
GreenFog: A Framework for Sustainable Fog Computing
Adel N. Toosi

Department of Software Systems and

Cybersecurity, Monash University

Clayton, Victoria, Australia

adel.n.toosi@monash.edu

Chayan Agarwal

Department of Software Systems and

Cybersecurity, Monash University

Clayton, Victoria, Australia

Lena Mashayekhy

Department of Computer and

Information Sciences, University of

Delaware

Newark, Delaware, USA

mlena@udel.edu

Sara Kardani Moghaddam

Department of Software Systems and

Cybersecurity, Monash University

Clayton, Victoria, Australia

Redowan Mahmud

School of Electrical Engineering,

Computing and Mathematical

Sciences, Curtin University

Perth, Western Australia, Australia

mdredowan.mahmud@curtin.edu.au

Zahir Tari

School of Computing Technologies,

STEM College, RMIT University

Melbourne, Victoria, Australia

zahir.tari@rmit.edu.au

ABSTRACT
While the Fog computing model is the platform of choice for many

IoT applications, the alarming rate of increase in energy demand

and carbon footprint of Fog environments becomes a critical issue.

It is, therefore, necessary to reduce the percentage of brown en-

ergy consumption in these systems and integrate renewable energy

use into Fog computing environments. Renewable energy sources,

however, are prone to availability fluctuations due to their vari-

able and intermittent nature. In this paper, we propose a new Fog

computing framework using renewables and design various opti-

mization techniques, including linear programming optimization,

linear regression estimation, andMulti-Armed Bandits (MAB) learn-

ing to optimize renewable energy use in Fog environments based

on the novel idea of load shaping with adaptive Quality of Service

(QoS). The goal of the proposed framework is to favor green energy

utilization depending on the available information in renewable

energy-powered Fog environments. The proposed optimization

techniques are used to achieve this goal by dynamically adjusting

QoS and autoscaling of resources. The proposed framework, along

with the optimization techniques, are tested on a real-world micro

data center (Fog environment) powered by solar energy sources

connected to multiple IoT devices. The results show that our pro-

posed framework can offer up to 15% brown energy usage reduction

while efficiently adjusting the QoS of applications.

1 INTRODUCTION
The Internet-of-Things (IoT) is growing rapidly, and the number of

IoT devices is expected to increase to 75.4 billion in 2025, according

to Statista [2]. The Fog computing paradigm seeks to minimize

the cost and latency of delay-sensitive IoT applications in many

domains such as self-driving cars, telemedicine, and Industry 4.0.

This novel paradigm processes the enormous amount of data con-

tinuously being generated by different applications close to the

source, at the boundary of the network, instead of being sent to the

cloud or large remote data centers. In practice, the distribution of

such computing services throughout the edge is accomplished by

having many small-sized devices or clusters of servers referred to

as “Fog environments” or “micro data centers.”

The rise of IoT and Fog computing elicits an increase in global en-

ergy consumption and has a massive impact on the carbon footprint

of the ICT (Information Communication Technology) industry. A

report by Xailient [28] indicated that AI-powered IoT cameras are

predicted to add over 4 trillion kilograms in annual carbon dioxide

emissions (Kg CO2e) by 2030, which is the equivalent of adding 860

million cars to the road in a decade. Therefore, Fog computing re-

quires innovations in energy supply, management, and use [32]. To

further lower the carbon footprint of the IoT ecosystem, it is widely

accredited that renewable or green energy sources must be used as

the primary power supply of Fog environments.

One of the main challenges of powering Fog environments with

renewable energy sources such as solar is intermittency and vari-
ability of power input. A promising solution to this challenge is

matching demand to supply of green and renewable energy. In

this paper, in order to effectively utilize renewable energy sources,

we propose a framework called GreenFog that conducts load shap-

ing of Fog environments powered by on-site renewable energy.

This framework operates without the usage of a battery as we be-

lieve installation of battery storage for Fog environments is often

prohibitive. The main reasons are: 1) the cost of purchasing and

maintaining lithium-ion batteries, the most practical solution to

storing energy, can dominate the total cost of the system; 2) lithium-

ion batteries cannot be totally recycled due to technical constraints,

economic barriers, and regulatory gaps; and finally 3) the lifespan

lithium-ion batteries are comparatively shorter than other parts of

the system. In addition, batteries are most suited for off-grid appli-

cations. Thus, in this work, we assume that the Fog environment is

not connected to batteries and relies on a grid-connected on-site

power system.

GreenFog focuses on dynamic adjustment of Quality of Service

(QoS) for IoT applications to match the energy consumption of the

Fog environment with its renewable energy supply. Dynamic QoS

management is acceptable for many IoT or smart applications in

practice. For example, it might be admissible to reduce the accuracy

of an approximation task that estimates the number of cars passing

traffic intersections to control the traffic lights during the night.

Or in a real-time video analytics application that detects objects



in the stream of video frames, resolution or frame rate can be ad-

justed in off-peak hours to save resource usage. Owing to these

opportunities, we propose GreenFog to match the application’s

QoS with the renewable energy availability in a multi-server Fog

environment. GreenFog shapes the energy consumption through

dynamic scaling of the application containers which are becoming

the norm for building IoT applications. At the same time, GreenFog

controls the QoS of tasks submitted to the gateway, e.g., the frame

rate or image quality at which the video streaming data must be

processed. This is done through a designing a feedback loop mech-

anism in which the cluster orchestrator asks IoT applications to

adjust their QoS requirements. The Fog environment resources are

then sized according to the number of active containers. Thus, the

key contributions of the paper are as follows:

• A framework called GreenFog for dynamic QoS management

of the IoT application based on load shaping according to

the renewable energy availability at the renewable energy-

powered Fog environment.

• The optimal offline model for load shaping with prior knowl-

edge of renewable energy availability to minimize brown

energy usage, while providing required QoS for the hosted

IoT application. The optimal model is used as a baseline for

comparison to other proposed load shaping algorithms.

• A fast and lightweight reactive heuristic approach based

on a linear regression model and profiling to overcome the

complexity of the optimal model and lack of in advance

knowledge of energy availability.

• A machine learning technique using Multi-Armed Bandit

(MAB) model which automatically learns how QoS adjust-

ment affects energy consumption and dynamically adapts

QoS to maximize the utilization of renewable energy and

remove the need for profiling.

• Validation of GreenFog and performance evaluation of pro-

posed load shaping algorithms in a real implementation us-

ing real-world traces of renewable energy and application

demonstration using object detection tasks in live stream of

videos.

The remainder of the paper is organized as follows: the back-

ground is discussed in Section 2. A system overview is discussed

in Section 3. Following this, the optimal model is discussed in Sec-

tion 4. Since it is impractical to collect all required information

for the optimal model, a proposed fast and lightweight reactive

heuristic using a linear regression model is discussed in Section 5.

A proposed threshold-based autoscaler for the right sizing of active

resources in the Fog environment is discussed in Section 6. Since

both the previous approaches require either a priori knowledge

or profiling, an online learning solution based on Multi-Arm Ban-

dit (MAB) model is proposed in Section 7. Section 8 shows the

evaluation results of comparing the proposed techniques under a

real-world setup and application demonstrator. Finally, Section 11

presents the conclusions and future directions.

2 BACKGROUND AND MOTIVATIONAL
SCENARIO

2.1 Challenges of using renewable energy in
Fog Computing

The utilization of green energy in Fog computing is a relatively

new area of research and is getting significant attention than ever

before [5] [31] [18]. Recent studies considered using renewable

energy to power Fog environments, and efforts have been made

in the research community to facilitate such integration [6, 21].

However, using renewable energy to power Fog environments is

challenging due to the stochastic behavior of dynamic workloads

served and the fluctuation and variability of renewable energy

generation.

Despite the challenges of using renewable energy, micro data

centers at the edge locations can rely on these volatile renewable

energy sources to support reliable operation [9]. At the time of no re-

newable energy, these systems heavily depend on the conventional

utility power grid where the energy sources are predominantly

brown energy like coal or nuclear. Using batteries in many cases is

also unfavorable as battery-related costs are high and can dominate

the cost of solar- or wind-powered systems. In addition, batteries

use chemicals that are harmful to the environment [11]. Current

technologies such as lead-acid and lithium-ion batteries are also not

sustainable [19] [27]. Therefore, it is crucial to optimize renewable

energy use for Fog environments to make it sustainable.

Many researchers have explored this problem with different

solutions, such as placement of application components in a way

that the utilization of renewable energy sources is maximized while

an acceptable latency and QoS are provided [22]. They have also

explored offloading tasks to other Fog environments with excess or

enough renewable energy [1] [18] or hardware level solutions such

as frequency and modulation level scaling [17]. Different from these

approaches, we aim to shape the load of the Fog environment to

match the renewable energy supply through QoS adaptation of IoT

applications. Such a system can offer incentives like discounts or

lower charging rates to users willing to relax their QoS requirements

in favor of more efficient renewable energy use (that is, end users

might accept a lower QoS in favor of discounted service or opt for

low QoS to be more green). The design and implementation of such

market and pricing mechanisms fall out of the scope of this work.

2.2 A Motivational Scenario
Cameras are pervasive in numerous smart applications. Cameras

can be installed in buildings for surveillance and business intelli-

gence, or deployed on streets for traffic control and crime preven-

tion. Video analytics is an integral part of IoT applications. At the

same time, real-time video analytics is one of the killer applications

for Edge and Fog Computing [3]. The real-time video analytics ap-

plications are most suited for edge deployment due to high volume

of data generated by cameras and their low latency requirements.

Video analytics can have very high resource demands [33]. Some

of the most accurate Deep Neural Networks for object recognition

require 30GFlops to process a single frame [33]. Nevertheless, for

most of these applications, the data quality directly drives the QoS.

Illustratively, the features from a high-resolution image can be

2



Figure 1: Schematic view of a renewable-powered Fog.

extracted more rigorously than from a low-resolution image; conse-

quently enhancing the accuracy of detecting any event of interest

or number of frames analyzed by the system direct impacts the

accuracy of the object tracking algorithm. Therefore, application

resource demand can be reduced by lowering the QoS requirements.

For example, the rate or resolution at which the video frames are

sent for image processing can be directly translated to QoS in a

video analytics application.

Concomitantly, dynamic QoS control is acceptable for many of

these applications. For example, it might be acceptable to increase

the error bounds of counting the number of cars crossing an in-

tersection of a road to set the traffic light to minimize resource

or energy demand. Or accuracy of an object detection algorithm

in pest bird repellent application can be lowered to an acceptable

range to reduce resource usage of energy constraint devices [24]. In

this context, during resource or energy scarcity or uneven surge in

the number of requested tasks, we can determine the most suitable

accuracy level or QoS for the application to meet resource/energy

constraints. This has motivated us to build a framework to dynami-

cally adapt QoS to shape the load and match energy consumption

with the renewable energy supply of the Fog environment. Please

note that the acceptable range at which QoS can be moderated

is given as an input to such a system. Therefore, the flexibility

provided by the application is the key driver of performance.

3 SYSTEM OVERVIEW AND GREENFOG
FRAMEWORK

Figure 1 shows a schematic view of a Fog environment powered

with an on-site renewable energy generation system with a grid-

tied inverter that can work without batteries. The Fog environment

is a multi-server cluster that monitors its own power consumption

and can trace the amount of generated renewable power available

for usage. As we can see in Figure 1, the Fog environment is con-

nected to both the grid (brown energy) for reliability and an onsite

renewable energy system (green energy) to reduce its carbon foot-

print. At the same time, the Fog environment is connected to a

gateway through which IoT devices send their processing tasks

(requests) to the Fog environment for execution. On the back-end,

the Fog environment is connected to the cloud.

IoT 
Device

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

Pod

Container

 Node
Docker

Pod

Container

Pod

Container

Pod

Container

 Master Node

 Scheduler

Kubernetes

Service

 Gateway

Gateway Software

 Grid Tie Inverter

 Power Distribution Unit (PDU)Energy ProfileScalingPlacment

Metering Software

Metering Software

 Fog Node
…

IoT 
Device

IoT 
Device

Figure 2: GreenFog Software System Overview

Figure 2 illustrates the architecture of our proposed software

framework and its various software components. IoT devices are

connected to a gateway device running a gateway software that
would allow the system to set the QoS for the IoT applications. In

our proposed framework, IoT devices have APIs that allow gateway

software to dynamically adapt QoS requirement remotely by set-

ting configurations at the IoT devices. The gateway software also

monitors the request and service rate for these devices. We assume

that the Fog environment hosts the IoT applications in the form

of containerized micro-services, e.g., Docker Containers. The Fog

environment is equipped with a cluster manager and container or-

chestrator software (e.g., K3s
1
), for automating deployment, scaling,

and management of containerized applications. In the Fog envi-

ronment, a master node runs a scheduler program responsible for

interacting with the gateway software, thereby informing expected

QoS and rate of requests. The scheduler also interacts with the

energy metering software (energy profile component), which moni-

tors available green energy and the current energy consumption of

the Fog environment. Through its placement algorithm, the sched-

uler makes the decision regarding the placement of the container
instances (Pods in Kubernetes terminology) on different worker

nodes. Another major component in the scheduler is the scaling
component which is responsible for autoscaling of Fog environment

resources to meet the demand.

As noted earlier, the scheduler communicates QoS adjustment to

the gateway software. The QoS adjustment is basically performed

via a comparison between the available renewable power and the

current power consumption of the Fog environment. The gateway

software accordingly adjusts the QoS of tasks within acceptable

Service Level Agreement (SLA) range at which the IoT devices

send requests to the Fog environment. In the following sections,

we propose different algorithms and optimization techniques to

scale resources and adjust QoS. Note that grid energy can be used

whenever renewable energy is insufficient to support the energy

requirement of the current load in the system.

1
K3s is a lightweight Kubernetes distribution which is suitable for resource-constrained

environments such as Fog or Edge.

3



4 OPTIMIZATION MODEL
In this section, we propose an optimal model for the orchestration

of resources and QoS adjustment in the GreenFog framework. The

optimal model will be used as a baseline for evaluation. Assuming

time is divided into time slots, we have t = {0, . . . ,T }, where T is

the decision horizon. The green energy system G at any time t gen-
erates et units of electricity. Given the fluctuations inherent in the

renewable energy, et must be predicted with forecasting methods

based on previous states of energy generation and the field weather

forecast. For example, solar panels electricity generation can be

predicted considering several factors including the sky condition,

temperature, and the amount of electricity produced in previous

hours. However, in this work, we assume that the value of et for
any time slot t is known a priori since optimal model is used as the

baseline for evaluation.

The Fog environment F is a Kubernetes cluster (K3s cluster)

that consists of N Kubernetes nodes (or worker machines). Each

Kubernetes node ni ∈ N hosts at most P pods, where each pod

holds a single container. Therefore, the Fog environment has the

maximum of C = P × N containers in full capacity, and at each

time t only some containers (≤ C) become active to match the

demand based on available energy et for that time slot. When the

demand exceeds the renewable power availability, the gateway

adjusts QoS to match demand with the available power. Each pod

requires ep units of electricity. Each Kubernetes node runs on a

different physical machine. If a node is not needed, we simply

put the machine to a shutdown state. Each machine requires eb
units of energy in a shutdown state, while a running machine

requires a further en units of energy. Each task requires ej units
of energy added up to other energy terms. In addition, there is an

upper limit on the total energy consumption when running all the

containers and a lower limit when running one container. In our

case, these energy limits determine the upper-bound and lower-

bound on the rate of the incoming tasks (QoS), represented by rmax
and rmin , respectively. In other words, these limits (rmax , rmin ) can

be set as the lowest and the highest QoS required. Note that in our

formulations, for the sake of simplicity, we consider request rate

as the QoS factor, e.g., frame rate in our video analytics example.

Other QoS factors can be applied to our model similarly. We also

assume that each request is mapped to an IoT task in the system,

e.g., an image (frame) to an image processing task.

We consider a set of homogeneous tasks generated by the IoT

application. The required processing time of a task is denoted by c .
The goal of GreenFog is to choose the best rate for the IoT tasks and

adjust them accordingly based on the available renewable power

input. We define sets of decision variables: xti to determine the

number of active pods at Kubernetes node ni ; y
t
to determine the

arrival rate of requests from IoT devices; and zti to determine if

Kubernetes node ni should be on or off.

Our objective is to minimize the excess energy usage (brown

energy usage) and determine the arrival rates of IoT tasks. We

formulate this problem as an Integer Program (IP) as follows:

Minimize

T∑
t=1

Et (1)

where

Et =
∑
ni ∈N

(ep · x
t
i + en · z

t
i + eb ) + (ej · y

t ) (2)

Subject to:

Et ≥ et ∀t ∈ T (3)

xti ≤ P ∀ni ∈ N , t ∈ T (4)

xti ≤ M · zti ∀ni ∈ N , t ∈ T (5)∑
ni ∈N

zti ≤ N ∀t ∈ T (6)

rmin ≤ yt ≤ rmax t ∈ T (7)

c · yt =
∑
ni ∈N

xti ∀t ∈ T (8)

xti ∈ Z≥0 ∀ni ∈ N , t ∈ T (9)

yt ∈ Z≥0 ∀t ∈ T (10)

zti ∈ {0, 1} ∀ni ∈ N , t ∈ T (11)

The objective function minimizes the total brown energy con-

sumption subject to constraints. Constraint (3) guarantees that all

generated renewable energy must be used. Constraint (4) guaran-

tees that each Kubernetes node has at most P pods. Constraint (5)

ensures that the energy cost of turning on a Kubernetes node should

be calculated only once. This means that if any pod has been already

deployed on a Kubernetes node, there is no additional cost for the

node, but for new pods. We model this using the Big M method [7].
2

Constraint (6) ensures that the Fog environment does not exceed

its capacity of N Kubernetes nodes. Constraint (7) ensures that the

selected rate for the IoT tasks is between its minimum and maxi-

mum rates. Constraint (8) ensures that enough pods are running

to service all the incoming tasks. To ensure this, we multiply the

processing time for each job c with the rate of incoming tasks at

time t which is denoted by yt and match this product with the total

number of pods running at time t which is denoted as

∑
ni ∈N xti .

Constraints (9) and (10) guarantee that the decision variables xti
and yt are non-negative integers, respectively. Constraints (11)

guarantee that decision variable zti is binary.
The proposed IP model requires parameters like the energy per

task, energy per pod, energy per node, and also the processing time

for each task; gathering such information might not be feasible

if not impossible in practice. Furthermore, using the IP model is

not viable in practice as it is computationally expensive. Finally, an

accurate forecasting of renewable energy power input is a difficult

task. Therefore, we only rely on this IP model as a great benchmark

to show the best case solutions. Next, we present our proposed

online approach based on liner regression and profiling to address

these challenges.

5 LINEAR REGRESSION ALGORITHM
To address the problems faced by the IP model, we propose a heuris-

tic based on a linear regression model using profiling to set QoS and

scale resources. The proposed linear regression model sets the rate

of tasks (QoS) for the IoT devices. Since such a linear regression

2
Big M method is a method of solving linear programming problems using the simplex

algorithm.

4



model only gives the rate of tasks as output, we propose a threshold-

based autoscaling algorithm in Section 6 to scale the Kubernetes

cluster as per the computing demand.

Profiling is necessary to gather the data needed to design a linear

regression model between the power consumption and the rate of

tasks. We expect that there is a simple linear correlation between

the power consumption of the Fog environment and its load shaped,

based on the setting of the rate of tasks. For profiling, we identify

the power consumption of the Fog environment at different task

rates. Accordingly we set α (y-intercept) and β (the slope) of the

linear regression equation. We also find out the maximum and

minimum rate that the Fog environment is able to service such that

the average pending time of tasks on each pod does not go lower or

higher than certain limits. This is aligned with the IoT application

SLA and will be further discussed in Section 8.2.

Algorithm 1 presents the pseudo code of the linear regression

method which collects the available green power and computes the

rate at which tasks can be processed. The pseudo code shows that

how after calculating α (y-intercept) and β (slope) for the linear

regression, we can easily set the rate of tasks given the available

renewable power. The algorithm is executed recurrently at the

specified time intervals. It first reads the current availability of the

green power generation and provides it to the regression model.

Then, it sets the acceptable rate of the tasks at the gateway software

in a way that the Fog environment can fully utilize the available

green energy. rmin and rmax are the minimum and maximum

acceptable rate according to the SLA, respectively. The algorithm

has a time complexity of O(1) providing the highest scalability.

6 THRESHOLD-BASED LINEAR
AUTOSCALER

As we discussed earlier, a linear regression model only sets the

QoS. Thus, we propose an autoscaling algorithm to scale cluster as

per the computing demand. Algorithm 2 shows the pseudo code of

the proposed autoscaler with two thresholds to keep the average

pending number of tasks among all of the running pods to be no

more than the maximum pod load threshold and no less than the

minimum pod load threshold. Algorithm 2 is designed based on the

state of the art threshold-based autoscaling techniques commonly

used in practice. The proposed threshold-based Linear Autoscaler

can be extended or replaced with any other autoscaler.

The placement/removal of a pod is performed linearly in a way

that all theworker nodeswith any pod should be fully packed/empty

Algorithm 1: LinearRegression
function LinearRegression(interval)

renPower← Read the Available Renewable Power

rate← α + β ∗ renPower
if rate < rmin then

rate← rmin
else

if rate > rmax then
rate← rmax

setQoS(rate)

sleep for interval

Algorithm 2: Linear Autoscaler
function autoScaler(minPodLoad, maxPodLoad)

for p ∈ currentPods do
pendTasks ← pendTasks + Num of pending tasks in p

end
avдTask ← pendTasks ÷ size(currentPods)
if avдTask < minPodLoad then

n← Node at the top of the stack

Decrease the deployment scale by 1 (remove a Node n’s pod)
if Node n has no active Pod then

Shutdown Node n
Remove n from the stack

end
else

end
if avдTask > maxPodLoad then

n← Node at the top of the stack

if Node n is full then
Start a new node m

Addm to the stack

end
Increase deployment scale by 1 pod

end

before adding/removing a new node. This is due to the fact that

having multiple nodes with a fewer pods than their capacity will

increase energy waste. To do this, our proposed autoscaler main-

tains nodes in a stack such that when a node is added to the stack,

all other nodes below are allocated the maximum number of pods

and pods are removed from the node at the top of the stack. If all of

the currently switched on nodes are fully utilized and we require

to add pods, we switch on a new server (a worker node) and start

allocating new pods to it. Thereby we increase the number of pods

allocated to a node until it cannot host anymore pods; then we add

a node to the list. At any given time there may be a worker node

with no pods allocated to them. To save energy, we remove these

nodes, and we switch off servers with no active nodes. This way

we expand/shrink the size of the cluster and make sure nodes are

always fully utilized before adding/removing a node to the system.

As we need to iterate through all P pods running on maximum

N servers, the time complexity of AutoScaler algorithm is O(NP)
which allows for a linear scalability in terms of number of servers

and number of pods.

7 MULTI-ARMED BANDIT APPROACH
Our proposed IP and linear regression algorithms require a certain

knowledge preliminary to the implementation. In the case of the

IP optimization model, we need values like energy consumption

and generation at each level and also how many pods are present

in each node. Similarly, for the linear regression model, we need

to perform system profiling to gather data for the model which

is difficult in practice. Due to the mentioned limitations, these

solutions cannot be easily adapted to all scales and structures. To

solve these problems, we propose an online machine learning model

based on the Multi-Armed Bandit (MAB) approach. The model

continuously learns and improves its results without relying on a
5



priori knowledge. We model our problem as MAB since it requires

no initial knowledge about the system and it is easy to implement.

MAB is a special case of Reinforcement Learning. The original

MAB problem [20] was in relation to a problem in a casino with

multiple slot machines where a user needed to select the slot ma-

chine with the highest chance of a jackpot. The model has multiple

slot machine arms to choose from thereby obtaining the name

Multi-Armed Bandit. We present our problem as a MAB problem

with the agent having to choose among different actions (arms)

which affect the QoS of the IoT application and to find the action

with the best outcome by looking at the reward after making a

decision. We solve the formulated MAB problem using the Up-

per Confidence Bound (UCB) method, where a reward function

returns a value between 0 and 1 [20]. The UCB algorithm updates

its exploration-exploitation balance as it gathers more information.

Algorithm 3 shows the implementation of our online MAB-based

learning approach. Our algorithm makes a decision every time the

system becomes stable. The stable condition is achieved when there

is no change in the number of pods by the Autoscaler for the last

consecutive time slots (4 time slots in our setup). When the system

is stable, our MAB-based algorithm computes the reward for the

last choice made using a reward function which is discussed later.

After receiving the reward, it registers the reward with the choice

in the policy and makes the next choice using the UCB method and

set the rate of tasks accordingly.

The actions selected by our approach are related to the adjust-

ment of the QoS, meaning the rate at which the fog environment

accepts incoming tasks. There are 5 actions in our solution, refer-

ring to varying the rate of tasks (QoS): 1) increase rate high, 2)

increase rate low, 3) do nothing, 4) decrease rate low, and 5) de-

crease rate high. All these actions have rewards set between 0 to

1, initially valued at 0.5. The reward function is designed in a way

that it forms different rewards for the actions. It depends on the

difference between the available renewable energy and the energy

consumed and tries to tell which action is best suited. If there is a

sufficiently small difference (ep ) between them (available renew-

able energy and energy consumed), then do nothing is given as the

highest reward (i.e., 1), and other actions are given a lower reward

(0.25), presenting that the do nothing as the best choice. Similarly,

if the available renewable energy is much greater (4*ep ) than the

energy consumed, then both increase rate actions are given higher

rewards (1), whereas do nothing is given a lower reward (0.25) and

both decrease rate actions are given a zero reward. Similarly, if

the available renewable energy is much lower (4*ep ) than the en-

ergy consumed, then both decrease rate actions are given higher

rewards (1), whereas do nothing is given a lower reward (0.25) and

both increase rate actions are given a zero reward.

MAB algorithms generally have polynomial time-complexity

which provides the highest among all proposed approaches. How-

ever, since GreenFog is designed to work in a multi-server small-

scale Fog environment, it is safe to assume that the number of nodes

in the cluster does not become very large.

8 PERFORMANCE EVALUATION
We have conducted a series of experiments to evaluate the perfor-

mance of the GreenFog Framework using each of the proposed

algorithms in experimental settings on a real-world testbed and

with a practical application demonstration. We first present the

Algorithm 3:MAB

Input minPodLoad, maxPodLoad if Stable then
reward ← дetReward(arm)
policy.setReward(arm, reward)
arm← policy.choice()
setRate(arm)

end
autoscaler(minPodLoad,maxPodLoad)

Table 1: Hardware Information and Quantity

Hardware Quantity

Dell R710 2RU Server Dual X5570 CPU 4 core 2.93 GHz, 48GB DDR3 ECC 3

RAM 900GB 10K SAS 2

2.5" Bay PERC H700 Raid card with Battery Back Cache 8

870W PSU 2

EMAB22 Eaton Vertical Managed G3 ePDU - 0U (C20 16A 1P), 20XC13,

4XC19, 52 x 53 x 1604, 2.46kg

2

Table 2: Virtual Machine Information
Quantity 5

Flavour m1.xlarge

Memory 16GB

VCPUs 8

Disk 160GB

environmental setup followed by different application settings and

finally present some results and discussions.

8.1 Environmental Setup
We utilize a cluster of 3 Dell servers managed by OpenStack in our

laboratory at Monash University as the Fog environment. This is a

reasonable scale for Fog node.

8.1.1 Hardware. As shown in Table 1, the setup contains 3 physical
servers connected to Eaton ePDUs (Electronic Power Distribution

Unit) which can be remotely accessed to monitor power consump-

tion of the servers. In our setup, a total of 5 Virtual Machines (VMs)

can be hosted out of which one acts as a kubernetes master and

others as kubernetes nodes (workers). The master VM runs on the

main server alone and the rest are running on the other two physi-

cal servers (2 VMs on each physical server). The types of VM are

presented in Table 2. We limit the maximum resources (CPU, Mem-

ory, etc.) that can be used by each pod. Every VM can accommodate

up to 5 pods including the master VM, with a total of 25 pods for

all VMs. Apart from the servers, we use a group of three Raspberry

Pi Model 3B+ to act as the IoT devices. The Raspberry Pis use the

Raspberry Pi Camera Module v2 to take the images and send it to

the service end point.

8.1.2 Software. The Raspberry Pis run a client code taking images

and sending them to the kubernetes service running on the master

node. They also run a flask server with RESTful APIs through which

we can set the image rate. The flask server accepts the interval in

seconds that images are sent. This way the rate of tasks submitted

to the service can be set for the Raspberry Pis. Since there is an

application overhead of around 0.3 seconds, the minimum interval

of 0.3 seconds can be set. The maximum power consumption of our

system is around 1 KW whereas the maximum renewable energy

6



available in the traces is also roughly 1kWh as anything above will

not be utilized by the servers. We have not taken into account the

energy needed for cooling or other power consumption sources. We

presume that the renewable energy available is only to be utilized

for the server power consumption.

We deploy YOLO V3 (You Only Look Once) [25], an object de-

tection technology, as a service in the pods to process the image

data being sent by the Raspberry Pis to the end point of Kubernetes

service. YOLO is a real time object detection system available as a

library in Python. The servers are set up in a way that the master

node assigns a new incoming task to a pod with the lowest load.

After object detection is performed, the pods send a post request to

another server with the detected objects and information about the

image in a JSON object. In addition, there is a Gateway software

which interacts with the master node and the Raspberry Pis, that

evenly sets the rate provided by the master node across all the 3

Raspberry Pis. All of the images being sent by the Raspberry Pis

are of the same resolution 1200x600 pixels thereby the only aspect

of the QoS that concerned the Fog environment is the rate at which

the tasks are sent to the master node.

8.1.3 Renewable Energy Trace. The renewable energy traces used

for all the experiments is based on the availability of solar energy

for a location of a data center in Lyon, France. We used the data

traces by SoDa service with one-hour granularity between the

20th and 21st of September, 2007. The Global Horizontal Irradi-

ance (GHI) for the location is used to calculate the output for the

solar photovoltaics (PV) power. We assume that the data center

consumes power generated by the PV panels of a total area that

generates 1 KW of electricity at peak with a tilt angle of 45
o
and

PV cell efficiency of 30%. For more details check our previous paper

in [Authors].
3

8.2 Linear Regression
The linear regressionmodel required a profiling for different rates of

images while the Autoscaler changes the number of pods according

to the average number of pending tasks. The lower threshold is

set at 10 meaning that if the average number of pending tasks

in the pods goes below 10, the scaler reduces one pod from the

deployment. Similarly, the upper threshold is set at 15, where the

scaler increases the deployment by one pod if the average number

of pending jobs becomes greater than the upper threshold.

The profiling results are shown in Table 3. Our aim is to identify

the power consumption for different rates we set. For each of the

rates, we wait until the Fog environment becomes stable thereby

giving stable and appropriate power consumption values. After

collecting the data shown in Table 3, we are able to form a linear

3
The citation is hidden for the sake of double blind review.

Table 3: Profiling Data
Total Power (W) Power Per Task (W) Images/Second

258.8 595.24 0.4348

261.4 339.82 0.76923

472 377.6 1.25

586.9 322.795 1.82

805.4 342.295 2.353

974.9 353.40125 2.76

0 200 400 600 800 1,000
0.5

1

1.5

2

2.5

3

Power Consumption (Watt)

R
a
t
e
o
f
i
m
a
g
e
s
(
I
m
a
g
e
/
S
e
c
)

Actual rate

Predicted rate

Figure 3: Regression model predictions vs actual values

regression model where the power consumed by the Fog environ-

ment is the explanatory variable and the rate (Images per Second)

is the dependent variable to get α (y-intercept) as -0.2535 and β
(slope) as 0.00324 for the equation.

Fig. 3 shows how well the regression model predicts the power

consumption compared to the actual data. Note that the power

consumption (not energy) per task listed in Table 3. The image

processing task executed per image is a heavy process and requires

significant amount of time and resources leading to power con-

sumption values reported in Fig. 3. Therefore, to keep the queue

length and response time for tasks the number of pods needs to

adjusted in the system.

We ran the Linear Regressionmodel with the Autoscaler utilizing

the renewable energy traces in which we translated every hour in

the actual trace into a 15-minute interval in the experiment. This is

to perform shorter experiments with more data points. The code

reads the available green energy generation for the appropriate

time and sets the rate for IoT devices based on the above equation.

With limited capacity (the maximum number of pods is limited),

we profiled the maximum rate that can be set. Similarly, there is

a minimum rate when only the master node is ON with only one

pod.

Therefore, the framework shuts down any VM not currently used

and also shutdowns any server with no VM running. As the master

VM always needs to be running, a minimum power consumption

of around 250-300 Watts is reported. When a server is shut down,

it still consumes a base power which is around 20-30 Watts.

As we can see in Fig. 4, the actual power consumption increases

and decreases according to the renewable energy availability. The

total absolute energy difference between the available renewable

energy and the energy consumed in the 24-hour test is 4.886 kWh

(this is shown by the shaded area in the figure). As stated earlier,

we scale down the experiments to 6 hours by assuming every hour

in the renewable energy traces to be about 15 minutes in real life.

However, we report results based on the 24-hour scale. The duration

of 15 minutes was chosen, as booting up/down a server takes at

least 10-12 minutes, thereby we need at least 15 minutes to ensure

the system becomes stable at around 15 minutes before the next

decision is made. The sudden spikes and dips seen in Fig. 4 deviating

from the renewable energy are due to how AutoScaler performs. As

it increases the number of pods linearly (1 after another), it might

take some time to get to the required number of pods needed to

handle the incoming tasks. Due to this, the average pending tasks in

each pod could fluctuate to extreme limits. Therefore, the Autoscaler

could overshoot or undershoot the number of pods needed causing

7



such downward or upward spikes. In addition, a node shutdown

might take 10-12 minutes, adding a huge latency to reach stability.

8.3 IP Model with Linear Autoscaling
We use the IP model from Section 4 with the default Linear Au-

toscaler from Section 6. The IP model requires certain information

about the system such as energy consumed per pod, energy con-

sumed by the servers when in shutdown or running, energy needed

to service a task, and the processing time it takes for a task. To

obtain the energy consumed per pod, we ran the system with one

VM (master) with 2 pods running and then, we scaled the deploy-

ment by adding another pod to the same VM to record the rise in

energy consumption. For energy consumed by the servers, we first

switched off the server and recorded the power consumption then

we switched on the system and noted the difference in the power

consumption. To figure out the energy needed to service a task,

we ran the Fog environment with Autoscaler from Section 6 and

then we sent one image every second and waited until the cluster

becomes stable and noted down the power consumption; from this

value we subtracted the values obtained previously like the energy

per pod and the energy per node in On/Off state appropriately to

get the energy per task. Similarly, to calculate the processing time

a task can take, we ran our Fog environment setup with Autoscaler

and the rate of one task per second and noted down the number of

pods needed to cater to these requirements.

If such information is known, this model can provide the number

of servers that should be running, how many pods in each server

are required, and also the acceptable rate of jobs which helps in

setting QoS. In this experiment, we only use the rate of tasks and

ignore scaling information that the IP model produces. For scaling,

we use the Linear Autoscaler to automatically allocate resources.

We tested the IP model in this environment with the same solar

traces we used in the previous experiment. The results are shown in

Fig. 5 illustrating that IP model with Linear Autoscaler has 16% less

absolute energy consumption difference compared to the Linear

Regressionmodel for the same data by being 4.095 kWh compared to

the 4.886 kWh, respectively. Results shows the impact of possessing

future knowledge and detailed information regarding task and pod

energy consumption by the IP model while a linear autoscaler is

used. In the next subsection, we investigate the performance of IP

model if scaling information that the IP model produces is used

instead of linear autoscaling.

8.4 IP with Direct Scaler
Fig. 6 shows the results of the experiments for the IP model from

Section 4 with a new scaler, called Direct Scaler, which utilizes

all the decision variables from the IP model. The Direct Scaler

receives the information owing to which nodes are to be switched

On/Off, and the number of pods that should be running in each

node from the IP model. The IP model also sets the rate of images

(QoS) that should be sent to the gateway software. Fig. 6 shows

a considerably smooth power consumption pattern with a lower

number of spikes compared to the results in Subsections 8.3 and

8.2. The total absolute difference between the green energy and

the actual consumed energy is around 3.677 kWh. This approach

performs significantly better than the Linear Regression and the IP

model with Linear Autoscaler. Results illustrate that IP model with

Direct Scaler has 25% less absolute energy consumption difference

compared to the Linear Regressionmodel for the same data by being

3.677 kWh compared to the 4.886 kWh, respectively. Similarly, it is

10% less compared to the 4.095 kWh for the IP model with linear

autoscaler. Note that IP with direct autoscaler can be used as the

baseline for the comparison with other approaches as it has future

knowledge and detailed information of system.

8.5 MAB model with Linear Autoscaler
Fig. 7 depicts power consumption for the GreenFog Framework,

where the MAB model from Section 7 with the Linear Autoscaler

mentioned in Section 6 is used.We conducted two days experiments,

where the first day would provide MAP model the opportunity to

learn the system behaviour. The renewable energy data used is

exactly the same across 2 days and matches with the data used

with other approaches to help make comparisons. In Fig. 7, we can

see that the MAB model tries to match the energy consumed with

the renewable energy on the first day and improves in the second

day as time passes. The total absolute energy difference between

the available renewable energy and the energy consumed in the

second day is 4.164 kWh (shown by the shaded area in the figure).

This is 14% better than the linear regression model about the same

as the IP model with Linear Autoscaler. However, as we expect,

the baseline IP model with Direct Scaler outperform this model by

11% less total absolute energy difference. The results show how the

MAB model performs very well compared to other approaches if

sufficient and proper data for training is provided.

8.6 Comparison of Response Times
Since response time is of critical concern in any Fog environment,

we evaluated the response time for different optimization models

in the GreenFog framework. Fig. 8 shows the CDF of response time

of IoT requests for different optimization models. In Fig. 8, we can

see that 90% of requests are served in less than 29 seconds when

the IP model with Direct Scaler is used. However, the IP model

with Linear Autoscaler reaches the same stats at 404 seconds. The

linear regression and MAB models with Linear Autoscaler serve

90% of requests at 348 and 241 seconds, respectively. The significant

difference between the response time of requests of different models

is due to the type of autoscaler they use. The Linear Autoscaler

maintains a lower threshold for the number of pending requests in

the queue of each pod, whereas the direct scaler does not. Among

the models that used the Linear Autoscaler, MAB provides the best

response time; whereas, the linear regression performs slightly

better than the IP model.

9 RELATEDWORK
The energy consumption of data centers is set to account for 3.2

percent of the total worldwide carbon emissions by 2025 [4]. If we

add the energy use by all the intermediary nodes and routers in-

volved to transfer data from edge devices to the cloud coupled with

the energy of the edge devices themselves, the figure is extremely

intimidating. Hittinger and Jaramillo [14] discussed how scientists

and regulators need to address this energy issue to ensure that the

benefits of IoT do not come at the expense of rising energy.

8



0 4 8 12 16 20 24

0

200

400

600

800

1,000

1,200

Hours of day (hour)

P
o
w
e
r
C
o
n
s
u
m
p
t
i
o
n
(
W
a
t
t
s
)

Renewable Energy Power

Consumed Energy Power

Figure 4: Linear Regression
with Linear AutoScaler

0 4 8 12 16 20 24

0

200

400

600

800

1,000

1,200

Hours of day (hour)

P
o
w
e
r
C
o
n
s
u
m
p
t
i
o
n
(
W
a
t
t
s
)

Renewable Energy Power

Consumed Energy Power

Figure 5: IP with Linear Au-
toscaler

0 4 8 12 16 20 24

0

200

400

600

800

1,000

1,200

Hours of day (hour)

P
o
w
e
r
C
o
n
s
u
m
p
t
i
o
n
(
W
a
t
t
s
)

Renewable Energy Power

Consumed Energy Power

Figure 6: IP with Direct Scaler

0 4 8 12 16 20 24 28 32 36 40 44 48

0

200

400

600

800

1,000

1,200

Hours of day (hour)

P
o
w
e
r
C
o
n
s
u
m
p
t
i
o
n
(
W
a
t
t
s
)

Renewable Energy Power

Consumed Energy Power

Figure 7: MABwith Linear Au-
toscaler

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

CD
F

Response Time (seconds)

Regression Linear Autoscaler

IP Linear Autoscaler

IP Direct Scaler

MAB Linear Autoscaler

Figure 8: CDF of Response Time for Different Optimization
Techniques

To help utilize both cloud technologies and edge computing de-

vices, a good bridge is needed which is provided by the introduction

of Fog computing as stated in [30]. Fog computing provides micro

centers closer to the edge devices that helps reduce the usage of

the network bandwidth by the partial offloading of workloads from

the cloud to the edge which in turn leads to saving energy.

A study conducted in [15] shows that the Fog environment can

reduce energy consumption compared to the centralized system

like the cloud. Similarly, Farooqi et al. [8] explained how Fog com-

puting is essential to reduce the overall energy usage. However,

to make Fog computing sustainable, many researchers have pro-

posed the usage of green energy to power Fog micro data cen-

ters [31] [18] [17] [8] [26] [16].

To utilize the green energy most efficiently and to further help

the usage of renewable energy for the Fog computing environments,

Li et al. [21] presented approaches to help improve the usage of

green energy. However, contrary to our framework, they do not

consider QoS adjustment in their proposed approaches. Goudarzi et
al. [12] and Mahmud et al. [22] suggested finding the optimal place-

ment of tasks for Fog computing environments, so as to maximize

utilization of green energy sources like Solar, Wind, and Hydro.

They focused on meeting QoS requirements of the IoT applica-

tions, while they did not consider the adjustment of QoS for IoT

applications similar to our work.

Gu et al. [13] presented an approach to maximize green energy

utilization using an optimal task allocation system which satisfies

the required QoS according to its availability in these Fog nodes.

They proved the NP-hardness of the problem of the joint considera-

tion of VM migration, task allocation, and green energy scheduling.

While we proposed an optimal solution along with regression-based

heuristic and machine learning approaches based on QoS adjust-

ment, they tackled the computation complexity using a heuristic

algorithm approximating the optimal solution. In addition, they do

not consider QoS adjustment as we do in this work. Toor et al. [26]
and Karimiafshar et al. [17] proposed techniques based on dynamic

voltage and frequency scaling to match energy consumption of

cloud data centers with renewable energy availability. Their ap-

proach differs from ours as we focus on workload shaping based

on QoS adjustment while they focus on hardware techniques.

In a study performed by Zhang et al. [32], the energy harvesting

in the edge devices is optimized subject to QoS constraints. Adding

to this, Xu et al. [29] reduced the energy usage from the grids using

brownout techniques and switching off the servers with no load.

Their approach is similar to our methods but it is designed for cloud

environments. They also focused on temporal load shifting which

is not possible for Fog environments and the IoT ecosystem.

Mahmud et al. [23] and Karimiafshar et al. [16], in their research

tells us about a docker containerization fog environment with a cus-

tom scaler, scheduler and dispatcher which can be used to maximise

Green energy usage or to maximise Response time such that we can

always find a balance depending on the task being performed by

the Fog environment. Even though they tell about the opportunity

to be able to customise the scaler and dispatcher to meet the needs

we use these techniques to further this by showing how QoS can

be chosen to counter the usage of green energy and all the different

ways this can be done and their results.

Goiri et al. [10], tells on ways the fog environment can predict

the solar or green energy capacity and make decisions early, We use

this approach to add to our Optimization model such that we the

fog environments can act early and utilize the green energy more

efficiently. In summary, our proposedmethods are different from the

existing approaches, as focusing on reactive QoS adjustment of IoT

application to optimize renewable energy use for Fog environments.

10 DISCUSSIONS
This paper presents GreenFog, a framework for building a sustain-

able fog computing platform based on QoS adjustment. GreenFog

targets the deployment of edge/fog platforms that have a source of

renewable energy such as solar and focuses on applications where

the QoS can be flexibly adjusted based on data quality (e.g., image

processing). Other examples of applications that fit the proposed

framework include, but are not limited to, surveillance video ana-

lytics or audio signal processing.

The main aim of this work is to introduce a novel framework

for building sustainable fog computing environments. The main

9



strength of ourwork is that we developed the entire software system

and tested it using a real-world testbed (Fog node, Raspberry Pis,

cameras), applications (Yolo), and traces (Solar data). However,

working with real systems and relying on actual measurements

limit the scope for conducting extensive and various experiments

possible in simulations. For example, the evaluation is limited to

two days as experiments are happening in real-time. We are also

bounded by the scale limitations of equipment in an academic

research laboratory. Considering these limitations, we showed that

GreenFog provides a promising approach to build sustainable Fog

environments, and the proposed optimization models can efficiently

match power consumption and renewable power generation.

The main goal of our paper is to represent the possibility of

optimizing green energy use through adaptive QoS adjustments.

Therefore, we focused on methods to set optimized QoS levels and

relied on a simple widely used threshold-based auto-scaling for

the right-sizing of resources. Experimental results show that the

autoscaling approach significantly impacts the overall system per-

formance. Therefore, the design and evaluation of more advanced

autoscaling techniques for the GreenFog framework represent a

promising future direction.

11 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed GreenFog, a framework to optimize

green energy use for Fog environments with onsite renewable elec-

tricity generation. We designed and implemented an optimization

model to minimize the usage of brown energy and maximize the uti-

lization of the available green energy by adjusting QoS for the IoT

application. This model requires exact calculations of the energy

requirements of different components of the Fog environment that

would be hard to collect in practice. We proposed a heuristic based

on a Linear Regression approach to overcome such a challenge

while attaining a comparatively similar result. To further help the

cause of the Linear Regression approach, a threshold-based Linear

Autoscaler was also proposed. Since the performance of the Linear

Regression model relies on accurate profiling, we proposed a ma-

chine learning model based on the Multi-Armed Bandits problem

that removes the need for in advance knowledge of the systemwork-

load and energy consumption model. We evaluated and validated

the GreenFog framework equipped with different optimization tech-

niques and approaches on a real testbed. We measured the actual

power usage and response times of requests with a practical IoT ap-

plication and realistic traces of renewable energy. In the future, we

are interested in developing a model to work based on forecasting

future renewable energy availability. We further look into solving

this problem with other machine learning methods such as deep

reinforcement learning to improve the efficiency of the proposed

framework.

REFERENCES
[1] Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. 2018. Offloading in

fog computing for IoT: Review, enabling technologies, and research opportunities.

Future Generation Computer Systems 87 (2018), 278–289.
[2] Tanweer Alam. 2018. A reliable communication framework and its use in internet

of things (IoT). CSEIT1835111| Received 10 (2018), 450–456.

[3] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,

Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-time video

analytics: The killer app for edge computing. computer 50, 10 (2017), 58–67.

[4] Anders Andrae. 2017. Total consumer power consumption forecast. Nordic
Digital Business Summit 10 (2017).

[5] Piotr Borylo, Artur Lason, Jacek Rzasa, Andrzej Szymanski, and Andrzej Jajszczyk.

2016. Energy-aware fog and cloud interplay supported by wide area software

defined networking. In 2016 IEEE International Conference on Communications
(ICC). 1–7. https://doi.org/10.1109/ICC.2016.7511451

[6] X. Chang, W. Li, C. Xia, J. Ma, J. Cao, S. U. Khan, and A. Y. Zomaya. 2018. From

Insight to Impact: Building a Sustainable Edge Computing Platform for Smart

Homes. In 2018 IEEE 24th International Conference on Parallel and Distributed
Systems (ICPADS). 928–936. https://doi.org/10.1109/PADSW.2018.8644647

[7] Marco Cococcioni and Lorenzo Fiaschi. 2021. The Big-M method with the nu-

merical infinite M. Optimization Letters 15, 7 (2021), 2455–2468.
[8] A. M. Farooqi, S. I. Hassan, and M. A. Alam. 2019. Sustainability and Fog

Computing: Applications, Advantages and Challenges. In 2019 3rd International
Conference on Computing and Communications Technologies (ICCCT). 18–23.
https://doi.org/10.1109/ICCCT2.2019.8824983

[9] Íñigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini.

2013. Parasol and GreenSwitch: Managing Datacenters Powered by Renewable

Energy (ASPLOS ’13). Association for Computing Machinery, New York, NY, USA,

51–64. https://doi.org/10.1145/2451116.2451123

[10] Íñigo Goiri, Kien Le, Md. E. Haque, Ryan Beauchea, Thu D. Nguyen, Jordi Gui-

tart, Jordi Torres, and Ricardo Bianchini. 2011. GreenSlot: Scheduling Energy

Consumption in Green Datacenters. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’11).
Association for Computing Machinery, New York, NY, USA, Article 20, 11 pages.

https://doi.org/10.1145/2063384.2063411

[11] Íñigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and Ricardo

Bianchini. 2012. GreenHadoop: Leveraging Green Energy in Data-Processing

Frameworks. In Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys ’12). Association for Computing Machinery, New York, NY,

USA, 57–70. https://doi.org/10.1145/2168836.2168843

[12] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya. 2020. An Applica-

tion Placement Technique for Concurrent IoT Applications in Edge and Fog

Computing Environments. IEEE Transactions on Mobile Computing (2020), 1–1.

https://doi.org/10.1109/TMC.2020.2967041

[13] Lin Gu, Jingjing Cai, Deze Zeng, Yu Zhang, Hai Jin, and Weiqi Dai. 2019. Energy

efficient task allocation and energy scheduling in green energy powered edge

computing. Future Generation Computer Systems 95 (2019), 89–99.
[14] Eric Hittinger and Paulina Jaramillo. 2019. Internet of Things: Energy boon or

bane? Science 364, 6438 (2019), 326–328.
[15] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker. 2016. Fog Computing

May Help to Save Energy in Cloud Computing. IEEE Journal on Selected Areas
in Communications 34, 5 (2016), 1728–1739. https://doi.org/10.1109/JSAC.2016.

2545559

[16] Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour, and

Adel N. Toosi. 2021. An Energy-Conservative Dispatcher for Fog-Enabled IIoT

systems: When Stability and Timeliness Matter. IEEE Transactions on Services
Computing (2021), 1–1. https://doi.org/10.1109/TSC.2021.3114964

[17] Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour, and

Adel N. Toosi. 2020. Effective Utilization of Renewable Energy Sources in Fog

Computing Environment via Frequency and Modulation Level Scaling. IEEE
Internet of Things Journal 7, 11 (2020), 10912–10921. https://doi.org/10.1109/JIOT.

2020.2993276

[18] Aref Karimiafshar, Massoud Reza Hashemi, Mohammad Reza Heidarpour, and

Adel N. Toosi. 2021. A request dispatching method for efficient use of renewable

energy in fog computing environments. Future Generation Computer Systems 114
(2021), 631–646.

[19] Dominique Larcher and Jean-Marie Tarascon. 2015. Towards greener and more

sustainable batteries for electrical energy storage. Nature chemistry 7, 1 (2015),

19–29.

[20] Tor Lattimore and Szepesvari Csaba. 2020. Bandit algorithms. Cambridge Univer-

sity Press.

[21] W. Li, T. Yang, F. C. Delicato, P. F. Pires, Z. Tari, S. U. Khan, and A. Y. Zomaya. 2018.

On Enabling Sustainable Edge Computing with Renewable Energy Resources.

IEEE Communications Magazine 56, 5 (2018), 94–101. https://doi.org/10.1109/

MCOM.2018.1700888

[22] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and

Rajkumar Buyya. 2020. Profit-aware application placement for integrated

Fog–Cloud computing environments. J. Parallel and Distrib. Comput. 135 (2020),
177–190.

[23] Redowan Mahmud and Adel N. Toosi. 2021. Con-Pi: A Distributed Container-

based Edge and Fog Computing Framework. IEEE Internet of Things Journal
(2021), 1–1. https://doi.org/10.1109/JIOT.2021.3103053

[24] Redowan Mahmud and Adel N. Toosi. 2022. Con-Pi: A Distributed Container-

Based Edge and Fog Computing Framework. IEEE Internet of Things Journal 9, 6
(2022), 4125–4138. https://doi.org/10.1109/JIOT.2021.3103053

10

https://doi.org/10.1109/ICC.2016.7511451
https://doi.org/10.1109/PADSW.2018.8644647
https://doi.org/10.1109/ICCCT2.2019.8824983
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.1145/2063384.2063411
https://doi.org/10.1145/2168836.2168843
https://doi.org/10.1109/TMC.2020.2967041
https://doi.org/10.1109/JSAC.2016.2545559
https://doi.org/10.1109/JSAC.2016.2545559
https://doi.org/10.1109/TSC.2021.3114964
https://doi.org/10.1109/JIOT.2020.2993276
https://doi.org/10.1109/JIOT.2020.2993276
https://doi.org/10.1109/MCOM.2018.1700888
https://doi.org/10.1109/MCOM.2018.1700888
https://doi.org/10.1109/JIOT.2021.3103053
https://doi.org/10.1109/JIOT.2021.3103053


[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[26] Asfa Toor, Saif ul Islam, Nimra Sohail, Adnan Akhunzada, Jalil Boudjadar,

Hasan Ali Khattak, Ikram Ud Din, and Joel J.P.C. Rodrigues. 2019. Energy and

performance aware fog computing: A case of DVFS and green renewable energy.

Future Generation Computer Systems 101 (2019), 1112–1121.
[27] Ted Trainer. 2017. Some problems in storing renewable energy. Energy Policy

110 (2017), 386–393.

[28] Xailient. 2019. CARBON IMPACT. Available: https://www.xailient.com/

technical-details.

[29] Minxian Xu, Adel N Toosi, and Rajkumar Buyya. 2020. A Self-adaptive Approach

for Managing Applications and Harnessing Renewable Energy for Sustainable

Cloud Computing. IEEE Transactions on Sustainable Computing (2020).

[30] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,

Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. 2019. All one needs to know

about fog computing and related edge computing paradigms: A complete survey.

Journal of Systems Architecture 98 (2019), 289–330.
[31] Deze Zeng, Lin Gu, and Hong Yao. 2020. Towards energy efficient service compo-

sition in green energy powered Cyber–Physical Fog Systems. Future Generation
Computer Systems 105 (2020), 757–765.

[32] G. Zhang, Y. Chen, Z. Shen, and L. Wang. 2019. Distributed Energy Management

for Multiuser Mobile-Edge Computing Systems With Energy Harvesting Devices

and QoS Constraints. IEEE Internet of Things Journal 6, 3 (2019), 4035–4048.

https://doi.org/10.1109/JIOT.2018.2875909

[33] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale with

Approximation and Delay-Tolerance. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,

MA, 377–392. https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/zhang

11

https://www.xailient.com/technical-details
https://www.xailient.com/technical-details
https://doi.org/10.1109/JIOT.2018.2875909
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	2 Background and Motivational Scenario
	2.1 Challenges of using renewable energy in Fog Computing
	2.2 A Motivational Scenario

	3 System Overview and GreenFog Framework
	4 Optimization Model
	5 Linear Regression algorithm
	6 Threshold-based Linear Autoscaler
	7 Multi-Armed Bandit approach
	8 Performance Evaluation
	8.1 Environmental Setup
	8.2 Linear Regression 
	8.3 IP Model with Linear Autoscaling
	8.4 IP with Direct Scaler
	8.5 MAB model with Linear Autoscaler
	8.6 Comparison of Response Times

	9 Related work
	10 Discussions
	11 Conclusions and Future Work
	References

