
Leveraging Computational Reuse for Cost- and
QoS-Efficient Task Scheduling in Clouds

Chavit Denninnart1, Mohsen Amini Salehi1, Adel Nadjaran Toosi2, and Xiangbo Li3

1 School of Computing and Informatics,
University of Louisiana at Lafayette, Louisiana, USA {cxd9974,amini}@louisiana.edu

2 Faculty of Information Technology, Monash University, Victoria, Australia
adel.n.toosi@monash.edu

3 Brightcove Inc. , Arizona, USA xli@brightcove.com

Abstract. Cloud-based computing systems could get oversubscribed due to bud-
get constraints of cloud users which causes violation of Quality of Experience
(QoE) metrics such as tasks’ deadlines. We investigate an approach to achieve ro-
bustness against uncertain task arrival and oversubscription through smart reuse
of computation while similar tasks are waiting for execution. Our motivation in
this study is a cloud-based video streaming engine that processes video stream-
ing tasks in an on-demand manner. We propose a mechanism to identify various
types of “mergeable” tasks and determine when it is appropriate to aggregate
tasks without affecting QoS of other tasks. Experiment shows that our mecha-
nism can improve robustness of the system and also saves the overall time of
using cloud services by more than 14%.

Keywords: Task Aggregation · Oversubscription · Cloud Computing · Video Stream
Processing · Task Scheduling

1 Introduction

With Cloud and Edge Computing gaining more popularity as the back-end platform of
many applications, the need for efficient use of these platforms is of paramount im-
portance for individual users and businesses. A common practice to efficiently utilize
cloud resources is to use a central queue of arriving tasks with a scheduler that allocates
these tasks to a scalable pool of worker Virtual Machines (VMs). The tasks often have
individual deadlines that failure to meet them compromises the Quality of Experience
(QoE) expected by the end-users.

Although cloud providers supply virtually unlimited resources, users generally have
budget constraints, thus, cannot lavishly acquire cloud resources (VMs) [2]. Such lim-
itation raises the oversubscription problem, particularly, when there is a surge in the
tasks arriving to the system. An oversubscribed system is defined as a system that is
overwhelmed with arriving tasks to the extent that there is no way to meet the deadlines
of all the tasks, thus, violating end-users’ QoE.

A large body of research has been dedicated to alleviate the oversubscription prob-
lem. The approaches undertaken in these research works follow two main lines of think-
ing; First, allocation-based approaches that try to minimize the impact of oversub-
scription through efficient mapping (scheduling) of the tasks to the resources. Second,



2 C. Denninnart et al.

approaches based on computational reuse that avoid or alleviates the oversubscription
through efficient caching of the computational results.

Although both of the aforementioned approaches are effective, they are limited in
certain ways. The allocation-based approaches cannot entirely resolve the oversubscrip-
tion because there is no such a solution according to the above-mentioned definition.
In addition, many of the approaches are based on complex scheduling algorithms that
impose extra overhead to the already oversubscribed system. The approaches based
on computational reuse are also limited because they can only reuse the computations
for tasks that are identical to the ones already completed and cached. In other words,
if two tasks share part of their computation, it cannot be captured by current caching
techniques.

In this research, we propose a mechanism based on computational reuse that aims at
alleviating oversubscription by aggregating identical and similar tasks in the scheduling
queue. Our mechanism makes the scheduling queue less busy and potentially lighten up
the overhead of the scheduling process. It complements the existing scheduling-based
and caching-based approaches but is not a replacement for them.

We define mergeable tasks as those tasks that are either identical or sharing part of
their operation with other tasks. We need a mechanism to, first, detect different types of
mergeable tasks and, second, eliminate the detected mergeable tasks from the schedul-
ing queue without causing further deadline violations in the system.

Our motivational case study in this research is a video streaming engine that needs
to process videos (e.g., downsizing resolution or bit-rate) in the cloud before streaming
them to viewers [1]. In this system, it is likely that viewers request same videos to
be streamed, hence, creating similar tasks in the system especially when the system is
oversubscribed. For example, two viewers who use similar display devices may request
to stream the same video with the same or different specifications. The former case
creates identical tasks in the system whereas the latter one creates similar tasks.

In this research, we develop an Admission Control component that is able to detect
different levels of similarity between tasks. The system is aware of the tasks’ deadlines
and performs merging without introducing additional deadline violations. The task ag-
gregation also results in efficient utilization of resources and enable more tasks to meet
their deadlines. Therefore, both viewers and system providers can be benefited from
the proposed mechanism. In summary, the key contributions of this research are as
follows: (A) Proposing an efficient way of identifying potentially mergeable tasks; (B)
Determining appropriateness and potential side-effects of merging tasks; (C) Analyzing
the performance of the task aggregation mechanism on the viewers’ QoE and time of
deploying cloud resources (VMs).

Although we develop this mechanism in the context of video streaming, the idea of
task aggregation and research findings of this work are valid for other domains.

2 Background for Merge-Aware Admission Control

While storing multiple versions of the same video to serve different types of display
devices is a conventional practice, Cloud-based Video Streaming Engine (CVSE) [6]



Title Suppressed Due to Excessive Length 3

enables on-demand (i.e., lazy) processing of video streams, particularly for rarely ac-
cessed video streams [3].

...

VMs

Batch Queue

Merge-Aware 

Admission 

Control

Scheduler

Merged Task Time 

EstimatorA
rriv

in
g
 T

a
s
k

Fig. 1: Overview of Merge-Aware Admission Control for
CVSE system

In the CVSE architecture,
each task is a GOP (Group
Of Picture) of the requested
video stream. A GOP task re-
quest (hereafter, called task) in-
cludes the operation required
along with the corresponding
parameters bound to that re-
quest. Admission Control com-
ponent, as shown in Figure 1,
sends the task to the batch queue (aka scheduling queue) where the task waits to be
assigned by the scheduling policy [4] to one of multiple VMs’ queues. Most of the
scheduling policies are reliant on the Time Estimator component that is aware of the
expected execution time of each task type (e.g., different transcoding operations) on
the cloud VMs [5]. Tasks get executed on the assigned VM and streamed to the viewer
(More details about CVSE is in [5,6]).

In this paper, we develop our task aggregation mechanism inside Admission Con-
trol component of CVSE. For an arriving task, Admission Control recognizes if it is
mergeable with the ones exist in the batch queue or local queues of the VMs. Then, the
Admission Control decides the feasibility of merging (i.e., if merging causes deadline
violation for other tasks).

3 Task Similarity Detection

3.1 Categories of Mergeable Tasks

Mergeability of two given tasks can be explained based on the amount of computation
the two tasks share. In particular, mergeability of two or more tasks can be achieved in
the following levels:

(A) Task-level: This is when more than one instance of the same task exists in the
scheduling queue. Therefore, this level is also known as Identical tasks and can
achieve maximum computational reusability. As these tasks are identical, merging
them consumes the same resources required for only one task, hence, reducing both
cost and processing delay.

(B) Operation-level: This is when two or more tasks perform the same operation on the
same data but with different configurations. In this level of merging, the two tasks
can share part of their processing.

(C) Data-level: This is when two or more tasks perform different operations on the
same data. This level of merging achieves the minimum reusability by saving only
the time and processing overhead of loading data.

It is noteworthy that the aforementioned reusability levels are generic and can be
further categorized depending on the context.



4 C. Denninnart et al.

3.2 Detecting Similar Tasks

In this section, we provide a method to detect similar tasks. Although our solution carry
out task aggregation using Admission Control component. We would like to note that, it
is theoretically possible to carry out task merging in the scheduling queue, i.e., after the
task admission. In this case, to find mergeable tasks, we need to scan the entire queue
and perform a pair-wise matching between the queued tasks. Practically, this approach
is not efficient, because each time the queue is scanned, it imposes a significant number
of redundant comparisons. Hence, we choose to perform task merging upon task arrival
using the Admission Control component of the system.

Assuming there are n tasks in the queue, for each arriving task, a naı̈ve mergeable
task detection method has the overhead of performing n comparisons to find the merge-
able tasks. To reduce the overhead, we propose a method that functions based on the
hashing techniques. The general idea of the proposed method is to generate a hash key
from the arriving task request signature (e.g., GOP id, processing type, and their param-
eters). Then, the Admission Control finds mergeable tasks by searching for a matching
key in the hash table of tasks exist in the scheduling queue.

The explained method can detect task-level mergeability. We need to expand it to
detect operation- and data-level of task mergeabilities. To maximize the computational
reusability, an arriving task is first verified against task-level mergeability. If there is
no match in the task-level, then the method proceeds with checking the next levels of
mergeability, namely operation-level and data-level, respectively. To achieve the multi-
ple levels of mergeability, we create three hash-tables —each covers one level of merge-
ability. The hash-keys in each level are constructed from the tasks’ characteristics that
are relevant in deciding mergeability at that level. For instance, in video streaming case
study, keys in the hash-table that verifies task-level mergeability are constructed from
GOP id, processing type, and their parameters. While, keys in the hash-table that ver-
ifies operation-level mergeability are constructed from GOP id and processing type.
Similarly, keys in the hash-table of data-level mergeability are constructed from GOP
id.

Upon arrival of task j:

(1) if j merges with existing task i on Task-level similarity:
– No update on hash-table is required

(2) if j merges with existing task i on Operation- or Data-level similarity:
– Add an entry to each hash-table with hash-keys of task j and point them to

merged task i+ j
(3) if j matches with existing task i but the system chooses not to merge them:

– Add an entry to each hash-table with hash-keys of task j and point them to task j
(4) if j does not match with any of the existing tasks:

– Hash-keys of task j are added to the respective hash-tables

Upon task j completing execution (i.e., dequeuing task j):

– Remove all entries pointing to task j from hash-tables

Fig. 2: The procedure to update hash-tables upon arrival or completion of tasks



Title Suppressed Due to Excessive Length 5

Each entry of the hash-tables includes a hash-key and a pointer to the corresponding
task. Entries of the three hash-tables must be updated upon a task arrival and execution.
The only exception is Task-level merging, which does not require updating the hash-
tables. Figure 2 shows the procedure for updating the hash-tables for a given task j.

When the system merges task j with existing task i, the merged task, denoted as
i+ j, is essentially the object of task i that is augmented with request information (e.g.,
processing parameters) of task j. In this case, as shown in Step (2) of this procedure,
the system only adds an entry to each hash-table with hash-key of task j pointing to
merged task i+ j as existing key for task i already pointed to task i+ j. When task j is
mergeable with existing task i, but the system decides to add task j to the batch queue
without merging. In this case, task j has a higher likelihood of merging with other
arriving tasks. The reason is that task i has not merged with task j and it does not merge
with other arriving tasks. Hence, as shown in Step (3) of the procedure, the matching
entry pointing to task i is redirected and points to task j. It is worth noting that if the
arriving task does not match with any of the existing tasks, as shown in Step (4), its
hash-keys must be generated and added to the respective hash-tables. Also, when a task
completes its execution, its corresponding entries are removed from the hash-tables.

4 Identifying Merging Appropriateness

Imagine an arriving task merges into an existing task in the queue. If such merging is
not a Task-level similarity, the execution time of merged task is increased compared to
a task before merging. The increased execution time delays the execution of other tasks
waiting behind in the queue which could result in deadline violations. Therefore it is
critical to assess the impact of merging tasks before performing the merge.

Impact of merging can be assess based on additional deadline misses of tasks fol-
lowing merged tasks when merging occurred against without. Impact of merging asses-
sor create virtual copies of scheduling queue in two scenarios: with merging occurred
and without. It simulates the scheduling and estimates completion time of each task,
then compares to its deadline. Merging is only carried out if it does not cause additional
deadline violations than it would normally happen if the tasks are not merged.

The estimated completion time of task i on a given machine m, denoted as Cm
i and

formally shown in Equation 1, is calculated as the sum of the four following factors:
(A) current time, denoted τ; (B) estimated remaining time to complete the currently
executing task on machine m, denoted em

r ; (C) sum of the estimated execution times of
N tasks pending in machine queue m, ahead of task i. This is calculated as ∑

N
p=1(µp +

2·σp); (D) estimated execution time of task i.

Cm
i = τ+ em

r +
N

∑
p=1

(µp +2·σp)+(µi +2·σi) (1)

5 Performance Evaluation
5.1 Experimental Setup

We implemented a prototype of CVSE with task aggregation mechanism equipped. It
is designed to operate in different modes, namely real streaming mode and emulation



6 C. Denninnart et al.

mode that is used for testing purposes [6]. In this study, to examine various workloads,
we used CVSE in the emulation mode. We evaluated the proposed mechanism using
eight homogeneous VMs modeled after Amazon GPU (g2.2xlarge) VM.

The video repository we used for evaluation includes multiple replicas of a set
of benchmark videos. Videos in the benchmarking set are diverse both in terms of
the content types and length. The length of the videos in the benchmark varies in
the range of [10, 600] seconds splitting into 10-110 Group Of Picture (GOP) seg-
ments. The benchmark videos are publicly available for reproducibility purposes at
https://goo.gl/TE5iJ5. For each GOP of the benchmark videos, we obtained their
processing times by executing each processing operation 30 times on Amazon GPU
VM. The processing operations we benchmarked are: reducing resolution, changing
codec, adjusting bit rate, and changing frame rate.

To evaluate the system under various workload intensities, we generate [2000, 3000]
GOP processing tasks within a fixed time interval. We collect the deadline miss-rate
(DMR) and makespan (i.e., execution time to finish all tasks) of completing all tasks.
We conducted each experiment 30 times, each time with random task arrival time and
order. Mean and 95% confidence interval of the results are reported. We examined
three queuing policies, namely FCFS (First-Come-First-Serve), EDF (Earliest Deadline
First), and MU (Max Urgency). For each queuing policy, we studied no task merging
versus task merging. In the experiments, all tasks must be comepleted, even if they miss
their deadline.

5.2 Impact of Task Aggregation

2000 2200 2400 2600 2800 3000 3200
Number of GOP tasks

0

500

1000

1500

2000

2500

3000

M
ak

es
pa

n

Without Merging
With Merging

Fig. 3: Comparing the total time to
complete tasks (i.e., makespan) un-
der varying number of arriving GOP
tasks (horizontal axes) in two scenar-
ios: without task merging, and with
task merging.

Evaluating Makespan: In the first experiment,
our goal is to see the impact of task merging
on makespan. In fact, makespan implies the time
cloud resources are deployed, which implies the
cost incurred to execute all the tasks. We examine
the system under various subscription levels (from
2000 to 3200 GOPs) arriving within the same time
interval. As we can see in Figure 3, our proposed
merging mechanism saves between 4.40% and
14.33% in makespan. Execution time saving is
more pronounced when the system is more over-
subscribed. It is worth noting that makespan does
not vary under different scheduling policies.

Evaluating Deadline Miss Rate (DMR): In this
experiment, our goal is to evaluate viewers’ QoE.
For that purpose, we measure the deadline miss
rate resulted from no merging versus merging tasks under various oversubscribed levels
and with different scheduling policies. As shown in Figure 4, we observe that task
aggregation significantly reduces deadline miss rate in all scheduling policies. We can
see that the improvement in deadline miss rate of FCFS is less than EDF and MU
scheduling policies. This is because FCFS by nature causes a larger average waiting

https://goo.gl/TE5iJ5


Title Suppressed Due to Excessive Length 7

time and does not schedule tasks by considering their deadline. Therefore, task merging
mechanism performance, when combined with FCFS, is lower than other scheduling
polices.

Comparing the results shown in Figure 3 with those in Figure 4 reveals that the
difference in deadline miss rate is more dramatic than the makespan time. This is due
to the fact that even small reduction in task completion time can cause the merged
tasks meet their deadlines instead of missing that. We can conclude that the impact of
task aggregation mechanism on viewers’ QoE can become more remarkable when it is
combined with efficient scheduling policies.

2000 2200 2400 2600 2800 3000 3200
Number of GOP tasks

0
10
20
30
40
50
60
70
80

DM
R

Without Merging
With Merging

(a) DMR under FCFS Queue

2000 2200 2400 2600 2800 3000 3200
Number of GOP tasks

0
10
20
30
40
50
60
70
80

DM
R

Without Merging
With Merging

(b) DMR under EDF Queue

2000 2200 2400 2600 2800 3000 3200
Number of GOP tasks

0

20

40

60

80

DM
R

Without Merging
With Merging

(c) DMR under MU Queue

Fig. 4: Comparing the deadline miss-rate (DMR) under varying number of GOP tasks (horizontal
axes) in two scenarios: without task merging, and with task merging. Subfigures (a), (b), and (c)
show the DMR under FCFS, EDF, and MU queuing polices.

6 Related works

Software-based computational reuse has been extensively researched and used. How-
ever, not many systems can merge and reuse tasks before tasks are actually executed
and many of them tie very closely to one specific application. Below are some notable
works in this area.

Popa et al. [8] presented modules to identify identical and similar tasks to cache
partial results and reuse them on incremental computation specifically on Dryad plat-
form context. They proposed two solutions: One solution automatically caches compu-
tational results. Another solution merges tasks based on programmer’s defined merge
function. Their first solution is a caching system while their second solution is similar
to our work, but more specific to Dryad platform which does not have deadline and QoE
to consider.

Paulo and Pereira et al. [7] developed a system to perform deduplication of high
throughput data using Bloom f ilters. Bloom f ilters, while fast, have chances of giving
false positive hash checking. Therefore they achieve lower overhead data duplicate de-
tection than hash table approach we use, at the price of compromised accuracy.

7 Conclusion and Future works

In this paper, we improve efficiency of the system in oversubscribed condition by merg-
ing arriving tasks with other (exact or similar) tasks. We dealt with two challenges: First,



8 C. Denninnart et al.

how to identify identical and similar tasks in an efficient manner? Second, how to per-
form merging without violating the deadline of other tasks in the system? To address
the first challenge, we identified three main levels of similarity that tasks can be merged.
Then, we developed a method to detect different levels of task similarity within a con-
stant time complexity. To address the second challenge, we developed a method that
determines impact of merging and only perform merge operations if other tasks’ dead-
line are not affected. Experimental results demonstrate that the proposed system can
reduce the overall execution time of tasks by more than 14%, hence, cloud VMs can
be deployed for a shorter time. This benefit comes with improving QoE of the users.
Although we implemented this system in the context of video streaming, the concept
can be applied to other domains as long as we can define similarity levels in those do-
mains. In the future, we plan to extend this work by exploring the impact of marginally
compromising QoE, in favor of a remarkable cost-saving on the cloud resources.

Acknowledgments

This research was supported by the Louisiana Board of Regents under grant number
LEQSF(2016-19)-RD-A-25.

References

1. I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang. Video transcoding: an overview of various
techniques and research issues. IEEE Transactions on multimedia, 7(5):793–804, Oct 2005.

2. J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li. Application-aware dynamic
fine-grained resource provisioning in a virtualized cloud data center. IEEE Transactions on
Automation Science and Engineering, 14(2):1172–1184, Apr 2017.

3. M. Darwich, E. Beyazit, M. A. Salehi, and M. Bayoumi. Cost efficient repository management
for cloud-based on-demand video streaming. In Proceedings of the 5th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering, pages 39–44, Apr 2017.

4. M. Hosseini, M. A. Salehi, and R. Gottumukkala. Enabling Interactive Video Stream Prioriti-
zation for Public Safety Monitoring through Effective Batch Scheduling. In Proceedings of the
19th IEEE International Conference on High Performance Computing and Communications,
HPCC ’17, Dec 2017.

5. X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya. CVSS: A Cost-Efficient and QoS-Aware
Video Streaming Using Cloud Services. In Proceedings of the 16th IEEE/ACM International
Conference on Cluster Cloud and Grid Computing, CCGrid ’16, pages 106–115, May 2016.

6. X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya. Cost-Efficient and Robust On-
Demand Video Stream Transcoding Using Heterogeneous Cloud Services. IEEE Transactions
on Parallel and Distributed Systems (TPDS), 29(3):556–571, Mar 2018.

7. J. Paulo and J. Pereira. Distributed exact deduplication for primary storage infrastructures.
In Proceedings of the 14th IFIP International Conference on Distributed Applications and
Interoperable Systems, pages 52–66, Jun 2014.

8. L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc: Reusing work in large-scale computations.
In Proceedings of 1st USENIX workshop on Hot Topics in Cloud Computing, HotCloud ’09,
Jun 2009.


	Leveraging Computational Reuse for Cost- and QoS-Efficient Task Scheduling in Clouds

