Effective Utilization of Renewable Energy Sources
in Fog Computing Environment via Frequency and
Modulation Level Scaling

Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour, and Adel N. Toosi, Member, IEEE

Abstract—Fog computing introduces a distributed processing
capability close to end-users. The proximity of computing to end-
users leads to lower service time and bandwidth requirements.
Energy consumption is a matter of concern in such a system with
a large number of computing nodes. Renewable energy sources
can be utilized to lessen the burden on the main power grid and
reduce the carbon footprint, but due to fluctuations, effective
utilization of renewable energy sources needs proper resource
management. In this paper, we deal with properly managing
the resources in a fog environment where the fog nodes are
equipped with on-site renewable energy. This paper aims to
design an efficient mechanism to dynamically dispatch requests
among computing nodes and scale frequency and modulation
level, based on current workload and the availability of renewable
energy sources, to minimize the service time while keeping the
renewable energy utilization and stability at a satisfactory level.
We state the problem as the design of a controller for a system
with time-varying nonlinear state equations. Accordingly, we
borrow the Lyapunov optimization technique from the control
theory to design the request dispatching mechanisms and prove
its asymptotic optimality. We perform extensive simulations to
evaluate the effectiveness of the proposed method. Simulation re-
sults demonstrate that our proposed method outperforms native
time aware baseline scheme up to 26% and 39%, respectively,
in terms of service time and renewable energy utilization.

Index Terms—fog Computing, DVFS, DMS, Lyapunov opti-
mization technique, request dispatching, renewable energy.

I. INTRODUCTION

HE number of connected Internet-of-Things (IoT) de-
vices is predicted to reach 50 billion by the end of
2020 [1] and will increase to 75.4 billion in 2025 [2]. It is
expected that more than two Exabyte of data will be generated
by such devices, on a daily basis [1]. On the other hand, the
current trend suggests that, by 2020, data-centers will consume
140 billion Kilowatt-hours to process this huge amount of
data, annually [3]. Therefore, without any countermeasure,
the share of information and communication technology (ICT)
industry in the global CO, emission will be more than 2% [4].
Accordingly, immediate actions should be taken to deal with
this pressing issue.
The concept of Fog Computing (FC) has been recently
proposed as an architectural shift in the service provides’
networks in order to support 5G killing applications such
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as augmented reality, and Industry 4.0, among others [5].
In contrast to the traditional cloud-only paradigm in which
requests are directly sent to the cloud to be processed, FC
paradigm introduces a three-layer structure (IoT-Fog-Cloud),
Fig. 1. In FC, the “Fog Nodes” (FNs) are placed at the
edge of the network, in order to preliminary process data
close to end-users (IoT devices), instead of remote data-
centers, but the cloud yet remains as a possible option. As
a result, FC feeds short response time and context-aware
demands of many emerging applications. On the other hand,
using distributed FNs enables on-site harvesting of renewable
(green) energy [6]. However, according to IEEE Computer
Society, fog and edge computing itself requires innovation
in energy harvesting [7]. Because Green Energy (GE) is
unpredictable and fluctuating, there is a need for an effective
utilization scheme of the resources to be matched with the GE
availability.

The fog paradigm in several aspects is different from the
cloud. Server nodes in the cloud are often homogeneous and
placed in close proximity, and connected to each other through
high-speed networks. This enables the cloud-managing plat-
form to perform smart power management techniques such
as Virtual Machine (VM) consolidation and switching on/off
the servers [8]. However, the FNs are heterogeneous, highly
distributed, and small in size and power, with respect to
cloud. As a result, the cloud-specific solutions such as VM
consolidation and switching on/off the servers do not work
well here [6]. Therefore, we resort our proposed request dis-
patching mechanism upon two other modern power manage-
ment schemes which are suitable for FC environment, called
DVFS (Dynamic Voltage and Frequency Scaling) and DMS
(Dynamic Modulation Scaling). DVFS enables processors to
run at different frequencies and voltages settings to reduce
the power consumption of the processing unit [9]. DMS helps
to dynamically scale the modulation level and hence transmit
speed to save the communication energy [10]. In contract
to VM consolidation and switching on/off the servers, the
DVFS and DMS techniques can be effectively deployed in FC
environment with less opportunity for resource sharing among
FNs [11].

In this paper, considering the FNs are equipped with on-site
renewable energy, we deal with request dispatching problem
along with frequency and modulation level scaling to shape
workload allocation based on the availability of GE. The
requests that come from the IoT devices into the system
should be properly dispatched among the available FNs to
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Fig. 1: A fog computing environment consisting of IoT devices, fog nodes,
and a cloud at remote data-center.

meet their requirements. Dispatching the requests, considering
both service time and energy consumption, is not a triv-
ial task. Indeed, due to the heterogeneity and geographical
distribution, the FNs offer a different amount of processing
power and GE. Therefore, simply assigning the requests to
the FNs which provide the least service time may not be the
optimal answer, as the fastest node may be out of GE and/or
need to consume very high energy for data processing and
communication at the moment. Furthermore, considering GE
and its fluctuating nature, and taking the stability into account
makes the problem more sophisticated. First, we formulate the
problem as an offline stochastic optimization problem. Then,
Lyapunov Optimization Technique (LOT) [12] is leveraged to
simplify the problem and lead to an asymptotically optimal
solution. Finally, based on the LOT analysis, a low-complexity
algorithm is proposed for the problem.

The main contributions of this paper are summarized as
follows:

e Dynamic request dispatching and frequency and mod-
ulation level scaling are simultaneously considered to
provide efficient power and resource management.

o Based on LOT, an online algorithm is proposed to dy-
namically dispatch requests among FNs while adaptively
adjust frequency and modulation level of the nodes to
match with availability of renewable energy sources.

o Using real solar irradiation data, extensive simulations are
performed and the Delay-Energy tradeoff relationship is
examined.

II. RELATED WORKS

A. Resource and Power Management

Recently, in the context of FC, resource and power man-
agement has attracted much attention [13], [14]. There have
been extensive studies on the problem of computation offload-
ing, workloads assignment and request dispatching [15]-[17].
For example, Bitam et al. [15] studied the problem of job
scheduling in FC environment, and proposed a bio-inspired
optimization algorithm to optimally distribute a set of tasks
among FNs to find a balance between execution time and
allocated memory. Also, Ni et al. [17] suggested an allocation
policy for FC by invoking priced timed Petri nets. They
considered both price and time cost of request completion,
and, also take credibility evaluation of both FNs and users
into account.

On the other hand, there have been some studies focused
on energy control and power management [3], [18]-[20].

TABLE I: THE SUMMARY OF MOST RELEVANT WORKS

Reference S'P?IIJJECth]e;C 5 DVP[:SChmqlg;IS Lyapunov RNE?
[15] v
[16] v
[17] v
[18] v v
[19] v v
[3] v
[20] v v
[21] v v
[22] v v
[23] v v
[24] v v v
[4] v v v v
[25] v v v
[26] v v
[27] v v v
[9] v v v
[28] v v
[29] v v v
[5] v v v v
[11] v v v v

This work v v v v v v

!'S.T: Service Time > E.C: Energy Consumption * RNE: Renewable Energy

For instance, Mishra et al. [3] investigated the scheduling of
requests to fog servers as bi-objective minimization problem.
They proposed an allocation framework based on metaheuris-
tic techniques. Furthermore, in [20], Naranjo et al. studied the
minimization of both processing and communication energy
consumption. They proposed a bin packing-type heuristic for
management of fog resources.

Besides, the works such as [21] and [22] investigated
both computation offloading and energy control. For example,
Meng et al. [21] suggested a computation offloading policy
to minimize total energy consumption while completing the
requests within a given time constraint. The authors defined
the concept of computation energy efficiency and divided the
problem into some subproblems which are individually solved.
In addition, Liu er al. [22] studied the energy consumption
in conjunction with execution delay and offloading payment
cost in FC. Based on the queuing theory the joint problem
of minimizing energy consumption and execution delay is
formulated to find the optimum offloading probability for each
device.

Previous works explored computation offloading, energy
control and power management subject to different objectives
such as minimization of service time, energy consumption or
price. However, these works have not considered the specific
characteristics of the FC, nor the use of DVFS and DMS
techniques in their energy control and power management
schemes as we do in this paper.

Furthermore, in the context of cloud computing, there have
been extensive studies on the scheduling problem with respect
to the Green Cloud concept [4], [23], [24]. For example, Li
et al. [23] suggested a dynamic VM consolidating method to
adjust the number of ON servers in order to match energy
consumption with the renewable energy availability. Also,
Wu et al. [4] studied green energy-efficient scheduling for
cloud computing. They proposed a priority-based job schedul-
ing according to the users’ Service Level Agreement (SLA)
requirements and calculation of some weights in their own
method. However, these works are based on VM consolidation
and switching on/off the servers that is not applicable to the



FC, or they just try to reduce the brown energy consumption.
B. DVFES and DMS Techniques

Besides request dispatching, DVFS can help to provide a
better power management. Gerards et al. in [10] explored
the interplay between DVFS and task scheduling. They inves-
tigated the problem of simultaneously tuning the frequency
and choosing a proper scheduling scheme that together mini-
mize the energy consumption. Furthermore, some works such
as [25] and [27] studied the joint problem of computation
offloading and choosing the optimum frequency in mobile
cloud to reduce the energy consumption.

DMS can be utilized along with DVFS to provide better
control on communication energy consumption [9], [26]. For
example, Zhang et al. in [9], suggested such a method of
energy control for wireless sensor network applications.

C. Lyapunov Optimization

LOT has been adopted in several works in the area of
resource and power management in FC environment [28],
[29]. For instance, Zhang et al. in [29] investigated the joint
problem of allocation optimization and resource management
to minimize average energy consumption while guaranteeing
the service delay. The problem has been formulated as a
stochastic optimization problem and using LOT an online
algorithm is introduced as the solution. Also, Zhao et al. [28]
explored node assignment and resource allocation in a fog-
enabled content delivery wireless network. Based on LOT, they
developed a scheduling algorithm to optimize the performance,
in terms of service time, queue backlog and network through-
put. Although, these papers dealt with service time, energy
consumption, or both via LOT, but they did not consider DVFS
and DMS techniques nor the use of renewable energy sources.

D. Most Relevant Works

In recent works, Yang et al. in [5] developed an analytical
framework to balance service delay and energy consumption
while taking into account the CPU frequency scaling. They
leveraged LOT and proposed an algorithm to reduce both over-
all energy consumption and service delay. Similarly, in [11],
Kwak et al. explored the problem of computation offloading in
mobile cloud system. They proposed an algorithm by invoking
LOT to minimize CPU and network energy consumption while
satisfying the delay constraint. Our work in some aspects is
similar to [5] and [11]. We also deal with the service time,
take the energy consumption into account and use the potential
benefits of DVFS. On the other hand, we additionally adopt
DMS to control the communication energy and, furthermore,
we assume that the FNs can be powered by renewable energy
sources. A unique characteristic of our work in this paper
is that we designed to shape the electricity demands (adopt
workload) of the FNs to match renewable energy supply,
considering the specific characteristics of FC. A summary of
the most relevant works is presented in TABLE 1.

III. SYSTEM MODEL

We consider a FC environment consisting of the FNs, a
cloud at remote data-center and IoT devices, as depicted in
Fig. 1. The set of FNs is denoted by N' = {1,2,...,N}.

TABLE II: THE SUMMARY OF KEY SYMBOLS

Symbol  Definition
t Index of time slots
F The set of frequency levels
zZ The set of modulation levels
P The set of computing nodes
K The set of requests at time slot ¢
fm Each frequency level in the set of F
zj Each modulation level in the set of Z
A(t) Request arrival rate into the system
% Index of computing nodes
R;(t) Request arrival rate into the computing node ¢
B;(t) Service rate of the computing node ¢
c(t) Vector of control decision
Qi(t) Queue backlog related to the computing node ¢
e;(t) Energy consumption of the computing node %
ef (t) Energy consumed for processing
eS(t)  Energy consumed for communication
k Index of requests
Sk Processing requirement of the request k
Dy, Communication requirement of the request k
Uk, i Uploading time for the request k£ and the computing node ¢
Wi, Waiting time for the request k£ and the computing node ¢
Pk,i Processing time for the request k£ and the computing node ¢
di,i Time to return back the result of request k from the computing node ¢
L(t) Lyapunov function

A(O(t)) Drift in Lyapunov function regarding the vector 8(t)

The FNs are located in different places and communicate
with each other through radio communication. It is assumed
that the FNs are equipped with DVFS capable CPUs and
DMS capable radio peripherals. The DVFS-enabled CPUs
support M discrete frequency levels, 7 = {f1, fo,..., fm}s
and the DMS-enabled radios have J modulation levels, Z =
{21722,--'7211}-

The FNs are equipped with on-site renewable energy
sources (e.g. solar panels) and configurable switches to control
the connection of the nodes to either main power grid (PG),
on-site renewable energy source, or both. Whenever the GE
is available the FNs are powered by on-site resources, and
whenever the GE is not enough or available at all, the FNs
can consume electricity from the main PG network. Since
FNs are connected to PG as backup, we consider no battery
or storage devices to store the energy for later uses. Indeed,
energy harvesting can come along with or without energy
storage devices (batteries) [23], [30]. Using batteries has its
own drawbacks, such as energy losses in batteries, other
kinds of pollution that batteries have, or cost of providing
and maintaining the batteries which is dominating in many
cases [24]. On the other hand, when there are no devices to
store the extra energy, the controller should put all its efforts
to maximize the GE utilization at each moment.

We assume the system operates in a time-slotted manner,
indexed by t € {0,1,2,...}. The system parameters such
as the number of Computing Nodes' (CNs) and quality of
wireless links, remain fixed during each time slot but can
vary from one slot to the other. Moreover, this is at the
beginning of each time slot that the requests are assigned to
CNs. The CNs, under the assistance of a controller, accept
and execute incoming requests. The controller, at each time
slot, conducts resource discovery and makes a control decision
c(t) ={(k,i,f,2)|[k e K'YieP,f € F and z € Z}, where
Kt denotes the set of requests at time slot ¢.

Including the set of FNs and the cloud, P = N U {C}. Therefore, we
have |P|l= N + 1.
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Fig. 2: Queue Model of The System.

Notations: We use the following notations throughout the
paper. Vectors are specified in boldface letter such as Q. Sets
are specified by fancy letters such as P. We use E to present
expectation. Furthermore, the summary of key symbols is
presented in TABLE II.

The requests come into the controller from IoT devices
or other FNs. It is assumed that the request arrival rate,
A(t), is independent and identically distributed (i.i.d). The
requests have different computational and communication
demands. The controller, based on available resources and
system conditions, dispatches the requests among the CNs
and scales their frequency and modulation levels. The requests
that are dispatched to each CN, enter into the queue and may
wait for some time to get processed. We denote the arrival
rate into each CN by R;(¢) that is a function of control
decision ¢(t), with the constraint of 0 < R;(t) < RI**
for all 4+ € P. The requests get processed with service rate
B;(t) at each CN, Fig. 2. The service rate is proportional
to the processing capability of the CN which generally can
be converted to B;(t) = fm/9, where ¥ is in terms of
number of cycles/request [25]. At each time slot we have
A(t) = SNV R(t) and A(t) < SN Bi(t). Therefore,
the dynamic equation for each CN can be written as,

Qi(t +1) = max[Q;(t) — Bi(t),0] + Ri(t), )]

where Q;(t) is the queue backlog of " CN. Equation (1)
expresses that, at each time slot, some of the requests (up to
the service rate) can be served and the remainder (if there are
any) have to wait in the queue for the next time slots.

A. Energy Consumption Models

The CNs consume energy for either processing or communi-
cation. Thus, we can write the energy consumption of the CN
1 as the sum of the energy consumed for processing a request,
el’, and the energy consumed for the reception/transmission

of the input/output data, eic, in the form of,
ei(t) = el (t) +€f (1), (2)

1) Processing Energy Consumption Model: The DVFS-
enabled CPU can be configured on one of M frequency levels.
The processing energy for each CN is a function of the CPU
frequency f,, and the supply voltage V,,, in the form of f,, Vfl

However, the voltage is approximately a linear function of
the frequency when the CPU is working at the low voltage
limits [31]. Therefore, the energy consumption is given by,

K! 4 g
el (t) =Y (uff + ef”"%(fi), 3)
k=1 m

where «; is a constant which represents the CPU switching
capacitance of CN g, ef) ind s the speed-independent energy
consumption of the CPU, Kﬁ denotes the number of requests
assigned to CN 4, and S, represents the computing require-
ment of request k£ at time slot ¢.

2) Communication Energy Consumption Model: The DMS-
enabled radio can be configured based on the network and
channel condition to one of J modulation levels from set Z.
The modulation level determines the number of bits encoded
in each signal symbol, and therefore, can affect transmission
rate x, because x = z;.r, where r represents the symbol rate.
Therefore, the communication energy can be expressed as [9],

K
e (t)=> (Bir(2"/" —1) + e?’i”dx%), (4)
k=1

where [3; is determined by the parameters such as transmis-
sion quality, noise level and etc. eic’md is the modulation-
independent energy consumption of the radio and Dy, indicates
the communication requirement of request k at time slot ¢.

IV. PROBLEM STATEMENTS

In this section, we first deal with green energy utilization
and formulate it as a lateral constraint in the form of long term
average utilization. Then, we formulate the optimization prob-
lem to minimize service time with queue stability satisfaction.

A. Average Utilization of Green Energy

The requests are dispatched among the FNs based on the
availability of renewable energy sources and current work-
loads. Where and when the GE is not available nor high
enough, the configurable switches are adjusted to compensate
for the remainder of the required energy from the main grid.
In such a case, the lower energy the FN consumes, the lower
brown energy is consumed. Therefore, the frequency and
modulation level are configured in the way to reduce energy
consumption. On the other hand, when and where the FNs
have enough available green energy, the frequency and modu-
lation level can be increased to provide better performance or
compensate for the computing requirements.

It is desired to minimize the amount of surplus energy
borrowed from PG network. We denote the surplus borrowed
energy by U, (t), which is a function of the control decision
c(t), Us(t) = Us(e(t)). We consider it as the long term
average utilization and define it as a constraint in the form of
Ui(t) = imsupy_, o ZtT;Ol E{ Ui(t)} < Cy, where Cy
is a finite value indicating the threshold for the utility function.

B. Queue Stability

In the queue model of the system, the stability is defined
as the condition which all the queues have finite backlogs. We



can formally write the definition of the queue stability for CN
1, 1 <i<N+1,as,
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The definition in (5) states that a queue is stable if not only
the queue backlog be finite in the long term but also the queue
backlog be always bellow a finite value. This kind of stability
is called strong stability [12].

C. Offline Problem Formulation

We define the service time, from the moment that the request
is sent to the selected CN till the result is sent back to the
originating IoT device. Therefore, the service time for the
request k, processed within the CN ¢ is the sum of the required
time to upload the request to selected node, uy, ;, the time that
the request waits in the queue, w; ;, the time that is spent to
process the request, py, ;, andAthe time to send back the results,
dp.i» in the form of ¢y () = Y(ck(t)) = upi+wy i+pr,i+dyi.
The total service time can be written as ¢(t) = 9 (c(t)) =
Z,[f:fl ¥ (cx(t)). Thus, we can formally define the problem as:

T—1

Plimin (imsup > B ©)
S.T Ui(t) < Cy (62)

Qi(t) < oo foricP, (6b)

P1 states the problem as an energy constrained service time
minimization problem along with the stability condition sat-
isfaction. In (6), the constraint (6a) is for the GE utilization
and the constraint (6b) imposes the queue stability condition
for each CN.

The offline problem P1 is a stochastic optimization problem
with various unknown variables. Obtaining the optimal solu-
tion for P1 is involved as it requires the (exact) knowledge
about the dynamic statistics of the system. Therefore, we lever-
age LOT to derive an online algorithm as an asymptotically
optimal approximation solution to P1 [28].

V. LYAPUNOV OPTIMIZATION BASED SOLUTION

Using LOT, we can transfer the problem P1 into a pure
stability per-slot problem which is deterministic at each time
slot. The main idea of LOT is starting from a stable initial
condition and preserving the stability by continuously bound-
ing the queue backlog changes. A Lyapunov function L(t) is
defined, which presents the congestion in the queues. Small
values of L indicate that all the queues are working normally,
while large values of L indicate that there is at least one
congested queue. We define L(¢) as a quadratic function as
defined in [5], [28], in the form of,

N+1

ZQ (7)

which is a scalar representation of congestion in the system.
Also, drift in Lyapunov function is defined as the expectation
of difference in Lyapunov function at two consecutive time

slots as A(Q(t)) = E{L(t + 1) — L(t)|Q(t) }, where Q(t)

is the vector of concatenation of all the queues, Q(t) =
[Ql(t)? Q2(t)7 sy QN+l(t)]'

Lyapunov drift considers only the queue backlog and does
not take into account penalty function. Therefore, Lyapunov
drift plus Penalty (LDpP) is defined to take the penalty
function into the consideration. LDpP can be written as,

A(Q(t)) + wE{y(1)|Q(¢)}, ()

where w is the scaling factor which regulates the privilege of
stability against the service time delay.

Considering the queue dynamic equation (1), the bounds
on workloads arrivals, and definition of LDpP, the following
proposition holds.

Proposition 1: Under any feasible control decision ¢(t),
LDpP is upper bounded by,

A(Q(8)) + wE{p()IQ(1)} < T +wE{d(c(t)IQ(1)} ()

N+1 N+1
- Z Qi(t)Bi(t) + Z Qi(OE{Ri(e(t)Q(D)},

where Y is a constant value.
Proof: See appendix A. (]

VI. PROPOSED ONLINE ALGORITHM

In this section we transfer the problem P1 into the Lyapunov
optimization framework and present an online algorithm as
the solution. In order to use LOT for constrained optimization
problems, the first step is to write the constraints in terms of
virtual queues. Therefore, in the following, we first introduce
a virtual queue for satisfying the green energy utilization
constraint. Then, we introduce our online algorithm.

A. Satisfying Green Energy Utilization Constraint

To satisfy constraint (6a), we define a virtual queue G which
is updated by,

Gi(t+1)

where, y;(t) = U;(t) — Cy. Furthermore, U;(t) is a function
of ¢(t) and is obtained by,

Ui(e(t)) = ei(e(t)), 0]l; (11)

where, ep,,(t) is the amount of available GE at time slot ¢, and
e;(c(t)) indicates the energy consumption of i*" node under
control decision ¢(t) at time slot ¢, obtained by (2). Defining
virtual queue G as in (10) leads to the following proposition.

Proposition 2: If the proposed policy makes the virtual
queue G always stable, the constraint (6a) is always satisfied.

Proof: See Appendix B. (]

B. Transferring to Lyapunov Optimization Framework

= maX[Gi (t) + v (t), 0}, (10)

|minfepro(t) —

In the following, we transfer the offline problem P1 into
Lyapunov optimization framework. We define the vector 0(t)
as the concatenation of real and virtual queues as 6(t) =
[Q(t), G(t)]. Therefore, we rewrite the Lyapunov function as:

N+1 N+1
Z@ 243 Git)?) (12)
i=1

Based on the definition of Lyapunov function in (12), we
can write LDpP in the form of A(0(t)) + wE{(t)|0(t)}.



In the Lyapunov optimization framework to solve P1, we
need to design an algorithm to greedily minimize the upper
bound of LDpP at each time slot. According to proposition 1,
definition of virtual queue G and the Lyapunov function in
(12), and ignoring uncontrollable terms and constant values,
the following upper bound for LDpP expression is obtained:

N+1

|0HZQEm<Ww

N+1

+ZGEmoMmaa

P2:min  wE{¢(c(t
c(t)

In order to minimize the expectation expressions in P2, we
leverage the concept of opportunistically minimization of an
expected value [12]. As a result, at each time slot, we can
solve the following problem:

P3: rrzgl wih(e(t))

N+1 N+1 (14)
+ > Qi Ri(e(®) + Y Gilt)dile(t)).

1 =1 3 =1

C. An Online Algorithm Based on LOT

In this section, we develop an online algorithm based on the
minimization problem P3. This algorithm will be implemented
at the controller and performed at the beginning of each time
slot. The algorithm takes the update information obtained
from resource discovery as the input, solves the minimization
problem P3 and produces the control decision c(t) as the
output. The algorithm is summarized in Algorithm 1. The
algorithm works based on the current system condition and
does not need the system dynamics.

Algorithm 1: FRA

Input: List of requests, computing nodes and voltage, frequency
and modulation levels
Output: control decision ¢* (t)
1: Initialization
Initialize the control parameters in the LOT
2: While ¢ < t.,4, do
/% Obtaining required parameters and finding the best ¢* (t) */
e (t) = (k, 4, f,2)*

3: For k =1to K*
4: Fori=1to N+ 1
5: For all f in 7 and all z in Z
6 LDpP[j] = wi(ex () +
St Qi) Ri(er () + 275 Ga ()i (er (1)
End for
End for
7: ¢, (t) = argmin, (¢)(LDpP)
8: Logically update the queues based on the model
End for
o e (1) = UL ei (1)
10: Dispatch according to ¢ (t)
11: Update the Queues
End While

Line 1: Initialize the parameters in Lyapunov framework
and system model, such as the control parameter w.

Line 3-7: Go through all the requests arrived within the last
time slot, search for all the CNs and possible configurations
in terms of frequency and modulation level, to find the best
node and configuration.

Line 8: Logically update the queues based on the control
decision ¢ (t) for the selected request and current time slot.
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Fig. 3: Output PV Power related to each FN on the 17th of January 2018.

Line 9-11: Make the whole control decision ¢*(t) as the
union of all ¢ (¢), dispatch the requests and update the queues.

Computational complexity: For each request, the algo-
rithm goes through all the CNs to calculate the objective
function (Line 4). Considering we have N 4+ 1 CNs in the
system, it takes N + 1 iterations to obtain all the values.
Besides, for each node, to properly scale the frequency and
modulation level, the objective function is examined by ap-
plying different frequency and modulation levels (Line 5).
Considering M frequency and J modulation levels, it takes
M.J = ¢ iterations. Therefore, finding the best assignment
for each request takes (N + 1).y iterations. In regard that the
requests are assigned at the beginning of each time slot, and
assuming K* requests arrive to the system at time slot ¢ (Line
3), it takes K*.(N + 1).¢p iterations to assign all the requests
at time slot ¢.

VII. EVALUATION AND SIMULATION RESULTS

We performed extensive simulations in our custom-designed
simulator in Matlab. In this section, first, we describe the
simulation setup. Then, the simulation results are presented
and discussed.

A. Simulation Setup

We build a FC environment with 30 FNs along with a cloud
server at remote data-center, and 200 IoT nodes. The process-
ing capabilities of FNs, in terms of “Million Instructions Per
Second (MIPS)”, have been randomly generated with a uni-
form distribution over the interval [150, 400]. The processing
capability of the cloud server is assumed to be 1600 MIPS.
The IoT nodes are specified by their request demands, which
follows a Poisson process with different average rates during
day (Ap) and night (Ay), and transmission rate of the link
to the CNs. The fog and IoT nodes are interconnected based
on a random topology. We change the transmission channel
condition at each time slot to emulate the real environment as
much as possible.

The FNs are assumed to be equipped with solar panels, with
one of 4, 6 or 8 m? size of photovoltaic (PV) modules. The FNs
are divided into three domains which are located in different
places. The FNs in each domain are scattered in an area of
1Km?. The location of each domain, size and configuration of
PV modules are summarized in TABLE III.

TABLE III: LOCATION AND CONFIGURATION OF THE PV MODULES

Row Site Place Latitude  Size(m®) Tilt Angle
1 Monash University-Clayton Campus -37.91 4,6, 8 37.91°
2 Monash University-Caulfield Campus ~ -37.87 4,6,8 37.87°
3 Melbourne -37.81 4,6, 8 37.81°
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Fig. 4: (a) Average Service Time and Average Number of Deadline Misses,
and (b) Average Brown Energy Consumption over 100 iterations.

We derived solar irradiation information from Bureau of
Meteorology solar Global Horizontal Irradiance (GHI) data.
GHI presents solar radiation on horizontal surface. To obtain
the effective output power by a PV module, we use the
model in [32], with the tilt angle equal to longitude of the
location of the sites (the tilt angle for the most efficient
performance in course of year, should be equal to longitude of
the location [33]) and efficiency of 30% for PV modules. The
output PV power for a selected day (on the 17th of January
2018) is depicted in Fig. 3. Also, we derived the frequency
levels from the supporting frequency list of the real platform
Creator PXA270 [34].

We assume that the incoming requests have different com-
putation, and communication demands follow the exponential
process with the average ; and <., respectively. TABLE
IV presents the configuration of the system and the model
parameters.

TABLE IV: CONFIGURATION OF SYSTEM AND MODEL PARAME-
TERS

Ap AN 71 Y2 w Cu
0.2 0.1 0.3 0.1

5 x 10° 100

To evaluate the proposed methods, we chose three different
metrics, namely average service time, average number of
deadline misses and average brown energy consumption.

B. Performance Comparison with Baseline Schemes

In this section, we compare our proposed algorithm with
a naive “time-aware baseline scheme”, called “TABS”. The
TABS scheme dispatches the requests to the shortest job queue
and scales frequency and modulation level using the time of
day as a proxy for GE availability. Also, we compared the
results against Rnd scheme to highlight the performance gain
of different schemes. In Rnd scheme, the incoming requests
are randomly dispatched among the FNs, and the frequency
and modulation level are randomly scaled.

Based on the aforementioned setup, we performed the
simulation for 1000 time slots and repeated it for 100 runs.
The results are reported in the average of 100 runs.

In Fig. 4(a), we demonstrate the performance for the pro-
posed algorithm and the two baseline schemes, in terms of
average service time and average number of deadline misses.
It can be observed that FRA provides on average 64% and 26%
better service time compared to Rnd and TABS, respectively.
Also, FRA leads to a lower number of deadline misses,
on average 77% and 37%, compared to Rnd and TABS,
respectively.

In Fig. 4(b), we evaluate the performance of FRA in
terms of brown energy consumption, compared to the two

(@ (b)

Fig. 5: (a) Availability of Green Energy and (b) Average Number of Assigned
Requests to each Fog Node.

baseline schemes. FRA on average shows 51% and 39% better
utilization of green energy than Rnd and TABS schemes,
respectively.

Remark: In practice, the FNs are divided into domains (for
instance, a domain of nodes in a factory, university campus,
shopping center and etc.) [35]. We may have hundreds or
thousands of such domains, each group (cluster) of which
under the control of one request dispatching entity. In the
simulation, we have considered a cluster consisting of three
domains, with 10 FNs in each domain, but the results can be
numerically extended to more domains.

C. Impact of the Optimization to the System Metrics

In this section, we further investigate the impact of the
optimization to the system metrics. We designed two scenarios
to show how the requests are eventually dispatched between
the FNs, and how DVFS and DMS can impact dispatching the
requests.

First scenario: We consider a fog network of three FNs (F1,
F2 and F3) and a cloud server at a remote data-center. The GE
profile of F1 and F3 are set based on the real data presented
in Figure 3, but we intentionally set F2’s GE profile manually
differently to show how the requests are dispatched based on
the GE availability. Fig. 5 illustrates the simulation results,
presenting both energy profile, Fig. 5(a), and distribution of
the requests, Fig. 5(b). It can be observed from Fig. 5 that the
distribution of requests follows GE availability. For example,
F2 has no GE available at first, therefore less number of
requests are assigned to it, but as GE increases more requests
are assigned and when F2’s GE profile is at its peak the
number of requests that are assigned to F2 reaches to its peak.

Second scenario: In this scenario, we investigate the indi-
vidual role of DVFS and DMS on the system performance. We
made changes in the proposed method (FRA) to create two
variations, called FRA-DVFS and FRA-DMS. In the FRA-
DVFS, we just considered scaling voltage and frequency and
did not consider modulation level scaling. On the other hand,
in the FRA-DMS, we just considered modulation level scaling
and did not consider voltage and frequency scaling. To better
present the results we compare the methods against Rnd.
Fig. 6(a) and Fig. 6(b) show the simulation results. As it
is observed from Fig. 6(a), with respect to Rnd, FRA-DVFS
shows 64% and 89%, and FRA-DMS shows 44% and 68%
improvement in the course of service time and number of
deadline misses, respectively. Therefore, the most of FRA’s
performance in the course of service time and number of
deadline misses is due to use of DVFS technique. On the
other hand, as it is observed from Fig. 6(b), FRA-DVFS and
FRA-DMS show 22% and 51% improvement in the course
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Fig. 6: (a) Average Service Time (from left) and Average Number of Deadline
Misses (from right), and (b) Average Brown Energy Consumption for each
method of FRA_DMS and FRA_DVEFES compared to FRA and Rnd.

Number of Deadline Misses

Avg. Service Time(ms)

39 4 45 46 47 a8 2 %39 4 a1 42 43 a4 45 a5

41 42 43
Avg. Brown Energy Consumption 10 < Avg. Brown Energy Consumption 10

(2) (b)

Fig. 7: (a) Average Service Time and (b) Average Number of Deadline Misses
against Average Brown Energy Consumption for different arrival rates and
values of control parameter w.

of GE utilization with respect to Rnd, respectively. Therefore,
the most of improvement in the course of GE utilization that
FRA presents is obtained by use of DMS technique. These
observations also are justifiable in our system model, through
equations (3) and (4). Therefore, each of DVFS and DMS has
its own positive impact on the performance of the method but
using both of them together shows a kind of synergy on the
behavior of the method.

D. Delay- Energy Tradeoff

Fig. 7(a) and Fig. 7(b) further investigate the tradeoff
relationship between time related performance metrics (i.e.,
service time and deadline miss) and the brown energy con-
sumption.

In Fig. 7(a), we plot the amount of service time against
brown energy consumption for different values of control
parameter w and different workloads. As it can be observed
from Fig. 7(a), there is a tradeoff between average service time
and average energy consumption depending on the value of w.
Therefore, in practice to balance between these two objectives,
a proper value of w, based on the system characteristics and
requirements, should be selected.

Also, Fig. 7(b) depicts the average number of deadline
misses against brown energy consumption for different work-
loads and different values of w. These results also verify the
tradeoff relationship between time related performance metrics
and brown energy consumption.

E. Overall Comparison for FRA

Regarding that the problem of request dispatching and
dynamically scaling frequency and modulation level is a multi-
objective problem, a good design of the controller should
provide all the objectives simultaneously. In Fig. 8, we provide
an overall comparison between FRA and the two baseline
schemes in a Kiviat diagram. The value of each parameter on
each axis for different methods are normalized, to be better
presented.

Fig. 8 presents the superiority of FRA over the selected
baseline schemes, with respect to all the chosen metrics. In
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Fig. 8: Over all comparison between FRA and the baseline shemes.

particular, FRA shows 64%, 77% and 51% better performance
than Rnd, and 26%, 37% and 39% better performance than
TABS, in terms of service time, the number of deadline misses
and brown energy consumption, respectively.

VIII. CONCLUSIONS

In this paper, we investigated the joint problem of dynamic
request dispatching, and frequency and modulation level scal-
ing to provide better utilization of renewable energy sources
in fog environment. We first formulated the problem as an
offline stochastic optimization problem. Because the offline
problem is highly complex to solve, we leveraged Lyapunov
optimization technique to provide an online approximation
solution. Finally, we came up with an online algorithm as
a solution. The proposed algorithm is based on the current
system conditions and the queues’ backlog information and is
independent of the system dynamics. It is a low complexity
solution and easy-to-implement. To evaluate the efficiency of
the proposed algorithm, we performed extensive simulations
using real solar irradiation data. The simulations results proved
the superiority of the proposed algorithm, in the course of
service time, the number of deadline misses and green energy
utilization, over baseline schemes such as Rnd and TABS.
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APPENDIX A
PROOF OF PROPOSITION 1
Proof: Squaring both sides of (1), and doing some manip-
ulations yields:
(t+1)2—Qi(t)* _ Bi(t)>+ Ri(t)* =
— Qi(t)[Bi(t) — Ri(1)],
where B;(t) = min[Q;(t), B;(t)].
Taking conditional expectation from both sides of (16) with
respect to Q(t) and then summing over i € {1,2,..., N +1}
yields the following upper bound for A(Q(t)),

N+1 N+1
Mmm9>Z@WWHZ@WMMM%

(16)
where T > DI X RO | oviigip ik Q).

By adding wIE{@[J%tHQ(t)} to both sides of (17), the result
is proved.
APPENDIX B
PROOF OF PROPOSITION 2

Proof: From (11), we can write,
Gi(t+1) —Gi(t) > yi(t).
Considering any t; and to such that 0 < ¢; < t5, summing
both side of (18) and use of telescoping sums, we have:
ta—1

Gilt2) = Gilt) > Y wilt).

T=11

7)

(18)

By substituting ¢; = 0 and ¢ = ¢, then dividing both sides by
t, we have:

Gi(ty)  Gi(ty) _ 1732
ft y&Eme (19)
T=11

Taking expectation from both sides of (20) and taking limsup
while ¢ — oo yields:

lim sup
t—o0

The stability of G;(¢) induces that the left-hand-side of (21)
must be equal to Zero, so we have:

> lim sup g, (t).

t—o0

B0} 0

lim sup ;(¢) < 0.

t—o0

2

which shows that the average constraint §(t) is satisfied.



