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ABSTRACT
Many modern applications, such as autonomous vehicles, require
deploying deep learning network algorithms on resource-constrained
edge computing devices to enable real-time image and video pro-
cessing and decision-making. However, there is a lack of compre-
hensive understanding regarding the efficiency and performance
of various object detection models on the wide range of edge de-
vices available on the market. In this paper, we conduct a thorough
evaluation of state-of-the-art object detection models, including
YOLOv8 (Nano, Small, Medium variants), EfficientDet Lite (Lite0,
Lite1, Lite2), and SSD (SSD MobileNet V1, SSDLite MobileDet).
We deployed these models on the popular edge devices such as
the Raspberry Pi 3, 4, and 5 with/without TPU accelerators, and
the Jetson Orin Nano and collected key performance metrics, in-
cluding energy consumption, inference time, and Mean Average
Precision (mAP), to gain insights into the operational efficiency of
these models across different hardware architectures. Our findings
highlight that lower mAP models such as SSD MobileNet V1 are
more energy-efficient and faster in inference, whereas higher mAP
models like YOLOv8 Medium generally consume more energy and
have slower inference, though with exceptions when accelerators
like TPUs are used. Among the edge devices, the Jetson Orin Nano
stands out as the fastest and most energy-efficient option. These
results emphasize the need to balance accuracy, speed, and energy
efficiency when deploying deep learning models on edge devices, of-
fering valuable guidance for practitioners and researchers selecting
models and devices for their applications.
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1 INTRODUCTION
Object detection is a pivotal technology in the field of computer
vision, empowering machines to identify and accurately locate
objects within visual inputs such as images or videos. This capa-
bility renders the technology an invaluable asset for organizations
seeking to integrate innovative solutions to optimize and auto-
mate their business processes. Advancements in machine learning
and artificial intelligence have substantially expanded the poten-
tial applications of this technology. Software systems that leverage
object detection technology serve as valuable and efficient tools
for addressing a wide range of tasks. Object detection is utilized
in numerous real-world systems, including autonomous vehicles,
surveillance systems, retail, healthcare, agriculture, manufacturing,
sports analytics, environmental monitoring, and smart cities.

For instance, object detection is a fundamental technology that
underpins the concept of autonomous transportation. The precise
recognition of objects, including pedestrians, obstacles, and other
vehicles, is essential for ensuring the safe operation of self-driving
vehicles on public roads. In autonomous vehicles, object detectors
identify the vehicle’s position within its environment, consider
the surrounding context, and track other objects to facilitate route
planning. If the vehicle required rapid stopping or turning to avert
an accident, transmitting data between the vehicle and cloud for
processing would be too slow. Edge computing brings cloud com-
puting capabilities directly to the vehicle, enabling the onboard
IoT sensors to locally process data in real-time and respond accord-
ingly to avoid a collision. These capabilities highlight the significant
value that object detection offers in enhancing the performance and
safety of automated systems, which must accurately understand
and respond to their surroundings in a timely manner [1, 19].

The field of object detection is currently characterized by promis-
ing opportunities, fueled by continuous technological progress. A
prominent trend involves the ongoing refinement of detection al-
gorithms, which aim to more effectively navigate complex environ-
ments while simultaneously enhancing both accuracy and speed.
Moreover, the emergence of edge computing presents a viable path-
way forward, enabling real-time object detection on a variety of
edge devices, such as smartphones, drones, and Internet of Things
(IoT) systems. This approach reduces latency and decreases the re-
liance on cloud-based infrastructure. Despite these advancements,
significant challenges persist in developing and deploying robust
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and reliable object detection systems in the edge computing do-
main. The constrained resources of edge devices present obstacles
when deploying deep learning object detection models, making it
a non-trivial task. Energy consumption is a critical factor when
executing these models on edge devices, as they vary considerably
in energy requirements and inference time. Researchers and indus-
tries have developed a diverse range of object detection models to
improve accuracy and processing speed. Therefore, the challenges
in this area include the selection of appropriate models and the
identification of edge devices that can adequately meet the system’s
needs.

In this paper, we aim to evaluate the performance of most popu-
lar deep learning object detection models across prominent edge
devices, collecting key metrics such as energy consumption, in-
ference time, and accuracy. Additionally, we provide insights for
deploying these models on the investigated edge devices. Our key
contributions can be summarized as follows:

• We developed object detection applications for processing
images as a web service using Flask-API.

• We utilized different frameworks, including PyTorch, Ten-
sorFlow Lite, and TensorRT, to deploy our deep learning web
service models on the edge devices including Raspberry Pi
series, Edge TPU, and Jetson Orin Nano.

• We employed the FiftyOne tool to evaluate the accuracy of
the object detection models and collected the mean Aver-
age Precision using COCO datasets for each model on each
device.

• We conducted automated comprehensive performance mea-
surment tests using the Locust tool and reported the perfor-
mance of YOLOv8, SSD, and EfficientDet Lite models with
different versions on various edge devices.

The remainder of this paper is organized as follows. Section 2
provides an overview of the edge computing and object detection
deep learning architectures. Section 3 outlines the performance
evaluation, including the evaluation metrics, experimental setup,
and the results of our experiments. Section 4 presents the related
work. Finally, Section 5 concludes the paper and suggests future
research directions.

2 EDGE DEVICES, FRAMEWORKS AND
MODEL FORMATS

2.1 Edge Devices
2.1.1 Raspberry Pi. The Raspberry Pi is a line of single-board com-
puters produced by the Raspberry Pi Foundation [8]. When con-
nected to accessories like a keyboard, mouse, and monitor, the
Raspberry Pi becomes a low-cost personal computer. It is widely
used for robotics, Internet of Things applications, and real-time
image and video processing. The latest Raspberry Pi models include
the Raspberry Pi 3 Model B+ [15], Raspberry Pi 4, and Raspberry
Pi 5. The Raspberry Pi 4 maintains compatibility with the previous
Raspberry Pi 3 Model B+ while offering improvements in processor
speed, multimedia capabilities, memory capacity, and connectivity
[16]. The Raspberry Pi 5 is the newest model, featuring significant
enhancements in CPU and GPU performance as well as increased
memory capacity and I/O bandwidth compared to the Raspberry Pi

4. This latest iteration also introduces the integration of Raspberry
Pi silicon into a flagship device [17].

2.1.2 TPU Accelerator. The Coral USB Accelerator is a USB device
that functions as an Edge TPU co-processor for computational
devices. It features a USB-C port, allowing it to connect to a host
computer and accelerate machine learning inference tasks. The
Edge TPU, an Application-Specific Integrated Circuit developed by
Google, is designed to execute machine learning models on edge
computing devices like the Raspberry Pi [6].

2.1.3 NVIDIA Jetson. The NVIDIA Jetson Orin Series represents
the most recent developer board series unveiled by NVIDIA Jet-
son Official. It facilitates the realization of cutting-edge products
through the deployment of the world’s most potent AI computing
systems tailored for energy-efficient autonomous machinery. With
NVIDIA Jetson Orin modules boasting up to 275 trillion operations
per second (TOPS) and exhibiting an 8X performance enhancement
over the previous generation, the platform enables the execution of
numerous concurrent AI inference pipelines. Moreover, its robust
support for high-speed interfaces accommodating multiple sensors
positions it as the quintessential solution for ushering in a new
era of robotics. The Orin Nano stands as the introductory tier in
the Jetson Orin series, tailored for scenarios emphasizing dimin-
ished power consumption and cost considerations while retaining
the necessity for AI processing prowess. It finds applicability in
edge AI apparatus, Internet of Things (IoT) devices, and various
embedded systems wherein spatial constraints, power efficiency,
and cost-efficiency hold paramount significance [18].

2.2 Object Detection Deep Learning
Architectures

Object detection refers to a computer vision methodology aimed at
identifying object instances within images or videos. These algo-
rithms usually rely on machine learning or deep learning method-
ologies to yield significant outcomes. Much like humans swiftly
identify and pinpoint objects in visual content, the objective of
object detection is to emulate this cognitive ability through compu-
tational means.

Object detection utilizing deep learning distinguishes itself from
other methodologies through the application of convolutional neu-
ral networks (CNNs). These networks replicate the intricate neu-
ral structures of the human brain and are composed of an input
layer, multiple hidden layers, and an output layer. The training
of these neural networks can be categorized as supervised, semi-
supervised, or unsupervised, depending on the extent to which the
data is labeled. CNN-based deep neural networks for object detec-
tion achieve the highest levels of speed and accuracy in detecting
single or multiple objects. This is attributed to CNNs’ ability to
perform automated learning with minimal manual feature engi-
neering. While deep learning and convolutional neural networks
(CNNs) encompass a vast array of topics, this section will concen-
trate solely on the key aspects related to object detection models
and frameworks.

Early deep learning-based object detection models are classified
into two categories: one-stage and two-stage detectors. One-stage
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Feature Pi3 Model B+ Pi4 Pi5 Coral USB Accelerator Jetson Orin Nano
CPU Arm Cortex-A53 Arm Cortex-A72 Arm Cortex-A76 Edge TPU ML accelerator Arm Cortex-A76

CPU speed 1.4GHz 1.8GHz 2.4GHz N/A 2.4GHz

GPU VideoCore IV VideoCore IV VideoCore VII Edge TPU NVIDIA Ampere with 1024 CUDA cores
and 32 Tensor cores

RAM 1GB 1GB, 2GB, 4GB or 8GB 4GB and 8GB N/A 4GB and 8GB
Connectivity Wi-Fi, Bluetooth, Gigabit Ethernet Wi-Fi, Bluetooth, Gigabit Ethernet Wi-Fi, Bluetooth, Gigabit Ethernet N/A Wi-Fi, Bluetooth, Gigabit Ethernet

Power 5V/2.5A 5V/3A 5V/5A powered via USB 5V/5A
Release Year 2018 2019 2023 2020 2023

Price $60 $60-&120 $100-$130 160 $800-$1000

Table 1: Edge Devices Comparison

detectors constitute a class of object detection algorithms that simul-
taneously predict both the bounding box and the object’s category
in a single forward pass through the network. This concurrent
processing enables one-stage detectors to identify the presence of
objects and delineate their bounding boxes more efficiently and
faster than two-stage detectors. Such capabilities make one-stage
detectors particularly suitable for real-time detection applications.
Notable examples of one-stage object detection models include
YOLO, SSD, and EfficientDet, each of which will be introduced
separately.

In the remaining part of this section we provide overview of
the popular deep learning based object detection models and the
frameworks that can be utilized to deploy them on our edge devices.

2.2.1 You Only Look Once (YOLO). The YOLO algorithm, intro-
duced in 2015 by Joseph Redmon, Santosh Divvala, Ross Girshick,
and Ali Farhadi, marks a significant advancement in real-time object
detection [21]. Unlike conventional methods that apply a classifier
to multiple regions within an image, YOLO models conceptual-
ize detection as a single regression problem, predicting bounding
boxes and class probabilities from entire images in a single evalu-
ation. This holistic approach markedly improves detection speed,
rendering YOLO particularly suitable for applications demanding
real-time processing. The original YOLO algorithm has undergone
several iterations, with YOLOv2, YOLOv3, YOLOv4 and the latest
YOLOv8 each introducing enhancements in accuracy, speed, and
the capability to detect a broader range of object sizes.

2.2.2 Single shot multibox detector (SSD). The SSD algorithm pre-
dicts multiple bounding boxes and their corresponding class scores
in a single pass. It leveragesmultiple featuremaps from different lay-
ers of the network to perform detections at various scales. The base
network, commonly a VGG16 pre-trained on ImageNet, is employed
for feature extraction and is truncated before the fully connected
layers, enabling the model to handle inputs of any size. A key in-
novation of SSD is the use of feature maps from various network
layers to predict detections at multiple scales, effectively address-
ing the challenge of detecting objects of different sizes. Specifically,
smaller feature maps are utilized to detect larger objects, while
larger feature maps are used to detect smaller objects [14].

2.2.3 EfficientDet. An advanced object detection model developed
by Google’s Brain Team, is renowned for its efficiency and scala-
bility. Built upon the highly efficient EfficientNet architecture, Effi-
cientDet scales the network’s depth, width, and resolution through
a compound scaling method. This approach enhances performance
while reducing computational cost. Additionally, the model inte-
grates a novel feature network and a weighted bi-directional feature

pyramid network, which improve feature fusion and cross-scale
connections. EfficientDet offers a robust solution for object detec-
tion tasks, achieving superior results with fewer parameters and
FLOPs. The EfficientDet model includes seven variants, designated
as EfficientDet0 through EfficientDet6, as detailed in the Efficient-
Det research paper [22].

The deep learning frameworks play a crucial role in the devel-
opment and deployment of object detection models by providing a
comprehensive suite of tools and functionalities. These frameworks
streamline the process of building, training, and implementing
object detection systems by offering pre-built models, data aug-
mentation techniques, and utilities for various stages of model
development. Examples of such frameworks include TensorFlow
Lite [23], PyTorch [20], TensoRT [7], among others. They enable re-
searchers and developers to efficiently manage the complexities of
object detection tasks, from data preprocessing and model training
to evaluation and deployment.

3 PERFORMANCE EVALUATION
3.1 Metrics
In this study, we evaluate the performance of three object detection
models—YOLOv8, EfficientDet Lite, and SSD—on multiple edge de-
vices, including Raspberry Pi 3, 4, 5, Pi 3 with TPU, Pi 4 with TPU, Pi
5 with TPU, and Jetson Orin Nano. The evaluation focuses on three
key performance metrics: inference time, energy consumption, and
mean Average Precision (mAP).

3.1.1 Inference Time: This metric measures the time taken by each
model from when it receives the input image until it produces the
detection results, excluding any pre-processing or post-processing
steps. This inference time is crucial for applications requiring real-
time object detection. We report the inference time in milliseconds
for each model on each device, with the average calculated over a
series of test images to ensure consistent and reliable measurements.

3.1.2 Energy Consumption: This metric evaluates the energy ef-
ficiency of each model when deployed on different edge devices.
First, we measure the base energy consumption (BE) for five min-
utes of each device without running any computations. This base
energy consumption provides insights into the inherent energy
efficiency of the edge devices. Next, we measure the total energy
consumption (TE) for five minutes as the same duration of base
energy consumption while running an object detection model on
the device. To determine the energy consumption excluding the
base energy usage (EexcR), we subtract the base energy consump-
tion from the total energy consumption. This difference is then
divided by the number of requests (NR) processed to obtain the
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energy consumption per request excluding the base energy usage.
The formula used is as follows:

EexcR =
TE − BE

NR
This metric is reported in milliwatt-hours (mWh) and is critical

for applicationswhere power efficiency is a concern, such as battery-
powered devices.

3.1.3 Model Evaluation Using COCO Dataset: To determine the
capabilities and accuracy of the YOLOv8, EfficientDet Lite, and
SSD models, which have been trained on the COCO dataset, we
utilize the COCO validation dataset consisting of 5,000 images. The
FiftyOne tool [25] , an open-source tool, facilitates the visualization
and access to COCO data resources and serves as an evaluation
tool for model analysis on COCO [13]. It calculates the accuracy of
a deep learning model by comparing the detected objects from the
Detect Objects Using Deep Learning tool to ground reference data.
The accuracy of a model is evaluated using four metrics: Precision,
Recall, F1 score, and COCO mean Average Precision (mAP). Here is
a clarification of each metric:

• Precision: The ratio of the number of true positives to the
total number of positive predictions.

• Recall: The ratio of the number of true positives to the total
number of actual (relevant) objects.

• F1 Score: The F1 score is a weighted average of precision
and recall. Values range from 0 to 1, where 1 indicates the
highest accuracy.

• Average Precision (AP): AP is the precision averaged across
all recall values between 0 and 1.

• Mean Average Precision (mAP): mAP is the average AP over
multiple Intersection over Union (IoU) thresholds.

Each model is tested for a duration of five minutes per edge de-
vice, ensuring that the results are representative of sustained usage
rather than short bursts of activity. This comprehensive evaluation
allows us to understand the trade-offs between speed, accuracy,
and energy efficiency for each model on different edge devices,
providing valuable insights for selecting the optimal model and
device combination for specific applications.

3.2 Experimental Setup
In this study, we evaluated the performance of object detection
models on various edge devices. The evaluation focused on three
primary metrics: inference time, energy consumption, and accuracy.

3.2.1 Hardware and Device Setup. The hardware used in our ex-
perimental setup consisted of various edge devices with different
specifications as table 2 shows that to evaluate the performance of
object detection models. The Raspberry Pi series included the Rasp-
berry Pi 3 Model B+ with 1 GB of LPDDR2 RAM, the Raspberry Pi 4
Model B with 4 GB of LPDDR4-3200 SDRAM, and the Raspberry Pi
5 with 4 GB of LPDDR4x RAM. These devices were chosen due to
their popularity and affordability, making them accessible options
for many applications. To leverage the capabilities of Tensor Pro-
cessing Units (TPUs), we utilized the Raspberry Pi 3 Model B+, Pi 4
Model B, and Pi 5 equipped with Google Coral USB Accelerators, en-
hancing their computational power for deep learning tasks. Lastly,

the NVIDIA Jetson Orin Nano with 4 GB of RAM and an integrated
GPU was included to provide a high-performance comparison. This
device was selected because it differs from the Raspberry Pi models
by offering a powerful GPU, allowing us to evaluate the perfor-
mance differences between devices with CPUs, TPUs, and GPUs.
Additionally, we used a USB power meter specifically the UM25C
model with Bluetooth connectivity to measure the energy consump-
tion of the edge devices. These edge devices offered a diverse range
of processing capabilities andmemory configurations, making them
ideal for assessing the efficiency and effectiveness of various object
detection models in resource-constrained environments.

Edge Device RAM
Raspberry Pi 3 Model B+ 1 GB
Raspberry Pi 4 Model B 4 GB

Raspberry Pi 5 4 GB
Pi 3 Model B+ with TPU 1 GB
Pi 4 Model B with TPU 4 GB

Pi 5 with TPU 4 GB
Orin Nano 4 GB

Table 2: Edge Devices Specifications

3.2.2 Software and Frameworks. In our experimental setup, we uti-
lize various software frameworks and tools to deploy and run object
detection models on different edge devices as Table 3 displays that.
The choice of software and frameworks is influenced by the need to
optimize performance for each specific device, including those with
CPUs, TPUs, and GPUs. We use PyTorch to deploy and run YOLOv8
models on the Raspberry Pi 3, Raspberry Pi 4, and Raspberry Pi
5. To leverage the capabilities of TPUs, the YOLOv8 models are
converted from PyTorch to TensorFlow Lite (TFLite) format and
compiled to run on TPUs in the Raspberry Pi 3, Raspberry Pi 4,
and Raspberry Pi 5. For deployment on the NVIDIA Jetson Orin
Nano, the YOLOv8 models are converted to TensorRT format to
optimize for the GPU. EfficientDet Lite and SSD models are initially
in TFLite format and are deployed on the Raspberry Pi 3, Raspberry
Pi 4, and Raspberry Pi 5. These models are compiled to run on TPUs
in the respective Raspberry Pi devices. For the NVIDIA Jetson Orin
Nano, EfficientDet Lite and SSD models are converted from TFLite
to TensorRT format for optimized performance on the GPU. The
operating systems used are Raspberry Pi OS (Bookwork - 64 bit) for
the Raspberry Pi devices and Jetson Linux (Ubuntu-based) for the
NVIDIA Jetson Orin Nano. Additional libraries and tools, such as
OpenCV for image processing and FiftyOne for model evaluation,
are utilized to facilitate the experiments. To detect objects in an
image, we write Python code and utilize the Flask-RESTful library
to run this code as a service with an API URL. This approach allow
us to deploy the object detection functionality as a web service,
enabling easy integration and testing across different edge devices.

3.2.3 Experimental Procedure. The detailed procedure for evaluat-
ing the object detection models involved several steps. We devel-
oped custom Python scripts to deploy the object detection models
on the edge devices, with each script representing a different model
(YOLOv8, EfficientDet Lite, SSD). These scripts were deployed on
the respective edge devices, and the Flask-RESTful library was uti-
lized to run the Python code as a service, enabling users or clients to
post images to an API endpoint. The service processed the images,
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Edge Device
YOLOv8

Framework
EfficientDet
Framework SSD Framework

Raspberry Pi 3 Model B+ PyTorch TFLite TFLite
Raspberry Pi 4 Model B PyTorch TFLite TFLite

Raspberry Pi 5 PyTorch TFLite TFLite
Pi 3 Model B+ with TPU TFLite TFLite TFLite
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Table 3: Edge Devices, Models and Frameworks

invoked the model, and returned the output results in JSON format,
including the detected objects and the inference time.

For measuring inference time, we recorded the time taken by
the model to detect objects in an image for each edge device. The
inference time was included in the response returned by the API
service. To ensure accurate measurement, we employed the Lo-
cust tool to send multiple requests back-to-back for a duration of
five minutes. The average inference time was calculated from the
responses received during this period.

Energy consumption was measured using a USB power meter,
which was set up between the power cable and the edge device. This
meter, equipped with Bluetooth connectivity, enabled real-time en-
ergy reading. The base energy consumption (BE) was measured by
running the energy reader Python code on another Raspberry Pi 4
device (referred to as the agent device) for five minutes without any
computational load. During the inference time measurement with
Locust, the Python code also connected to the USB power meter to
read the total energy consumption (TE) in milliwatt-hours (mWh)
for the duration of the experiment. The energy consumption per
request (EexcR) was then calculated by subtracting the base energy
consumption from the total energy consumption and dividing the
result by the number of requests (NR).

To automate the testing process for each device as Figure 1
presents, we wrote a bash script on the agent device. This script
started by running the object detection service (model) on the edge
device, followed by executing the Locust file. Upon completion of
the Locust tests, the script terminated the service and proceeded
to the next model. This automation ensured that each model was
tested consistently across all devices. To ensure the reliability of our
results, we repeated the experiments three times for each model on
each device. The average values from these repetitions were used
for the final analysis.

For accuracy measurement, we wrote Python scripts to utilize
the FiftyOne tool to download the COCO validation dataset, which
contains 5,000 images. The object detection models were run on this
dataset to calculate accuracy metrics, including Precision, Recall,
F1 score, and mean Average Precision (mAP). These metrics were
recorded in a CSV file. This comprehensive procedure ensured that
the performance metrics—inference time, energy consumption, and
accuracy—were accurately measured and reported for each model
and edge device configuration.

3.3 Experimental Results
3.3.1 Energy Consumption. This section demonstrates the base
energy consumption results for Raspberry Pi3, Pi4, and Pi5 devices
with and without TPU, as well as the Jetson Orin Nano device.

YOLOv8 Nano 
Object Detection

 model

EfficientDet Lite2 
Object Detection

 model

SSD Object 
Detection

 model

SSD Lite Object 
Detection model

EfficientDet Lite0 
Object Detection

 model
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CSV file

Send Request
Terminate The ServiceResponse in Json 

Run Object Detection 
Model

Automation Test FileLocust File

Edge Devices (Raspberry Pi3, Pi4, Pi5, TPU and Jetson Orin Nano)
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API Endpoint
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API EndpointAPI EndpointAPI EndpointAPI Endpoint

Figure 1: Expermintmal Procedure.

Additionally, it presents the total energy consumption per request
and the energy consumption per request excluding the base energy.

To start with Figure 2(a) shows the baseline energy consumption
of selected edge devices in milliwatt-hours (mWh). Comparing the
different raspberry Pi models, the Pi3 consumes more energy (270
mWh) than both the Pi4 (200 mWh) and the Pi5 (220 mWh). This
indicates an improvement in energy efficiency in newer models.
However, when considering the TP variants, the energy consump-
tion remains consistent at 300mWh for both the Pi3 with TP and the
Pi4 with TP, while the Pi5 with TP shows a reduced consumption
of 250 mWh. This suggests that while base energy efficiency has
improved in the Pi4 and Pi5 models, the addition of TPUs results in
a higher energy consumption for the Pi3 and Pi4 models, but less
so for the Pi5 with TP. Notably, the Orin Nano device demonstrates
the highest baseline energy consumption at 350 mWh.

In addition, measuring the energy consumption per request,
excluding the base energy, for the investigated object detection
models on the evaluated edge devices yields interesting results.
Firstly, as Figure 2(b) presents the outcomes on the Pi3, the Det_lite
models exhibit energy consumption ranging from 0.41 mWh to
0.98 mWh, while SSD_v1 and SSD_lite models consume 0.31 mWh
and 0.41 mWh, respectively. The Yolo8 models demonstrate higher
energy demands, spanning from 1.22 mWh to 5.87 mWh. When
the TPU is integrated with the Pi3, as Figure 2(c) displays, the
Det_lite models consume between 0.32 mWh and 0.61 mWh, and
the SSD_v1 and SSD_lite models show reduced consumption of
0.11 mWh and 0.13 mWh, respectively. The Yolo8 models also show
decreased energy consumption, ranging from 0.23 mWh to 0.43
mWh. Secondly, the Pi4 introduces improved energy efficiency
compared to Pi3, with Det_lite models consuming between 0.14
mWh and 0.33 mWh, and SSD_v1 and SSD_lite models consuming
0.11 mWh and 0.14 mWh, respectively, as Figure 2(d) shows. The
Yolo8 models on the Pi4 range from 0.77 mWh to 2.92 mWh. With
the addition of the TPU, the Pi4’s energy consumption decreases
further; Det_lite models consume between 0.13 mWh and 0.19
mWh, and SSD_v1 and SSD_lite models consume 0.10 mWh and
0.11 mWh, respectively. The Yolo8 models range from 0.26 mWh to
0.32 mWh on the Pi4 with TPU, as Figure 2(e) presents. Furthermore,
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the Pi5 displays similar energy usage patterns with P4 as figure 2(f)
shows. Det_lite models consuming between 0.24 mWh and 0.47
mWh, and SSD_v1 and SSD_lite models consuming 0.22 mWh and
0.24 mWh, respectively. The Yolo8 models on the Pi5 range from
1.02 mWh to 3.58 mWh. Figure 2(g) presents the integration of TPU
with Pi5, with Det_lite models consuming between 0.18 mWh and
0.30 mWh, and SSD_v1 and SSD_lite models consuming 0.13 mWh
and 0.14 mWh, respectively. The Yolo8 models range from 0.47
mWh to 0.62 mWh on the Pi5 with TPU. Finally, the Jetson Orin
Nano as Figure 2(h) demonstrates the lowest energy consumption
across all models, with Det_lite models consuming between 0.09
mWh and 0.14 mWh, and SSD_v1 and SSD_lite models consuming
0.01 mWh and 0.06 mWh, respectively. The Yolo8 models on the
Jetson Orin Nano range from 0.13 mWh to 0.22 mWh.

Key insights: Pi3 devices generally exhibit higher energy con-
sumption compared to Pi4 and Pi5 models, indicating an improve-
ment in energy efficiency in the newer models. The addition of
TPUs consistently reduces the energy consumption for object de-
tection tasks across all Pi models, particularly in the Pi4 and Pi5.
However, it is important to note that the addition of TPU has in-
creased the base energy consumption of these devices by 11.11%,
50%, and 13.64% for Pi 3, 4, and 5, respectively. Among all the models
tested, the Yolo8_m on the Pi3 consumes the highest energy at 5.87
mWh, while the SSD_v1 on the Jetson Orin Nano consumes the
lowest energy per request at 0.01 mWh. The Orin Nano stands out
with the highest base energy consumption, while demonstrating
the superior overall energy efficiency per request.

3.3.2 Inference Time. This section analyze the inference times of
several object detection models evaluated on diverse edge comput-
ing devices. The measurements, reported in milliseconds, reveal
distinct performance patterns across these platforms. Beginning
with the Raspberry Pi 3, the SSD_v1 model exhibits the lowest infer-
ence time at 427 ms among all evaluated models. While the Det_lite
models require longer inference times compared to SSD_v1 and
SSD_lite, they still outperform all variants of the YOLO8 model. No-
tably, the YOLO8 models demonstrate the highest inference times,
with the maximum recorded at 12,960 ms. When the Coral USB Ac-
celerator is integrated with the Raspberry Pi 3, as shown in Figure
3, the inference times for SSD and YOLO8 models improve signifi-
cantly, with SSD_v1 remaining the fastest at 61 ms. In contrast, the
Det_lite2 model exhibits the highest inference time, taking 1,576
ms. The results reveal that on the Raspberry Pi 4, the SSD_v1 and
SSD_lite models exhibited the fastest inference times at 209 ms and
292 ms, respectively. Conversely, the YOLOv8 models across all
versions were slower than the Det_lite0 and Lite1 models, with the
YOLO8_m representing the slowest at 3671 ms, as shown in Figure
3. The addition of the Edge TPU to the Raspberry Pi 4 significantly
reduced the inference times of the SSD and YOLO8 models, with the
SSD_v1 model achieving the lowest inference time of 12 ms, while
the Det_lite2 model had the highest at 188 ms. Similarly, on the
Raspberry Pi 5, the SSD_v1 and SSD_lite models were the fastest,
with inference times of 93 ms and 127 ms, respectively. Although
the Det_lite models were slower than the SSD models, they were
still faster than the YOLO8 models, with the YOLO8_m exhibiting
the highest inference time of 1348 ms. The integration of the Edge
TPU to the Raspberry Pi 5 further improved the performance of

the SSD and YOLO8 models, with the SSD_v1 achieving the lowest
inference time of 10 ms and the Det_lite2 having the highest at
139 ms. Finally, on the NVIDIA Jetson Orin Nano, the YOLO8_n
model demonstrated the minimum inference time of 16 ms, while
the Det_lite and SSD models had similar inference times within the
range of 20 ms. The YOLO8_m model remained the slowest at 50
ms, as presented in Figure 3.

Key insights: the SSD_v1 model exhibits the most rapid in-
ference times when deployed across various edge devices. Addi-
tionally, the incorporation of Edge TPU, substantially enhances
the performance of the evaluated models. Conversely, the YOLO8
models generally demonstrate the slowest inference times among
the tested configurations.

3.3.3 Accuracy. This subsection presents the accuracy of various
object detection models across different edge device architectures.
The mean Average Precision (mAP) on Raspberry Pi devices var-
ied across model sizes, as shown in Figure 4. While the SSD_v1
model had the lowest mAP at 19, the YOLO8_m model achieved
the highest mAP of 44 among all evaluated models. The Det_lite0,
lite1, and lite2 models exhibited medium mAPs ranging from 26
to 33. Both SSD_lite and YOLO8_n had similar mAPs around 30,
while YOLO8_s had a higher mAP of approximately 40. When de-
ploying these models on Raspberry Pi devices equipped with TPU
accelerators, the Det_lite and SSD models, including all their ver-
sions, demonstrated comparable mAPs to those observed on the
standalone Raspberry Pi devices, as illustrated in Figure 4. However,
running the YOLO8 models on Raspberry Pis with TPU acceler-
ators resulted in a reduction in accuracy, with YOLO8_n having
the lowest mAP of 16. Furthermore, the mAP of YOLO8 object
detection models on the Jetson Orin Nano followed a similar ac-
curacy pattern as on the Raspberry Pi, ranging from 31 to 44, as
presented in Figure 4. In contrast, the SSD_v1, SSD_lite, Det_lite0,
Det_lite1, and Det_lite2 models exhibited a slight decrease in mAP
compared to the Raspberry Pi and Edge TPU results. The SSD_v1
model had the lowest mAP at 16, while the SSD_lite model achieved
27. The Det_lite0 model had an accuracy of 23, while the Det_lite1
and Det_lite2 models performed better, with mAPs of 28 and 32,
respectively.

Key insights: The YOLO8_m model demonstrates consistently
superior accuracy compared to other evaluated models across vari-
ous device platforms. Conversely, the SSD_v1 model often exhibits
the lowest mean Average Precision (mAP) among the tested mod-
els. The use of TPU accelerators on Raspberry Pi devices yields
similar accuracy levels for the Det_lite and SSD model families, but
results in a reduction in accuracy for the YOLO8 models. Regarding
the Jetson Orin Nano platform, it exhibits comparable accuracy
patterns for the YOLO8 models to the other setups, but shows a
slightly lower mAP for the remaining models in comparison to the
Raspberry Pi and TPU-equipped configurations.

3.3.4 Energy Consumption vs Inference Time. This section high-
lights the results of the energy consumption versus inference time
for object detection models on edge devices. This is essential for
informed decisions across various aspects, including but not lim-
ited to optimizing performance, extending the battery life of edge
devices, meeting real-time application needs, ensuring deployment
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(f) Pi5 + TPU
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Figure 3: Inference Time per request for different edge devices, with (a) Raspberry Pi3, (b) Pi3 + TPU, (c) Raspberry Pi4, (d) Pi4 +
TPU, (e) Raspberry Pi5, (f) Pi5 + TPU, and (g) Jetson Orin Nano

feasibility, reducing costs, minimizing environmental impact, man-
aging thermal output, and enhancing user experience. Henceforth,
the energy consumption discussed in this paper excludes the base
energy consumption and refers solely to the energy consumption
per request, unless explicitly stated otherwise.

When we deploy the SSD_v1 model on the investigated edge
devices, it demonstrates the best results regarding energy consump-
tion as displayed in Figure5(a). The Jetson Orin Nano device is the

most energy-efficient one and is faster than Pi3 (with or without
TPU), Pi4, and Pi5. However, Pi4 and Pi5 with TPU achieve better
inference times. Overall, Pi3 has the highest energy consumption
and inference time among all the devices.

Testing the SSD_Lite model on the Jetson Orin Nano demon-
strates the best results for both energy consumption and inference
time compared to the other devices, except for the Pi5 with TPU,
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(c) Jetson Orin Nano

Figure 4: Accuracy (mAP) for different edge devices, with (a) Raspberry Pi, (b) Pi + TPU, (c) Jetson Orin Nano

which has a better inference time. In contrast, Pi3 shows the worst
results for both energy consumption and inference time.

Moreover, Jetson Orin Nano shows the lowest energy consump-
tion and inference time when deploying the Det_Lite0, Det_lite1
and Det_Lite2 object detection models. However, Pi3 performs the
worst device for both energy and inference when runing the all
version of Det_Lite models. When the Pi devices integrated with
the TPU, they perfume better regarding the energy and infernce as
Figure 5(c-e) presents. While the Pi5 with TPU is the fastest device
compared to Pi3 and Pi4 with TPU, the Pi4 with TPU consume less
energy.

Finally, deploying the YOLO8_n, YOLO8_s, and YOLO8_m mod-
els on the Jetson Orin Nano has demonstrated that it is the most
energy-efficient device and the fastest at processing object detection
tasks among the evaluated edge devices. In contrast, Pi3 has the
highest energy consumption and inference time results, as shown
in Figure 5(f-h). Additionally, attaching a TPU to the Pi3, Pi4, and
Pi5 significantly improves their performance. While Pi3 and Pi4
with TPU consume less energy than the Pi5 with TPU, Pi5 with
TPU is faster than both.

Key insights: The Raspberry Pi 3 demonstrates the highest en-
ergy consumption and the slowest performance among the devices
tested. Integrating TPUs with Raspberry Pi devices significantly
improves their performance. However, the Jetson Orin Nano, with
its GPU capability, remains superior in both energy efficiency and
inference time across the majority of the tested models, with minor
exceptions for SSD models.

3.3.5 Energy Consumption vs Accuracy. This section discusses en-
ergy consumption versus accuracy. Jetson Orin Nano has the low-
est energy consumption and highest accuracy when deploying the
SSD_v1 and SSD_lite object detection models, as shown in Figure 6
(a-b). While Pi3, Pi4, and Pi5 have better accuracy results, they are
among the most energy-consuming devices. When a TPU is inte-
grated into the Pi devices, energy consumption is reduced without
compromising accuracy.

Implementing the Det_lite0, Det_lite1, and Det_lite2 models re-
veals varied results across the evaluated devices. The Jetson Orin
Nano exhibits the lowest energy consumption, although it demon-
strates a slight reduction in accuracy when running these object
detectionmodels. In contrast, the Raspberry Pi 3, 4, and 5 achieve the

highest accuracy, but they also have the highest energy consump-
tion among all devices. However, adding a TPU to the Raspberry Pi
devices reduces their energy consumption without impacting the
accuracy of the object detection models, as shown in Figure.6 (c-e).

Finally, deploying the YOLO8_n, YOLO8_s, and YOLO8_m mod-
els on the Jetson Orin Nano demonstrates that it is the device with
the lowest energy consumption while showing similar accuracy to
other devices. Although the Pi3, Pi4, and Pi5 also achieve high ac-
curacy similar to the Jetson Orin Nano, they consume more energy.
However, integrating a TPU with the Pi devices improves their
energy efficiency but significantly affects the accuracy of these
models, as shown in Figure 6 (f-h).

Key Insights: There is a trade-off between energy consumption
and accuracy. Among the evaluated edge devices, the Jetson Orin
Nano can be considered the most energy-efficient when deploying
object detection models. However, the Jetson Orin Nano exhibits a
slight decrease in accuracy compared to other devices when using
SSD and EfficientDet_lite models. Conversely, the YOLO8 models
maintain their accuracy when deployed on both the Jetson Orin
Nano and Raspberry Pi devices. This could be attributed to the
format of the engine file running on the Jetson Orin Nano, which
retains the same accuracy as the PyTorch format used on the Rasp-
berry Pi devices. When a TPU is added to Raspberry Pi devices,
energy efficiency improves, but the accuracy significantly drops
due to the optimization of these models for TPU deployment.

3.3.6 Inference Time vs Accuracy. This section highlights the in-
ference time and accuracy results of the evaluated object detection
models across the investigated edge devices. To start with, imple-
menting SSD_v1 and SSD_lite on the Pi5 with TPU reveals that
it is the fastest device, achieving the highest accuracy results, as
shown in Figure 7(a-b). However, while Pi3 is the slowest device, it
matches Pi5 with TPU in terms of accuracy. The Jetson Orin Nano
has a shorter inference time than Pi devices without TPU, but this
slightly impacts the accuracy of these models.

In addition, deploying the Det_lite0, Det_lite1, and Det_lite2
models on the Jetson Orin Nano demonstrates that this edge device
is the fastest, although with a slight reduction in accuracy. Con-
versely, the Raspberry Pi 3, 4, and 5 models, while slower, achieve
the highest accuracy results. Additionally, integrating a TPU with
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Figure 5: Energy consumption per request excluding the base energy vs inference time for different object detection models,
with (a) SSD_v1, (b) SSD_lite, (c) Det_lit0, (d) Det_lite1, (e) Det_lite2, (f) Yolo8_n, (g) Yolo8_s, and (h) Yolo8_m
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Figure 6: Energy consumption per request excluding the base energy vs accuracy for different object detection models, with (a)
SSD_v1, (b) SSD_lite, (c) Det_lit0, (d) Det_lite1, (e) Det_lite2, (f) Yolo8_n, (g) Yolo8_s, and (h) Yolo8_m

the Raspberry Pi devices enhances inference time without com-
promising the accuracy of these models, as shown in the provided
Figure7(d-f).

Finally, the Jetson Orin Nano exhibits the fastest inference time
and highest accuracy when executing all variants of the YOLO8
models, as demonstrated in Figure 7. Conversely, the Raspberry Pi 3,
Pi 4, and Pi 5 achieve comparable accuracy results to the Jetson Orin
Nano, but with slower inference times. While integrating a TPU
with the Raspberry Pi 3, Pi 4, and Pi 5 improves their inference speed,

this enhancement comes at the cost of significantly reduced model
accuracy due to the optimizations required for TPU deployment.

Key Insights: There is a trade-off between inference time and
accuracy when running object detection models on the Jetson Orin
Nano. However, it stands out as the fastest device, maintaining high
accuracy with the YOLO8 models due to the utilization of PyTorch
format files converted to engine format. In contrast, while the Pi3,
Pi4, and Pi5 devices are slower, they achieve the highest accuracy.
Integrating a TPU with the Pi devices enhances the inference time
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but significantly affects accuracy when running the YOLO8 models.
Conversely, running SSD and Det_lite models does not affect the
accuracy when using the TPU.

3.4 Energy Consumption vs Inference Time vs
Accuracy:

This section presents the results through a three-way comparison.
Comparing Energy Consumption, Inference Time, and Accuracy
across different object detection models and edge devices helps
researchers and practitioners optimize model selection, hardware
utilization, deployment strategies, and overall sustainability while
reducing operational costs and enhancing user experience. Fig-
ure ?? illustrates a 3D visualization of metrics for various object
detection models. The analysis indicates that when deploying the
SSD_v1 object detection model on edge computing platforms, the
Raspberry Pi 4 and Raspberry Pi 5 equipped with TPU accelerators
exhibit the fastest inference times without significantly compromis-
ing accuracy. However, these edge devices also tend to consume
more energy compared to other options. Conversely, the Jetson
Orin Nano emerges as the most energy-efficient choice among the
evaluated devices, though it may involve a minor trade-off in terms
of accuracy and inference speed.

Running SSD_lite on the Raspberry Pi 5 with the Edge TPU
accelerator results in the lowest inference time and high accuracy,
but it also consumes more energy. On the other hand, while the
NVIDIA Jetson Orin Nano is the most energy-efficient device, it
exhibits a slight reduction in accuracy and increased inference time
compared to the Pi5 with TPU.

Deploying Det_lite0, Det_lite1, and Det_lite2 on the Jetson Orin
Nano achieves the fastest inference time and lowest energy con-
sumption, but it slightly impacts the accuracy. In contrast, the Rasp-
berry Pi 3, Pi 4, and Pi 5 with TPU have the highest accuracy, but
they consume more energy and take longer for inference compared
to the Jetson Orin Nano. However, the TPU significantly improves
the performance of the Raspberry Pi without affecting the accuracy.

The analysis reveals that the Jetson Orin Nano is the most effi-
cient device among the tested options, offering favorable energy
consumption and inference time without compromising accuracy
when running YOLO8_n, YOLO8_s, and YOLO8_m. However, in-
tegrating the Raspberry Pis with TPU can improve inference time
and energy consumption, but it significantly reduces the accuracy
of these models.

Key Insights: When deploying SSD models, the Raspberry Pi 5
with TPU outperforms the evaluated devices in terms of accuracy
and inference time, but with slightly higher energy consumption.
However, the Jetson Orin Nano is the most energy-efficient device,
although it slightly affects accuracy. Conversely, the Jetson Orin
Nano outperforms the others when deploying Det_lite models, as
it has the lowest energy consumption and fastest performance, but
with a slight reduction in accuracy. Yet, if accuracy is crucial, the
Pi4 and Pi5 with TPU can be suitable options. When running Yolo8
with all models, the Jetson Orin Nano can be the best choice, as it
has the lowest inference time, energy consumption, and highest
accuracy.

4 RELATEDWORK
This section provides an overview of the most relevant research on
object detection models for edge computing devices and compares
our work with existing related work as shown in Table 4. To the
best of our knowledge, our work is a unique study due to its com-
prehensive evaluation of various object detection models and edge
devices.. Firstly, Cantero et al. [4] examines various quantization
levels and model architectures to determine their efficiency and
performance challenges. The research employs the NXP i-MX8M-
PLUS application processor and the Google Coral Dev Board with
EdgeTPUmodule, testing models such as SSD (Single Shot Multibox
Detection), CenterNet, EfficientDet, and Faster R-CNN. The eval-
uation metrics include warm-up time, auxiliary processing time,
model inference time, model size, inference accuracy, and perfor-
mance improvement factor. In contrast, our work differs from this
study as we measure energy consumption and evaluate YOLOv8
on Raspberry Pi 3, Pi 4, Pi 5, and the Jetson Orin Nano.

Furthermore, Tian et al.[24] provides a comprehensive evalu-
ation of deep learning-based object detection algorithms on the
COCO benchmark, focusing on their applicability in smart city
environments. The models evaluated include Faster Region-Based
Convolutional Neural Network (Faster R-CNN), Mask Region-Based
Convolutional Neural Network (Mask R-CNN), Deformable Region-
Based Fully Convolutional Network combined with Scale Normal-
ization for Image Pyramids (D-RFCN + SNIP), Neural Architec-
ture Search for Feature Pyramid Network (NAS-FPN), Detector
Recursive Feature Pyramid and Switchable Atrous Convolution
(DetectorRS), and Dynamic Head (DyHead). The study utilizes per-
formance metrics such as Average Precision, Average Precision at
50% Intersection over Union (AP50), Average Precision for Small
Objects (APS), Average Precision for Medium Objects (APM), and
Average Precision for Large Objects (APL) to assess the models.
On the other hand, our paper focuses not only on accuracy, but
also on inference time and energy consumption of these models on
limited-resource devices.

Also, Kamath and Renuka [10] examine the efficacy of Efficient-
Det models, employing integer quantization, for real-time object
detection on a Raspberry Pi. The research discusses the trade-offs
among model size, precision, recall, and frame rate, ultimately rec-
ommending EfficientDet0 and EfficientDet1 for applications on
resource-constrained devices. However, this work does not evalu-
ate a wider range of object detection models across diverse edge
devices, nor does it measure energy consumption, which are key
aspects addressed in our paper.

Additionally, Kang and Somtham [11] evaluation utilized YOLOv4-
Tiny and SSD MobileNet V2 models to assess object detection tasks
on modern edge devices equipped with various accelerators, in-
cluding GPUs and TPUs. This study compared detection accuracy,
inference latency, and energy efficiency across devices such as the
Google Coral Dev Board Mini, NVidia Jetson Nano, and Jetson
Xavier NX. Yet, this work differs from our study as it does not ex-
amine the EfficientDet model or the latest version of YOLO such as
YOLOv8, and also does not include deploying these models on the
Raspberry Pi platform.

Next, Baller et al. [2] present DeepEdgeBench, a benchmarking
framework for assessing the performance of Deep Neural Networks
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Figure 7: Inference time per request vs accuracy for different object detection models, with (a) SSD_v1, (b) SSD_lite, (c) Det_lit0,
(d) Det_lite1, (e) Det_lite2, (f) Yolo8_n, (g) Yolo8_s, and (h) Yolo8_m
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Figure 8: Inference time per request vs accuracy vs Energy Consumption per request for different object detection models, with
(a) SSD_v1, (b) SSD_lite, (c) Det_lit0, (d) Det_lite1, (e) Det_lite2, (f) Yolo8_n, (g) Yolo8_s, and (h) Yolo8_m

(DNNs) on various edge devices, including the Asus Tinker Edge R,
Raspberry Pi 4, Google Coral Dev Board, Nvidia Jetson Nano, and
Arduino Nano 33 BLE. The evaluation focuses on key metrics such
as inference time, power consumption, and accuracy across different
models and frameworks. The models tested include MobileNetV1,
MobileNetV2, and SSD MobileNetV2, targeting applications in im-
age classification and object detection. However, their evaluation
does not cover the most recent object detection models, EfficientDet
and YOLOv8.

Moreover, Bulut et al. [3] assess the performance of recent light-
weight YOLO object detection models, including YOLOv5-Nano,
YOLOX-Nano, YOLOX-Tiny, YOLOv6-Nano, YOLOv6-Tiny, and
YOLOv7-Tiny, on the NVIDIA Jetson Nano edge device for applica-
tions in traffic safety. It evaluates various metrics such as average
precision, inference time, memory usage, and energy consumption.
In contrast, our evaluation is more comprehensive as it includes the
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recent object detection models such as YOLOv8, SSD, and Efficient-
Det, which we have examined on the most popular edge devices,
including the Raspberry Pi, Edge TPU, and Jetson Orin Nano.

Further more, Chen et al. [5] present a methodology for deploy-
ing deep learning object detection on cost-effective IoT devices.
This approach employs SSD-MobileNets models and Raspberry Pi
3 units, augmented by Neural Compute Sticks (NCS) for enhanced
performance. However, this work does not evaluate other popu-
lar object detection models such as EfficientDet and YOLOv8 on a
range of edge devices including the Raspberry Pi, Edge TPU, and
Jetson Orin Nano. Additionally, it does not consider the energy
efficiency of these models when deployed on these edge platforms.

Similarly, Zagitov et al. [26] assess the trade-offs between accu-
racy, speed, and computational efficiency of various neural network
models on Raspberry Pi and NVIDIA Jetson Nano devices. The eval-
uated models include MobileNetV2 SSD, CenterNet MobileNetV2
FPN, EfficientDet, YoloV5, YoloV7, YoloV7 Tiny, and YoloV8. The
study employs metrics such as mean average precision (mAP), la-
tency, and FPS to conduct the evaluations. Yet, it does not consider
the energy efficiency of these models or their deployment on the
Edge TPU accelerator.

In addition, Galliera and Suri [9] explore the integration of deep
learning accelerators with IoT devices to enhance edge computing
efficiency for object detection. The research aims to support low-
latency, autonomous decision-making processes in both civilian
and military applications by deploying advanced object detection
models on energy-efficient, embedded devices such as the NVIDIA
Jetson Nano, Jetson Xavier, Google Coral Dev Board, Google Coral
USB Accelerator, and Intel Movidius Neural Computer Stick 2. The
models assessed include YOLOv5, YOLOv5s, and YOLOv5m. In con-
trast, this study differs from our work as we evaluate the YOLOv8,
SSD, and EfficientDet models, and we also measure the energy
consumption of these models.

Finally, Lema et al. [12] assess the performance of YOLOv3,
YOLOv5, and YOLOX object detection models on various edge
computing devices, including the NVIDIA Jetson Nano, Jetson AGX
Xavier, andGoogle Coral Dev Board. Utilizing theMSCOCOdataset,
the research analyzes the frames per second (FPS) relative to power
consumption and cost, and offers practical recommendations for
deployment in real-world scenarios. However, this work does not
consider other object detectionmodels such as SSD and EfficientDet,
nor does it investigate these models on the Raspberry Pi.

5 CONCLUSIONS AND FUTURE DIRECTION
In this paper, we evaluated the performance of state-of-the-art deep
learning object detection models including YOLOv8 (Nano, Small,
Medium variants), EfficientDet Lite (Lite0, Lite1, Lite2), and SSD
(SSD MobileNet V1, SSDLite MobileDet) on popular edge devices
such as the Raspberry Pi 3, 4, and 5 with/without TPU accelerators,
and the Jetson Orin Nano.We developed an object detection applica-
tion using Flask-API and utilized various deep learning frameworks,
such as TensorFlow Lite, Edge TPU, PyTorch, and TensorRT, to de-
ploy models across different edge device architectures. Additionally,
we assessed the accuracy of these models using the FiftyOne tool
and COCO datasets, collecting the mean Average Precision (mAP)
metric. We also developed an automated system using tools like

Locust to examine the performance of the selected object detec-
tion models on the investigated edge devices regarding inference
time and energy consumption. The base energy consumption of the
evaluated edge devices was measured and reported to present the
energy consumption per request, excluding the base consumption.

Our evaluation shows a trade-off between accuracy, energy con-
sumption, and inference time. The SSD_v1 model exhibited the
lowest energy consumption and fastest inference time among all
evaluated models, but this came at the cost of accuracy, as it was
the least accurate model. Conversely, the Jetson Orin Nano demon-
strated that it is the fastest and most energy-efficient device without
compromising the accuracy of YOLOv8 models. However, some
models, such as SSD and EfficientDet, experienced a reduction in
accuracy when converted to the TensorRT framework. The Edge
TPU accelerator enhanced the performance of SSD and EfficientDet
models without reducing accuracy, but significantly reduced the
accuracy of YOLOv8 models.

For future work, we plan to train our object detection models
and evaluate them further. We will also examine different quantized
models, such as int8 and float16, when deploying them on Raspberry
Pi devices and the Jetson Orin Nano, as these optimizations might
significantly impact the results.
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