 (2019) 10745–10753.
[107] H. Xu, C.-Y. Ho, A.M. Abdelmoniem, A. Dutta, E.H. Bergou, K. Karatsenidis, M. Canini, P. Kalnis, GRACE: A compressed communication framework for

distributed machine learning, in: 2021 IEEE 41st International Conference on Distributed Computing Systems, ICDCS, 2021, pp. 561–572.
[108] A.M. Abdelmoniem, M. Canini, DC2: Delay-aware compression control for distributed machine learning, in: IEEE Conference on Computer Communications,

INFOCOM, IEEE, 2021, pp. 1–10.
[109] A. M Abdelmoniem, A. Elzanaty, M.-S. Alouini, M. Canini, An efficient statistical-based gradient compression technique for distributed training systems,

Proc. Mach. Learn. Syst. (MLSys) 3 (2021) 297–322.
[110] S. Misra, A.K. Tyagi, V. Piuri, L. Garg, Artificial Intelligence for Cloud and Edge Computing, Springer Nature, 2022.
[111] L. Wang, L. Jiao, J. Li, M. Mühlhäuser, Online resource allocation for arbitrary user mobility in distributed edge clouds, in: IEEE International Conference

on Distributed Computing Systems, ICDCS, 2017.
[112] D. Rosendo, A. Costan, P. Valduriez, G. Antoniu, Distributed intelligence on the edge-to-cloud continuum: A systematic literature review, J. Parallel

Distrib. Comput. 166 (2022) 71–94.
[113] D.T. Nguyen, L.B. Le, V.K. Bhargava, A market-based framework for multi-resource allocation in Fog computing, IEEE/ACM Trans. Netw. 27 (3) (2019)

1151–1164.
[114] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al., Towards federated
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