
Integrated IoT and Cloud Environment for
Fingerprint Recognition

Ehsan Nadjaran Toosi1, Adel Nadjaran Toosi1, Reza Godaz2, and Rajkumar
Buyya1

1 Cloud Computing and Distributed Systems (CLOUDS) Laboratory
School of Computing and Information Systems

The University of Melbourne, Australia
{enadjaran,anadjaran,rbuyya}@unimelb.edu.au

2 Department of Software Enegineering
Islamic Azad University of Mashhad

rgodaz@mshdiau.ac.ir

Abstract. Big data applications involving the analysis of large datasets
becomes a critical part of many emerging paradigms such as smart cities,
social networks and modern security systems. Cloud computing has de-
veloped as a mainstream for hosting big data applications by its ability
to provide the illusion of infinite resources. However, harnessing cloud
resources for large-scale big data computation is application specific to
a large extent. In this paper, we propose a system for large-scale fin-
gerprint matching application using Aneka, a platform for developing
scalable applications on the Cloud. We present the design and imple-
mentation of our proposed system and conduct experiments to evaluate
its performance using resources from Microsoft Azure. Experimental re-
sults demonstrate that matching time for biometric information such as
fingerprints in large-scale databases can be reduced substantially using
our proposed system.

1 Introduction

Big data applications are getting popular in many fields due to the quick expan-
sion of the Internet, smart cities, Internet of Things (IoT) devices in producing
data [1]. In most of the cases, the data requires being processed and structured for
further procedures [2]. Processing big data is often very time-consuming while
it could be decreased by increasing the computation power. One of the most
preferred approaches to speed up big data processing is cloud computing [3].

Cloud computing can provide an infinite amount of computing, storage, and
network resources which suits big data challenges. The data could also be stored
entirely in a local infrastructure and only transferred to public infrastructure for
more computation power while the trade-off between data transfer and compu-
tation power need to be considered.

In this paper, we propose a design and implementation of a big data and
security-based application for searching and finding a matched fingerprint as a



biometric information among a massive database of fingerprints records. The
main aim of the application is to find personal information attached to the
matched fingerprint. For instance, we suppose that a police department is re-
sponsible for finding the information of a person whose fingerprint has been
found in a crime scene rapidly in a massive database of records. However, there
are two challenges against this goal. The first is that the local computation power
is limited and the number of records is enormous. The second is to compare a
pair of fingerprints, the features of fingerprints are needed to be extracted and
compared which is a cumbersome computational task.

Our proposed implementation aims at utilizing the computation power of
hybrid or multi-cloud. In this regard, we utilize a middleware framework, named
Aneka [4], which is a Platform-as-a-Service (PaaS) solution and provides Ap-
plication Programming Interfaces (APIs) for the developers to deploy their ap-
plications. We build and deploy a finger matching application on Azure cloud
resources using Aneka Software Development Kit (SDK). For fingerprint verifi-
cation, we use a framework presented in [5].

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 represents the system architecture and how it works. Section
4 defines the main modules and interface of the system in detail. We evaluate
and analyze the performance of our system in section 5. Finally, section 6 is
dedicated to the conclusion and future works.

2 Related Work

A similar work to ours is fast fingerprint identification for large databases [6]
where authors proposed a distributed framework for fingerprint matching for
large databases. Similarly, their framework is also flexible to any kind of finger-
print matching algorithms. Le et al. [7] and Cappelli et al. [8] benefit from graph-
ics processing unit (GPU) computing implementation of a fingerprint matching
algorithm to speed up their system performance on large databases. These al-
gorithms have been implemented completely using CUDA [9] where they have
used different parallelization approaches. CUDA is a parallel computing frame-
work which enables software developers to use GPU for general purpose process-
ing. This approach is called General-Purpose computing on Graphics Processing
Units (GPGPU). Even though the performance gain is high, the implementation
of the parallel algorithms in CUDA is relatively hard and cumbersome. In this
paper, we used Aneka platform and its easy-to-use and high-level APIs [4] which
give us the power to concentrate on task distributions and make it flexible to
use different fingerprint matching algorithms.

Many studies in cloud computing have addressed the expansion of local in-
frastructure capacity by using public cloud resources. Toosi et al. [1] focus on
data-intensive applications and consider the impact of data transfers in their
decision for using local or public infrastructure. Mateescu et al. [10] propose
a High-Performance Computing (HPC) infrastructure architecture to execute
scientific applications. Assunção et al. [11] examine the usage cost and the per-



formance of different public cloud resource provisioning algorithms. Belgacem
and Chopard [12] conduct an empirical study of running a massively parallel
MPIs application over an existing HPC infrastructure and bursting into Ama-
zon EC2 clusters if the need arises. They aim to evaluate the overhead of using
public cloud resources. Yuan et al. [13] intend to utilize the temporal variation
of prices public clouds to maximize profit in a hybrid cloud environment.

3 System Architecture

Fig. 1: System architecture.

This section provides a general overview of how the entire system works. Fig-
ure 1 visualizes the system architecture. The system contains three components
which are database record issuers, query makers, and cloud-based fingerprint
searching.

The database record issuers is the part of the system which provide the input
data for the system. The peoples’ fingerprints are binded with their personal
information (i.e personal photo and name and etc.) and stored in the database.
For the simplicity of the system, we use a file-system to store all records.

The second part of the system is the query makers. Queries are requested to
find the matched fingerprints to the query fingerprint of interest. In this regard,
requests are sent to the main component of the system which is cloud-based
fingerprint searching.

The cloud-based fingerprint searching is controlled by Aneka cloud platform.
Considering that the number of records in the database and the number of



queries can be huge, the importance of parallel searching in the database is
obvious. The requests are given to the Aneka master (main node) which is re-
sponsible to make and distribute the comparison tasks among Aneka workers.
Each comparison task consists all query fingerprints and a single fingerprint
record in the database. The total number of comparison task is equal to the
number of database records and independent to the number of queries. Aneka
workers return matched similarity index between the fingerprint database record
and query fingerprints to Aneka master. Aneka master gathers all the similarity
indexes computed by Aneka workers, finds the maximum similarity, retrieves the
personal information of matched fingerprints to query fingerprints and returns
them to the query makers.

Two main components of the used framework for fingerprint recognition
which are computationally heavy are 1) extracting features from fingerprint im-
ages and 2) comparing fingerprint features. To avoid re-extracting feature of
both query and database fingerprints in the searching procedure, Aneka master
extracts the feature of query fingerprints, and Aneka workers extract the features
of database fingerprint records and compare them against the query fingerprint
features.

4 System Design and Implementation

Figure 2 shows a layered view of our system’s key components. It also provides
the data flow in the system. The layered system design contains three layers.

The top layer belongs to the fingerprint recognition application and its main
functionalities. The user is able to make a new record to store in the database
or search a fingerprint through the database to retrieve the information of the
person who is matched with the query fingerprint. Upon the receipt of a request
for fingerprint matching, the features of the query fingerprint are extracted. Task
Manager is the part of the system which tells how many database fingerprint
records are needed to be packed in a comparison task. For the sake of simplicity,
in this paper, we only pack one record in each comparison task. Task builder is
the component that makes comparison tasks. It uses Aneka ITask interface to
prepare the comparison task for the master. Later on, master submits Tasks to
the workers for the execution.

The middle layer belongs to the Aneka cloud which performs as a middle-
ware providing computational resources to the fingerprint matching application.
Aneka tasks which are created previously in the application layer are buffered
in the task queue in the Aneka master. Aneka master submits Aneka tasks to
the Aneka workers for comparing record and query fingerprints. After receiving
Aneka tasks by Aneka workers, they start to extract the features of record in
the task, and compare it to the query fingerprint features. Finally, they return
the matching similarity index to the master node to aggregate results.

The bottom layer provides computational resources for the Aneka platform
to execute its tasks. Resources residing in this layer are obtained and managed



Fig. 2: System design and implementation.

by Aneka from a variety of sources, including private and public clouds, clusters,
grids, and desktop grids.



Fig. 3: Application GUI

Fig. 4: Running time vs number of
workers

Fig. 5: Running time vs number of
tasks

5 Performance Evaluation

In this section, we evaluate the performance of the system in terms of running
time using two different experiments. For this purpose, we used the GUI of
our application shown in Figure 3. Query fingerprints are queued for finding the
matched person. The personal information of the matched person along with the
matched fingerprint are displayed. There is also a console showing the progress
of fingerprint searching such as tasks distribution, total running time, etc.

Both experiments are run on a master and a set of worker machines. The
master runs on a desktop machine residing at the University of Melbourne and
workers are provisioned from the Microsoft Azure Australia Southeast region.
The master machine is an Intel Core i5-430M (2 Cores and 4 Logical Processors)



at 2.27GHz, 8GB main memory and runs under Microsoft Windows 10 Pro
operating system. Worker machines are single core Azure Instances (Standard
DS1) with a 2.4GHz processor and 3.5GB main memory running Windows Server
2012 as the operating system. We configured our application task manager to
create an Aneka task (comparing task) per each fingerprint in the database.

In the first experiment, the number of tasks is fixed to 140 and on the other
hand, the running time of the application is evaluated by varying the number
of workers from 1 to 8. As expected, increasing the number of workers reduces
the running time of the system. For instance, Figure 4 shows that the running
time of the system for a single and two workers are almost 500 and 250 seconds,
respectively, where the running time is reduced to half. Eventually, the running
time reaches about 69 seconds when the number of workers is increased to 8.

In the second experiment, the number of workers is fixed to 8 and the running
time is analyzed by changing the number of working tasks to 20, 60, 100 and 140.
Figure 5 displays that the corresponding running time is nearly 25, 40, 57 and
68 seconds which is demonstrating a linear growth in time versus the number of
tasks.

6 Conclusion and Future Work

In this paper, we demonstrated the benefits of using cloud computing for fin-
gerprint recognition and matching for a large-scale database. We presented the
design and implementation of our system including its architecture. We showed
that how Aneka provides the required platform for scheduling and parallel exe-
cution of tasks on public cloud resources, e.g., Azure. A conducted performance
evaluation showed that the fingerprint queries could be responded in a signifi-
cantly lower timeframe using our proposed system.

As a future work, we are planning to devise a technique for dynamic resource
provisioning based on the number of queries. The future direction will be to
extend our system as a Software-as-a-Service (SaaS), one of the major categories
of cloud computing, for the security-oriented organizations.

References

1. A. N. Toosi, R. O. Sinnott, and R. Buyya, “Resource provisioning for data-intensive
applications with deadline constraints on hybrid clouds using aneka,” Future Gen-
eration Computer Systems, vol. 79, no. Part 2, pp. 765 – 775, 2018.

2. C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques
and technologies: A survey on big data,” Information Sciences, vol. 275, pp. 314–
347, 2014.

3. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616,
2009.



4. C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya, “Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with aneka,”
Future Generation Computer Systems, vol. 28, no. 1, pp. 58–65, 2012.

5. M. A. Medina-Pérez, O. Loyola-González, A. E. Gutierrez-Rodŕıguez, M. Garćıa-
Borroto, and L. Altamirano-Robles, “Introducing an experimental framework in
c# for fingerprint recognition,” in Mexican Conference on Pattern Recognition.
Springer, 2014, pp. 132–141.

6. D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, and J. M. Beńıtez, “Fast
fingerprint identification for large databases,” Pattern Recognition, vol. 47, no. 2,
pp. 588–602, 2014.

7. H. H. Le, N. H. Nguyen, and T. T. Nguyen, “A complete fingerprint matching
algorithm on gpu for a large scale identification system,” in Information Science
and Applications (ICISA) 2016. Springer, 2016, pp. 679–688.

8. R. Cappelli, M. Ferrara, and D. Maltoni, “Large-scale fingerprint identification on
gpu,” Information Sciences, vol. 306, pp. 1–20, 2015.

9. J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

10. G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid computingwhere hpc meets
grid and cloud computing,” Future Generation Computer Systems, vol. 27, no. 5,
pp. 440–453, 2011.

11. M. D. de Assunção, A. di Costanzo, and R. Buyya, “A cost-benefit analysis of using
cloud computing to extend the capacity of clusters,” Cluster Computing, vol. 13,
no. 3, pp. 335–347, 2010.

12. M. B. Belgacem and B. Chopard, “A hybrid hpc/cloud distributed infrastructure:
Coupling ec2 cloud resources with hpc clusters to run large tightly coupled mul-
tiscale applications,” Future Generation Computer Systems, vol. 42, pp. 11–21,
2015.

13. H. Yuan, J. Bi, W. Tan, and B. H. Li, “Temporal task scheduling with constrained
service delay for profit maximization in hybrid clouds,” IEEE Transactions on
Automation Science and Engineering, vol. 14, no. 1, pp. 337–348, 2017.


