
Load Balancing for Heterogeneous Serverless Edge Computing: A
Performance-Driven and Empirical Approach

Mohammad Sadegh Aslanpoura,b, Adel N. Toosia, Muhammad Aamir Cheemaa, Mohan Baruwal Chhetrib, Mohsen
Amini Salehic

aDepartment of Software Systems and Cybersecurity, Monash University, Clayton, 3800, VIC, Australia
bCSIRO’s Data61, Clayton, 3168, VIC, Australia

cComputer Science and Engineering, University of North Texas, Denton, 76201, Texas, USA

Abstract

Serverless edge systems simplify the deployment of real-time AI-based Internet of Things (IoT) applications at the edge.
However, the heterogeneity of edge computing nodes—in terms of both hardware and software—makes load balancing
challenging in these systems. In this paper, we propose a performance-driven, empirical weight-tuning approach to
achieve effective load balancing based on the characteristics and capabilities of the nodes. By extensively profiling the
nodes, we gather knowledge on performance metrics such as throughput, energy efficiency, response time, AI accuracy,
and cost. Using this acquired knowledge, we introduce a weighted round-robin strategy to optimize the performance
metrics according to their observed significance. To address multiple objectives, we introduce a multi-objective method
that aims to strike a balance between any arbitrary set of performance objectives simultaneously. Additionally, we explore
a coordinated distributed approach to overcome the limitations of centralized load balancing. Next, we introduce Hedgi,
a heterogeneous serverless edge architecture designed to efficiently configure and utilize the derived load balancing
policies, validated empirically. To demonstrate the practicality of Hedgi, we containerize and serverlessize a real-time
object detection application. Extensive empirical studies are conducted using Hedgi to evaluate the performance of
the proposed load balancing approach. The results provide valuable insights into the design trade-offs of various load
balancing policies and system designs in the heterogeneous serverless edge.
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1. Introduction

The rapid rise of serverless edge computing [1, 2] can
be attributed to the increasing demand for real-time data
processing and the ever-growing need for simplified appli-
cation development and deployment in this context [3].
This is particularly relevant in domains such as the Inter-
net of Things (IoT), Augmented Reality (AR) or Virtual
Reality (VR), and Artificial Intelligence (AI) [4, 5]. The
primary goal is minimizing latency and bandwidth usage
via performing computations closer to the data source or
user, eliminating the need to transmit large amounts of
data to a centralized server. It also promotes a serverless
architecture, simplifying application deployment and scal-
ability, thereby, reducing operational costs and improving
efficiency [6].

Thanks to advancements in hardware and machine
learning methodologies, AI-based IoT applications are in-
creasingly being deployed on edge nodes [7, 8, 9]. It has
now become feasible to develop lightweight AI models that
operate on single-board computers (SBCs) like Raspberry
Pi. One compelling use case that exemplifies the progress
in AI-based IoT applications on the edge is real-time video
analytics. For instance, in industrial manufacturing, real-

time image processing at the edge can be used to iden-
tify faulty products. Similarly, in a surveillance system,
lightweight object detection models like YOLO (You Only
Look Once) [10] or SSD (Single Shot MultiBox Detec-
tor) [11] can be trained on a powerful machine and then
deployed on an SBC, taking advantage of hardware accel-
eration if available.

Heterogeneity is inevitable in edge computing due to
its distributed nature and gradual evolution [7]. Such en-
vironments often consist of diverse devices, ranging from
resource-constrained sensors and IoT devices to more pow-
erful edge servers and gateways. Heterogeneity is not lim-
ited to the hardware alone, i.e., the processor type, e.g.,
ARM or X86, but also applies to the platform, including
the OS, virtualization runtime, orchestration tools, and
the software, i.e., the application requirements, program-
ming languages, and runtime [12]. Furthermore, when con-
sidering AI-based IoT applications, it is also important
to consider that hardware heterogeneity extends beyond
CPU architecture and includes accelerators such as GPU
and TPU.

Building serverless edge computing over a heterogeneous
cluster of edge nodes presents formidable challenges due
to the diverse characteristics of the nodes [13]. As an
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Figure 1: Comparison of Two Heterogeneous Edge Devices.

illustrative example, consider a smart city in which var-
ious IoT devices and sensors are deployed throughout the
urban landscape to monitor and manage various aspects
of city life, such as traffic flow, environmental conditions,
waste management, public safety, and more. In this city-
wide scenario, the edge computing infrastructure spans di-
verse devices and systems, ranging from low-power sensors
for environmental monitoring to high-powered edge servers
and gateways for data processing and analytics. Variations
exist in computing power, memory, energy efficiency, and
supported platforms across these devices.

Orchestrating and managing resources, configurations,
and capabilities across these nodes necessitates special-
ized techniques to ensure efficient and reliable operation.
One crucial challenge stemming from this heterogeneity is
ensuring optimal application performance or QoS by effec-
tively distributing the workload across serverless functions
running on edge nodes [14]. Despite the importance of
this issue, the current default load balancing methods in
serverless domains are insufficient in effectively address-
ing this, as they are often designed without considering
heterogeneity.

Fig. 1 demonstrates the significance of this problem
by presenting a simplified scenario where a serverless AI-
based IoT application – Single Shot MultiBox Detector
(SSD [11]) – is evaluated on a single Raspberry Pi 4,
both with and without the inclusion of a TPU accelerator.
The results unequivocally indicate that neither setup can
achieve optimal performance across all metrics, illustrating
the presence of a trade-off. Note that while the same model
is used, the TPU-enabled device consumes less energy and
provides shorter response time, while the non-TPU device
provides a considerably higher AI precision. TPU supports
lower-precision floating-point formats, enabling faster pro-
cessing with a lower AI precision in the SSD model com-
pared to the CPU. The load balancing problem in het-
erogeneous serverless edge environments poses significant
challenges, as it becomes impossible to optimize all per-
formance metrics simultaneously [15]. Gaining a better
understanding of the implications of heterogeneity in load
balancing problems in serverless edge environments is cru-
cial to achieving optimal or near-optimal solutions. The
main objective of this paper is to develop such an under-
standing.

Users seek to optimize their systems based on various
metrics, taking into account different edge node types
that exhibit varying performance characteristics, such as
throughput, energy efficiency, precision, and more. We hy-

pothesize that by understanding and learning these traits
unique to each node and incorporating this knowledge into
the load balancer (LB), we can enhance the overall system
performance. The primary objective is to assign weights
effectively to individual nodes, allowing for a proportional
distribution of the workload based on each node’s specific
performance capabilities. This allocation strategy plays
a pivotal role in achieving optimal overall system perfor-
mance.

This paper makes the following key contributions to the
load balancing of serverless functions in heterogeneous en-
vironments:

• We devise a data-driven profiling strategy for per-
formance characterization of edge nodes, focusing on
metrics such as throughput, energy efficiency, respon-
siveness, AI inference precision, and cost efficiency, all
in this work. Building upon this characterization and
using a performance-driven weight-tuning approach,
we develop a range of intuitive load balancing poli-
cies that enable the system to achieve diverse per-
formance objectives for achieving effective load bal-
ancing among serverless functions in heterogeneous
environments.

• We address the need for multi-objective and priority-
based load balancing of serverless functions by em-
ploying a weighted sum method. This is achieved by
the Pareto Optimality to determine the appropriate
weights for multi-objective policies.

• We address the unreliability of the centralized load
balancer, commonly designed for cloud environments
that shows scalability constraints. To achieve so, we
propose an effective distributed architectural design
for the serverless edge, aiming to significantly improve
the overall system performance.

• We address the limited knowledge in the design and
implementation of a heterogeneous serverless edge
computing architecture, by proposing Hedgi. As a
framework for our experiments, Hedgi supports het-
erogeneity of serverless edge across hardware, plat-
form, and software. Additionally, an AI-based data-
intensive IoT application for object detection in im-
ages (video frames), a common task in many IoT ap-
plications, is developed for conducting experiments on
Hedgi.

• We implement the load balancing policies on Hedgi
and thoroughly analyze their practical behavior. Ex-
tensive empirical evaluations are performed using low-
level resource metrics (energy use, throughput, energy
efficiency, CPU use, memory use, and bandwidth use),
high-level application metrics (AI precision, generated
requests, success rate, latency, queuing time, and tail
latency), and hybrid metrics (serverless cost).
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Overall, this research contributes to the advancement of
load balancing techniques for real-time AI-based IoT ap-
plications at the edge, addressing the challenges posed by
heterogeneity and enhancing the efficiency and effective-
ness of serverless edge systems.

2. Related Work

Our review of the literature reveals the gap in knowl-
edge in the context of load balancing for heterogeneous
serverless edge computing. Please refer to Table 1 for a
summary of the related work.

To begin with, specialized system design for load bal-
ancing of serverless edge computing appears to be under-
investigated. Instead, there has been considerable research
on system design and optimization for other components
such as auto-scalers and function schedulers in serverless
platforms. For example, in [16, 17, 18, 5], different system
designs are proposed and experimented with to improve
the performance of auto-scalers in serverless platforms.
Function placement, i.e., container scheduling, in server-
less has also received considerable attention in [12, 19, 20].
These studies investigate different heuristics to achieve
a trade-off between different performance metrics in the
presence of heterogeneous resources for data-intensive ap-
plications. However, a specific focus on load balancing
for heterogeneous serverless edge computing remains rela-
tively limited in the literature.

Another key distinction between our work and such pro-
posals is our focus on the IoT domain, particularly with
AI applications, where the performance objectives can ex-
pand beyond latency and throughput. In our approach,
we consider the energy implications of the serverless at the
edge, which is crucial for energy-constrained use cases in
IoT deployments. Additionally, we take into account AI-
related metrics, such as the precision of inferences, which
provides valuable insights into understanding the implica-
tions of heterogeneity when AI applications are utilized
at the edge. Furthermore, as serverless provides its own
pricing model, we include the function cost as another in-
dicator in our load balancing strategy. All of these inclu-
sions can provide useful insights for system developers and
practitioners.

Several works have attempted to address the load bal-
ancing of serverless edge systems, each focusing on dif-
ferent aspects of heterogeneity and performance optimiza-
tion. In [4, 21], the focus is on latency-aware load balanc-
ing for IoT applications, particularly in real-time systems.
In [22, 23], the emphasis is on augmenting latency aware-
ness with network-level information and also considering
user mobility. In [24], the authors focus on the architec-
ture of serverless edge while dealing with load balancing.
They argue that the central design of serverless systems
needs to be upgraded to a decentralized system to better
suit the requirements of edge environments. In [25], the
central design of serverless is challenged even further, and

the authors propose load balancing strategies for multi-
agent systems using simulations. In [26], the opportuni-
ties of utilizing AI-based IoT applications, such as video
processing at the edge, are explored. In contrast to these
works, our approach attempts to emphasize the hetero-
geneity present in different layers of the serverless edge,
ranging from hardware to platform and software. We aim
to develop load balancing policies that not only consider
latency-awareness, but also take into account several per-
formance metrics such as cost, throughput, energy, and AI
inference precision.

Our approach incorporates the heterogeneity in all the
layers of the system, from hardware to platform and
software. To the best of our knowledge, there are no
other works that satisfy all such considerations at once,
which is deemed a gap in the knowledge. For instance,
in [27, 23, 28], hardware heterogeneity is explored to en-
hance load balancing, but their primary focus is on security
and privacy objectives.

There are other attempts for realizing serverless at the
edge, both theoretically [9] and empirically [29, 30, 31],
that provide benchmark suites and conduct performance
evaluations. Proposals for serverless platforms [32] and ar-
chitectures [33, 34, 35] are other examples of such efforts.
The possibility of utilizing AI-based applications at the
edge by serverless is examined in [36] for image classifica-
tions.

While the merits of serverless at the edge have been suf-
ficiently established, we believe that specific components
such as the load balancer require special considerations
to adapt to this new domain. As serverless edge sys-
tems embrace heterogeneity in hardware, platform, and
software, the load balancing mechanism must be designed
to effectively utilize the diverse capabilities of the nodes.
Our focus is on developing a performance-driven, empiri-
cal weight-tuning approach that optimizes load balancing
based on the characteristics and capabilities of individ-
ual nodes. By fine-tuning the load balancer to handle the
unique challenges posed by the heterogeneity of the edge
environment, we aim to enhance the overall performance
and efficiency of serverless edge systems.

3. Load Balancing and Weight Tuning Problem

Here, we first elaborate on what load balancing looks
like in the context of AI-based IoT applications. Then,
we introduce the load balancing problem arising in this
context that needs to be addressed.

3.1. Load Balancing AI-based IoT Applications

The proposed data pipeline [5] for AI-based IoT appli-
cations, as depicted in Fig. 2, includes eight steps. This
pipeline is a common practice at the edge given the event-
driven nature of IoT applications and it also eliminates
the need for carrying the data along with requests over
the network [8].
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Table 1: Summary of Related Work and Their Limitations.

Ref. Context App. Contributions

Heterogeneous
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Io
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etrics

Hardware

P
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S
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ftw

a
re

CPU Accel.

[12] ✓ ✓ ✓ ✓ ✓ ✓
[16, 37, 18] ✓ ✓ ✓
[22, 24, 25, 4, 21, 38] ✓ ✓ ✓
[27, 23, 28] ✓ ✓ ✓
[39] ✓ ✓ ✓ ✓ ✓ ✓
[32, 33, 34, 40] ✓ ✓ ✓ ✓
[5, 19, 20, 36, 30, 9, 35] ✓ ✓
[26] ✓ ✓ ✓ ✓ ✓
[31] ✓ ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 The Sensor on the edge node generates sensor data,
such as images taken by a camera, 2 which is subse-
quently stored in the Object Storage. The storage process
generates a reference identifier and triggers an event to the
Event Bus. 3 The Event Bus looks up the corresponding
function API endpoint for the processing and 4 invokes
the function by sending an HTTP request to the gateway,
where the load balancer logic is implemented. Next, 5
the gateway calls the function replica (each replica has a
unique IP). 6 The function fetches the data (e.g., the
image) from the data host’s object storage, given the re-
ceived data identifier in the HTTP call. 7 The function
executes the processing task (e.g., the object detection) on
the defined processor or accelerator. Lastly, 8 , once the
processing is completed, the output (e.g., detected object
lists) is delivered to the data host for recording or actua-
tion.

Remark : In a generic FaaS model [41], each function in-
vocation triggers a new function replica, i.e., a container,
so-called horizontal per request scaling. This causes a
long, instantiation time for each container, e.g., a few sec-
onds, to load the AI inference model and become ready
for a request that will last only a few milliseconds. To
overcome this, cloud providers practice reusing function
replicas, i.e., warm functions [8], but horizontal scaling
(i.e., adding replicas) and duplicating the container run-
time per request appear resource inefficient. Therefore, we
disable general-purpose auto-scaling on the serverless plat-
form and allow a single-replica function to vertically scale
out, in compliance with resource efficiency at the edge.
This is achieved through leveraging the kubernetes built-in
auto-scaling that allows functions to define the maximum
resource it requests to be provisioned given the function’s
load increase. This imposes no overhead on our system
since the enlargement of a function towards its maximum
capacity is seamlessly handled by Kubernetes and no in-
terruption, such as redeployment, in the function perfor-
mance is imposed.

3.2. Weight Tuning Problem

In the context of the heterogeneous serverless edge, ef-
fectively balancing the workload across nodes poses a ma-
jor challenge in load balancing. A reasonable strategy is
to assign each node a subset of tasks, proportional to its
performance. However, this demands the load balancer to
know how performant each node is. The key objective is to
allocate weights optimally among nodes, enabling propor-
tional distribution of the workload based on each individ-
ual node’s performance. This allocation strategy is crucial
for achieving optimal overall performance. In this section,
we provide a formal definition of the weight-tuning prob-
lem that load balancers must tackle in order to achieve the
desired state of optimality.

Consider a set of edge nodes, which we refer to as D.
Each node within this set is individually labeled with the
index di. Within this context, the performance of any sin-
gle node di in isolation is denoted as Pi,j , in relation to a
specific performance metric mj . Note that mj is an inte-
gral part of a larger set M , which encapsulates a variety
of performance metrics we might be interested in, ranging
from energy consumption and throughput to AI precision,
among other parameters.

Our primary objective is to determine the optimal
weight wi,j for each edge node di for a given metric mj to
maximize overall performance with respect to mj . Given
mj , this can be formally represented as follows:

maximize

|D|∑
i=1

wi,j · Pi,j

subject to

|D|∑
i=1

wi,j = 1

wi,j ≥ 0, ∀i ∈ D.

Determining weights in this optimization problem is not
a trivial task, as it requires understanding the performance
characteristics of each node and how they impact the over-
all system’s performance. Additionally, workloads in real-
world IoT systems experience a varied rate of concurrency
on each node, which increases the curse of dimensionality
to the problem.

4. Proposed Performance-Driven Load Balancing

This section presents our approach to performance-
driven weight tuning for addressing the load balancing
problem. The approach involves first characterizing differ-
ent performance metrics and quantifying the performance
for each edge node. This provides insights into the de-
sign of load balancing policies. A weighted round-robin
scheduling algorithm incorporates the obtained weights to
achieve the performance objectives at runtime. Further-
more, our approach extends to the multi-objective domain,
addressing the need for optimizing multiple performance
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Figure 2: AI-based IoT Application Data Pipeline.

metrics. To enhance the overall efficiency of load balanc-
ing, we also introduce architectural adjustments that align
with the specific requirements of the serverless edge envi-
ronment. By combining these strategies, our load balanc-
ing approach aims to deliver a performance-driven solu-
tion, enabling seamless operation and resource optimiza-
tion for serverless functions in the heterogeneous serverless
edge environment.

4.1. Performance Characterization

Here, we elaborate on the proposed performance char-
acterization procedure. Based on the literature [15], we
study some of the most common metrics used for assess-
ing the node’s performance, listed in Table 2. The same
approach can be applied to other metrics1.
Let M be an ordered set of metrics. In our performance

characterization,M = {throughput, energy per request, re-
sponse time, AI-precision, function cost}. Each metric
mj ∈M has a unit of measurement. U denotes an ordered
set of units where uj ∈ U is the unit of the metricmj ∈M .
Here, U = {request per second, mWh per request, seconds,
precision, memory-seconds}, e.g., the energy per request
is measured in mWh per request. We use D to denote the
set of edge nodes. We employ five sample heterogeneous
commonly-used SBCs, whose specifications are listed in
Table 3, as edge nodes for our investigations [12, 8]. So,
D = {raspberry pi 4(4gb), raspberry pi 4(8gb), raspberry
pi 4(8gb)+tpu, jetson nano, raspberry pi 3,}2.

Our objective is to evaluate the performance character-
istics of devices in D in terms of different metrics inM . To
achieve this, we conduct profiling experiments for each in-
dividual device in isolation mode [23]. All nodes are tested

1Note that some aspects of the system can be disregarded as they
remain constant or affect all nodes equally, despite their heterogene-
ity. For instance, the base power consumption of the nodes, which
includes the power consumed in an idle state, energy usage by USB
ports, fans, and load generators, remains constant throughout the
lifetime of the system. Similarly, the cost associated with bandwidth
use, storage upload/download, etc., affects all nodes equally.

2Note that the Raspberry Pi 4 (4GB) is revision 1.1 while the
Raspberry Pi 4 (8GB) is revision 1.4 of the hardware with an im-
proved power circuit and CPU overclocking increased from 1.5 to 1.8
GHz.

individually, running the same application under hetero-
geneous conditions, particularly different runtime environ-
ments, as specified in Table 3. In this mode, a device gen-
erates and sends HTTP requests to a function deployed on
the same device (node) for AI inferences. This allows us to
observe the impact of heterogeneous nodes when dealing
with the same inference task. The requests are sent syn-
chronously, one after the other, with each request waiting
for a response before sending the next one. Profiling is
conducted for a sufficient amount of time and repeated
multiple times to obtain reliable indicators.

The results obtained from the profiling experiments are
denoted by R. Each ri,j ∈ R denotes the result for a
specific metric mj ∈ M and a device di ∈ D, e.g., the
throughput for the Jetson Nano. It is important to note
that |R| = |M | × |D|. We observe that for some metrics,
larger values are preferable (e.g., throughput), whereas,
for others, smaller values are more desirable (e.g., response
time). Consequently, we first convert the result ri,j into
a characteristic value ci,j , ensuring that a larger ci,j is
always better for any mj ∈ M . We achieve this by utiliz-
ing an ordered set of objectives O that indicates whether
a transformation is required. For our selected metrics,
O = {0, 1, 1, 0, 1}. This implies that no transformation is
necessary for throughput and AI precision, but for other
metrics where lower values are better, a transformation is
required.

Each metric corresponds to a characteristic, as stated
earlier. For our selected set of metrics, the characteristics
are named as {throughput, energy efficiency, responsive-
ness, AI-precision, cost efficiency} after the transforma-
tion. We utilize R and O to derive ci,j a transformed value
for each ri,j ∈ R as follows:

ci,j =


1

ri,j
if oj = 1

ri,j otherwise
(1)

4.2. Weights Tuning

After obtaining ci,j ’s, the subsequent step involves con-
verting these values into load balancing weights for the
load balancer. The goal is to assign a weight value to each
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Table 2: Description of Characterization Metrics.

Metric Description

Throughput The number of requests executed per (total) time unit [42].
Energy per Task The amount of energy used to process a request, excluding the base energy use.
Response Time The duration from sending a request to receiving the response (end-to-end processing).
AI Precision The precision of the AI task (e.g., image recognition) that the device provides.
Function Cost A FaaS-based pricing model that measures memory usage multiplied by the function execution time per task.

node proportional to its performance for the specific char-
acteristic relative to other nodes in the cluster. Let W be
the set of determined weights: W = {wi,j ,∀di ∈ D,∀mj ∈
M}. For a given mj , weight wi,j ∈ W∀di ∈ D is derived
using the following formula:

wi,j =
ci,j∑|D|
i=1 ci,j

(2)

This equation ensures that each weight for a specific
node di is determined by the ratio of a particular char-
acteristic value to the sum of all characteristic indicator
values for a given metric. It is worth noting that, for each
characteristic, the weights of all devices for that charac-

teristic sum up to 1. In other words,
∑|D|

i=1 wi,j = 1.

4.2.1. Policies

Based on the performance characterizations and ob-
tained weights, it is possible to achieve |M | distinct single-
objective load balancing policies. Accordingly, we consider
five different load balancing policies as discussed below.
Throughput-aware policy assigns weights to edge nodes
based on their observed throughput. This policy is suitable
for high-throughput applications such as Smart Parking
in Smart Cities, where a high rate of data processing is
required.
Energy-aware policy assigns weights to edge nodes based
on their observed energy efficiency. This policy is suitable
for applications aim to minimize energy consumption, e.g.,
applications running over battery-powered edge nodes.
Latency-aware policy assigns weights to edge nodes
based on their observed response time. This policy is suit-
able for many real-time applications that require a low
latency response time such as Autonomous Vehicles or
Emergency Department Health Monitoring applications.
Precision-aware policy assigns weights to edge nodes
based on their observed AI precision. This policy is par-
ticularly well-suited for mission-critical IoT applications
across various domains, such as Robotic Surgery and Har-
vesting Robots in Smart Agriculture, where precision is of
paramount importance. It is essential to note that preci-
sion is chosen as a representative AI performance metric.
However, other metrics such as accuracy, recall, F1 score,
etc., can also be applied to our system.
Cost-aware policy assigns weights to edge nodes based
on their observed cost efficiency. This policy is particu-
larly beneficial for use cases with associated cost, such as
scenarios involving serverless computing in a continuum of

cloud to edge, where resources are charged by third-party
edge providers. An illustrative example is Smart Traffic
Lights in Smart Cities.

4.3. Multi-objective Load Balancing

The weight-tuning approach proposed in the previous
subsection is designed to set weights in such a way as to
maximize a single metric or characteristic of interest, e.g.,
throughput. However, in practice, one might need to op-
timize multiple objectives simultaneously, e.g., energy and
throughput. One may also need to handle the interference
of secondary factors to the target metric. For example,
if response time is desired for the target application, but
nodes are also running other applications that affect the
energy, multi-objective policies can be the solution to han-
dle this co-existence. Our proposed approach for multi-
objective optimization is based on the well-established
weighted sum method [43]. In this method, we trans-
form the multi-objective problem into a single-objective
problem by assigning weights to each objective to form a
weighted sum of objectives, where the weights represent
the relative importance of each objective. In this con-
text, we introduce a new set of weights for the metrics
or characteristics of interest. Subsequently, we calculate
the weighted sum of wi,j values for each device di over all
metrics mj present in the multi-objective optimization.

Let N be a subset of M that includes the set of metrics
of interest, N ⊆ M , e.g., throughput and AI-Precision,
and let ψk ∈ Ψ be the multi-objective weight associated
with each metric nk ∈ N . The weight ψk is set based on
the user’s preference for metric nk. Assume that function
f(i, k) yields the weight wi,j calculated in Equation (2) for
metric nk = mj for device di ∈ D.

We calculate a new multi-objective weight si for device
di as follows:

si =

|N |∑
k=1

ψk.f(i, k) (3)

It is worth mentioning that ψk ≥ 0, for all k, ensuring non-

negativity of the multi-objective weights, and
∑|N |

k=1 ψk =
1, which ensures that the weights sum up to 1.

For our proposed weighted sum method, setting
appropriate multi-objective weights for each met-
ric/characteristic is crucial, as this heavily influences the
outcome. Different weight combinations can lead to sig-
nificantly different overall system performances. To guide
the weight-setting process, we analyze Pareto Fronts [43]
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in the performance evaluation section, which helps in op-
timizing the multi-objective method.

4.4. Coordinated Distributed Load Balancing

As shown in Figure 3, in the majority of current server-
less computing frameworks including open-source ones
such as OpenFaaS and OpenWhisk, a centralized load bal-
ancing design is adopted [44]. In this model, all incoming
requests are directed to a central gateway, which subse-
quently distributes them to the appropriate functions de-
ployed across various nodes.

However, centralized load balancing can suffer from is-
sues such as Single Point of Failure, scalability, higher la-
tency, and inefficiency in large networks. Therefore, we
introduce an effective distributed architectural design pat-
tern for serverless edge that addresses these issues to some
extent and can improve the overall performance of the sys-
tem.

We design a coordinated distributed load balancing sys-
tem in which each node possesses a load balancer agent
as shown in Figure 4. This agent’s job is to redirect re-
quests to functions hosted on the edge nodes in the cluster
according to the policy (i.e., weight distribution) dictated
by the central coordinator.

The expected benefit of this design is firstly the elimi-
nation of the need for sending all the traffic to a central

gateway, thereby enhancing the overall efficiency and re-
sponsiveness of the system. Secondly, the central coordi-
nator will handle the policy propagation to the edge nodes,
facilitating even the bridge to a dynamic load balancer if
desired.

5. Hedgi: The Heterogeneous Serverless Edge
Computing

This section introduces the architectural design and im-
plementation of heterogeneous serverless edge computing
for AI-based data-intensive IoT applications, referred to
as Hedgi. The illustration of Hedgi can be found in Fig. 5.

5.1. Manager

This component is responsible for managing the appli-
cation including deployment, connectivity, and load bal-
ancing by its three main components: software, platform,
and hardware.

Software: The Hedgi-controller resides in the software
layer and is responsible for (a) launching a planned ex-
periment, and, most importantly, (b) controlling the load
balancer. To accomplish (a), the Launcher initiates an
experiment based on the declarative JSON or Yaml mani-
fests that describe the deployment of serverless functions.
This means the user can describe the desired state of ap-
plications. For (b), the load balancer control plane is de-
signed to reside in the software component for ease of use
by the user or system admin. This allows both static and
dynamic adjustments to the load balancer that effectively
apply to its data plane, whether the data plane is central
or distributed.

Platform: The operating system (OS ), such as Linux
or Windows, resides in this layer and supports virtu-
alization technologies, such as Docker, containerd, mi-
croVMs, Unikernels, or Web Assembly [45]. Note that
a heterogeneous system must allow for different variations
of these technologies to realize platform-level heterogene-
ity [33, 32]. Container Orchestration tools such as Ku-
bernetes run on top of the virtualization layer to facilitate
the deployment and configuration of containerized appli-
cations [46]. Serverless Platform, is deployed to perform as
a function deployment operator (FaaS-Operator), and as a
gateway to receive the function invocations and distribute
them to the corresponding function through the load bal-
ancer’s data plane. In detail, the FaaS-Operator receives
API calls, creates serverless function objects, delivers them
to the orchestrator, and then notifies the hosting edge node
through the orchestrator to run a container process for the
function. For Load Balancing, a proxy server is adopted to
distribute function invocations to the actual functions de-
ployed on edge nodes, according to the policy implemented
in its assignment component.

Hardware: Heterogeneity is further highlighted in this
layer. The hardware used for a manager node is typically
more powerful than for edge nodes, yet far less powerful
than regular cloud servers [8].
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Figure 5: Architectural View of Hedgi : Heterogeneous Serverless Edge Computing for AI-based Data-intensive IoT Applications.

Connectivity between the manager and other nodes
in the cluster is enabled through Local Area Networks
(LANs) or wireless networks [47]. Computation refers to
enabled computing units on a node, whether CPU or ac-
celerators such as TPU and GPU. The heterogeneity of
CPUs in terms of the number of cores, computing power in
Gigahertz (GHz), and the inclusion of accelerators makes
the system capable of executing both simple and complex
tasks at the edge [48]. Storage, while presumably limited,
is considered to have a larger capacity than storage used
in edge nodes, and is used for storing the state of the or-
chestrator and Hedgi [8].

5.2. Edge Nodes

Edge nodes are responsible for generating and executing
tasks, the former through the IoT sensors and the latter
through the deployed serverless functions. We explain the
three main components of the edge node: software, plat-
form, and hardware.
Software: The software is completely different from

that of the manager and is comprised of Hedgi-Agent, Ob-
ject Storage, and IoT Applications. In Hedgi-Agent, the
Sensor Emulator emulates the generation of sensor data;
in the case of this work, images taken from a camera at-
tached to an edge node. Hedgi-Agent can generate syn-
chronous (waiting for a response before proceeding with
the next request) or asynchronous (without waiting for
an immediate response) sensor data. An Event Bus is
triggered by the sensors that maintains the endpoints for
sending requests and receiving responses from deployed
functions. Monitor regularly collects High-level, Low-level,
and Hybrid performance metrics such as request latency,
CPU usage, and cost, respectively [15]. In Object Stor-
age, the data produced by the sensors is maintained, e.g.,
images taken by the sensors, by using an object storage
service. In the IoT Applications component, container-
ized IoT applications are deployed in the form of server-
less functions, either on a single container or using multiple
identical replicas, given the auto-scaling mechanism han-
dled by the serverless platform [2]. The functions receive

invocations from the load balancer and execute the given
task, for which they require a particular design that al-
lows them to run tasks on heterogeneous processors and
accelerators.

Remark: The function runtime must comply with the
heterogeneous edge resources as a requirement. In de-
tail, the Instruction Set Architecture (ISA) of edge nodes,
e.g., X86 or ARM, poses heterogeneity. Manager nodes
are often associated with X86-based ISAs, whereas edge
nodes are typically associated with energy-efficient ARM-
based ISAs. Furthermore, the processing units (PU), e.g.,
CPU or accelerators such as GPU or TPU, bring another
heterogeneity dimension. For instance, monitoring func-
tions such as fitness trackers and smartwatches can rely
on CPUs to process the sensor data while computer vision
and machine learning functions require accelerators.

Handling all the heterogeneity requirements in a func-
tion’s runtime appears to be infeasible since container
images are ISA-specific. A feasible solution is to utilize
the multi-architecture feature of container registries like
Docker Hub. That is, images for different ISAs can be
built and then bundled under one single manifest. Then,
upon deploying the function on the edge node, the con-
tainer runtime of the node will automatically pull the cor-
responding image.

To handle the PU heterogeneity, a simple solution is to
place all PUs’ runtime dependencies inside the container
image. Take an AI-based function as an example. The
container image can have Tensorflow runtime to run tasks
on CPUs and have CUDA and cuDNN for GPU use.

However, this approach results in a bulky container im-
age that needs to handle all the runtimes, which may not
be compliant with resource-constrained edge nodes [39].
To handle this limitation, we built different container im-
ages for different PUs, pre-cached them on the nodes, and
renamed them to the same name. Ultimately, once the
container image is used on the node, only the correspond-
ing PUs’ runtime will be loaded.

Platform: Virtualization is realized in this layer on
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an edge node to enable the deployment of containerized
serverless functions. The orchestrator handles the deploy-
ment of these functions. Also, when a distributed load
balancer is desired, the data plane, as an agent introduced
in Fig. 4, is deployed on the node that undertakes the load
distribution task.

Hardware: This layer comprises of various heteroge-
neous SBCs [4] such as Raspberry Pis, Jetson Nano, etc.,
which serve as the computation units for IoT applications.
Connectivity to nodes and manager is established through
LAN or wireless. Peripherals include a Bluetooth-enabled
power meter and other devices such as TPU accelerators
and IoT sensors that are connected through ports or GPIO
pins that are present on SBCs. Storage stores the state of
the orchestrator and Hedgi.

6. Performance Evaluation

In this section, we empirically evaluate our proposed
load balancing approach on the heterogeneous serverless
edge architecture. We begin by providing an overview of
the experimental setup. Subsequently, we present the re-
sults obtained from extensive investigations on load bal-
ancing (totally 255 experiments) that are carried out in
the following order:

• First, we conduct performance characterization exper-
iments as introduced in our proposed performance-
driven load balancing approach.

• Next, we perform experiments using the obtained
central single-objective load balancing policies. For
comparison purposes, we include the conventional
round-robin as the baseline policy, which assigns equal
weights to all the nodes for load balancing. This al-
lows meaningful comparisons with heterogeneous set-
tings. Additionally, we compare against a random
policy.

• Following this, we investigate the impact of multi-
objective policies to evaluate the trade-offs upon ap-
plying preferences and priorities.

• We analyze the impact of distributed load balancing
to demonstrate the limitations of a central controller.

• To evaluate the degree of expected improvement, we
compare our approach against a dynamic load bal-
ancer.

• Lastly, we examine load balancing in a non-
cooperative edge setting and highlight trade-offs.

6.1. Experimental Setup

We prototype a real-world implementation of Hedgi, a
heterogeneous serverless edge computing environment as
an experimental setup.
Hedgi: The infrastructure comprises a set of five differ-
ent edge devices serving as edge nodes and a manager

node [12], as specified in Table 3. The edge nodes uti-
lize a UM25C USB power meter,3 as a peripheral device
for accurate hardware-based energy measurements. Virtu-
alization is enabled on the devices in a considerably diverse
mode, where the container runtime is either Docker or
containerd. The orchestration of containers is handled by
the edge-friendly distribution of Kubernetes, i.e., K3s [37].
The serverless platform atop it is OpenFaaS,4 a widely
used open-source implementation of the FaaS.
Application: In each experiment, we deploy the same
serverless function on all edge nodes. A Single Shot Multi-
Box Detector (SSD) [49] image annotation machine learn-
ing application is containerized and serverlessized for this
purpose. The SSD uses MobileNet as the backbone and
is trained on the COCO dataset in TensorFlow. SSD has
achieved popularity in edge computing and is a model com-
monly deployed on resource-constraint nodes, thanks to its
fast one-stage detector, as compared to slower two-stage
detectors such as R-CNN (Regional Convolutional Neural
Network) [49]. As the primary goal is to enable data-
intensive AI-based IoT applications, the performance-wise
difference and effect of using other machine learning ap-
plications, such as voice recognition or image classifica-
tion, may not be significant from this perspective. To con-
tainerize and serverlessize the application, we bundle the
business logic with a Flask micro-framework, backed by
a watchdog agent provided by OpenFaaS. The business
logic employs (a) TensorFlowLite as CPU runtime, (b)
TensorRT v.8.2.1.8, CUDA v.10.2.300, cuDNN v.8.2.1.32,
and JetPack v.4.6.2 (L4T v.32.7.2) as GPU runtime, and
(c) EdgeTPU v.14 as TPU runtime. We set a threshold
equal to 45% for inference confidences.
Workflow: We implement the workflow as depicted in
Fig. 2. The IoT environment is simulated by a work-
load generator, which can generate synchronous requests
at different concurrency rates, representing the number
of request sender threads at each node. We experiment
with the concurrency rates of 1, 3, 5, 7, and 9 for bet-
ter observability unless specified otherwise. The concur-
rency rate can be understood as the arrival rate of requests
as well. We repeat each experiment for a given rate at
least three times to minimize statistical error and report
the average as well as the standard error for each data
point. Each experiment lasts for 10 minutes, as in [23],
which is long enough to execute hundreds of tasks. The
data host stores the sensor’s data Minio, as in [5], a high-
performance Kubernetes-native object storage service. A
sensor’s data here is a random image from a pool of 83 im-
ages with a size of between 22 and 131 KB. Minio then trig-
gers the event bus, implemented by Hedgi that invokes a
function. Next, in the load balancer, an endpoint is picked
by Envoy to assign the request. Lastly, the image annota-
tions function executes the request by fetching the image
from Minio. The timeout for each request is set at 15

3https://tinyurl.com/um25c
4https://www.openfaas.com/
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Table 3: Specification of Heterogeneous Edge Nodes.

Device Hardware Platform Software

Name Role Computation OS Container IoT Application Hedgi

CPU Accelerator RAM Function Runtime Precision

Arch Core GHz GPU/TPU GB

Intel NUC manager X86 4 4.5 n/a 32 Ubuntu docker n/a n/a n/a controller
Raspberry Pi 3 node ARM 4 1.4 n/a 1 Raspberry Pi OS containerd SSD TensorFlowLite 60% agent
Raspberry Pi 4 Rev. 1.4 node ARM 4 1.8 TPU 8 Raspberry Pi OS containerd SSD EdgeTPU 40% agent
Raspberry Pi 4 Rev. 1.4 node ARM 4 1.8 n/a 8 Raspberry Pi OS containerd SSD TensorFlowLite 60% agent
Raspberry Pi 4 Rev. 1.1 node ARM 4 1.5 n/a 4 Raspberry Pi OS containerd SSD TensorFlowLite 60% agent
Jetson Nano node ARM 4 1.43 GPU 4 Linux4Tegra docker SSD TensorRT 76% agent

seconds.
Load Balancing: We replace the OpenFaaS load bal-
ancer with Envoy proxy,5 a load balancer that allows
the realization of weighted round-robin policies, satisfy-
ing our approach’s requirements. A central load balancer
is adopted unless specified otherwise. Envoy utilizes the
Earliest Deadline First (EDS) Scheduling6 to realize the
round-robin algorithm, as in Eq. (4). When a new request
arrives, Envoy picks the endpoint (i.e., edge node d) with
the earliest presumed deadline to which it sends the re-
quest.

endpoint← arg min
(endpoint∈Endpoints)

deadline(endpoint)

(4)
where the deadline for each endpoint is determined as
in (5).

deadline← endpoint.currentT ime+ 1.0

endpoint.weight
(5)

Such that the endpoint.weight is statically assigned to
each endpoint according to the obtained values by per-
formance characterization. The endpoint.currentT ime
starts at 0 and increments by 1 upon each request assign-
ment to the endpoint.

Here is a simple example. Assume Endpoints = [d1, d2],
weighted as 1 and 2, respectively. The first request arrives
and the load balancer needs to assign it to the earliest
deadline endpoint. The deadline for d1 is 1← 0+1.0

d1.weight=1

and for d2 is 0.5 ← 0+1.0
d2.weight=2 , so endpoint d2 has the

earliest deadline and receives the request. Accordingly,
the d2’s currentT ime is incremented by 1 unit.

6.2. Experimental Results

6.2.1. Performance Characterization

Each node is individually tested and runs the same ap-
plication but under its specific heterogeneous conditions,
particularly different runtime environments, as specified in
Table 3. This is to observe the impact of heterogeneous
nodes dealing with the same inference task. The workload

5https://www.envoyproxy.io/
6https://www.envoyproxy.io/docs/envoy/latest/intro/arch

overview/upstream/load balancing/load balancers#arch-overview-
load-balancing-types

generator used during the experiment runs a four-thread
spawner, equivalent to the maximum number of CPU cores
on devices.

The weights obtained through experimentation are
shown in Fig. 6. The key observation is that heteroge-
neous nodes exhibit significantly different behaviors from
each other in various characteristics, which highlights the
challenges associated with load balancing in the heteroge-
neous edge. For example, in terms of energy efficiency, the
Raspberry Pi 4 (8GB) with TPU has the best performance,
but it has the worst performance in terms of AI-Precision.
Conversely, while the Jetson Nano with GPU has the best
AI precision, it has the worst cost efficiency. In detail,
for each characteristic, max(W ) | wi,j ∈W represents the
most performant device, while min(W ) | wi.j ∈ W repre-
sents otherwise.

Additionally, the standard deviation and skew mea-
sures represent the degree and direction of performance
dispersion among nodes in every characteristic. The SD
and skew measures are obtained as throughput (SD=0.10,
Skew=1.15), energy efficiency (SD=0.51, Skew=0.26), re-
sponsiveness (SD=0.10, Skew=1.05), and cost efficiency
(SD=0.15, Skew=0.86).

These weights form the basis for the performance-driven
policies evaluated in the following section.

6.2.2. Central Single-objective Load Balancing Policies

Note that it is recommended to interpret the outcomes
of a specific metric in alongside other relevant metrics to
understand the reasons behind the differing behavior ex-
hibited by a particular policy.

Low-level Metrics. Fig. 7a shows the total energy
consumption in mWh of all nodes under different poli-
cies, labeled as energy consumption (mWh). The
throughput-aware and latency-aware policies result in rela-
tively higher energy consumption in contrast to the energy-
aware policy which exhibits the lowest energy consump-
tion. Energy consumption is directly related to the amount
of work done, so the total executed requests per second la-
beled as throughput (request/sec.) in Fig. 7b shows
that the throughput-aware and latency-aware policies led
the load balancer to distribute and execute more requests
over the experiments, which explains why they also con-
sumed more energy on nodes. In general, policies that give
a larger weight to the TPU-enabled node achieved higher
throughput. energy efficiency , which is the total en-
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Figure 6: Performance Characterization Observations: Per-device Weights for Each Characteristic. Larger Values Indicate Better Performance.

ergy consumption divided by the throughput or energy per
task, is shown in Fig. 7c. The lower the energy per task,
the more energy efficient the policy is. High throughput
policies, including throughput-aware, and latency-aware,
respectively, also appear to be the most energy-efficient.
This is mainly because these policies heavily rely on the
TPU-enabled node, which has the lowest energy per task
among the devices, as per the weights in Fig. 6.

The CPU-wise computation utilized by nodes in each
policy is shown in Fig. 7d which is a measure of CPU usage
multiplied by the CPU frequency. This is a more relevant
measure than only CPU usage since the processor hetero-
geneity makes the significance of the CPU usage different
on nodes. Not to mention that the ISA also plays a role,
but we find it out of the scope and believe that even the
current depth of CPU-wise evaluation can clearly showcase
the importance of heterogeneity considerations. In Fig. 7d,
the usage pattern implies that the throughput-aware and
latency-aware imposed the highest CPU-wise computation
usage. This pattern can be partially attributed to energy
usage and throughput. This appears insightful since some
nodes merely rely on accelerators to perform request exe-
cutions, instead of CPUs, but the CPU-wise computation
pattern appears representative of the throughput and en-
ergy implications.

Memory usage (%), as shown in Fig. 7e, exhibits
a new pattern that warrants further examination, despite
the differences being insignificant—averaging between 37%
and 40% for nodes in all policies. The relatively low mem-
ory usage, i.e., below half the capacity, is due to the small
memory footprint of the inference models used, which are
36 MB and 43 MB on CPU and TPU devices, respectively.
Only the GPU-enabled inference model on Jetson Nano
has a significantly larger memory footprint of 981 MB.
One of the sources of differences could be the reliance of a
device on multi-threading for the inference runtime which
can increase the memory usage. Multi-threading refers to
devices that allow concurrency, such as Raspberry Pi 4,
where the inference model loads multiple copies of itself,
equal to the number of cores on the node (4 in this case).
Note that the TPU inference model operates sequentially
on a single thread due to the TPU access lock and memory
constraints; the CPU inference model on Raspberry Pi 3
also allows multi-threading, but the device cannot provide

high throughput due to CPU limits; and the GPU infer-
ence model on Jetson Nano runs sequentially since loading
several of the heavy models on this memory-constrained
device is not practical. It is worth noting that, on the
Jetson Nano device, the downstream Flask server of the
serverless function allows concurrency, up to 4, equivalent
to its CPU cores. Such multi-threading and memory con-
straints can be the key reasons for the position of each
policy in Fig. 7e.

Upload (MB) in Fig. 7f and download (MB) in
Fig. 7g show the amount of data uploaded and downloaded
by nodes. These metrics are highly correlated with the
throughput of the policy as more data transfer occurs to
nodes handling more requests. Hence, the pattern of pol-
icy order follows the throughput order. This is mainly
because all nodes run an identical, data-intensive appli-
cation from the request generator perspective. Further-
more, there is a close relationship between the skew of
load distribution weighting and the amount of increased
downloaded data, i.e., images for inference. Theoretically,
if there are x nodes weighted equally, as in the round-
robin policy, the probability (p) that a node gets its own
request and loads the image from its local object storage
instead of downloading from peers, is p = 1

x ; however,
if weights are skewed significantly, as in the throughput-
aware (skew=1.15) and latency-aware (skew=1.05) poli-
cies, the probability (p) is p < 1

x , resulting in more down-
loaded data and hence higher network traffic. Given this,
the round-robin algorithm is expected to lower the down-
load requests given its minimum skew of 0. This is, how-
ever, not confirmed in Fig. 7g since it is also important to
note that the number of requests received by nodes is an-
other factor to consider, and we already observed the var-
ied throughput among nodes. Hence, the download ratio
is a matter of both data distribution skew and throughput
under such heterogeneity.

High-level Metrics. AI precision (%), the precision
of annotating requested images by a serverless function in
percentage in Fig. 7h, indicates how policies affect the ob-
tained inference precision. Obviously, if a policy relies on
nodes that are characterized as more precise, as identified
in Fig. 6, it simply achieves an overall higher precision.
Results in Fig. 7h confirm this, with the precision-aware
policy providing the highest average precision. The cost-
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Figure 7: Comparison of Load Balancing Policies across Low-Level and High-Level Metrics under Varying Request Concurrency. The data
points represent the mean of results and the error bar represents the deviation of repetitions from the average.
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aware policy, on the other hand, provides the lowest aver-
age precision. In detail, highly precise policies rely more
on GPU-based (precision = 76%) and CPU-based (preci-
sion = 60%) inferences, respectively, than on TPU-based
(precision = 40%) inferences.

Diving into workload matters, generated requests
(#), the total number of generated requests in Fig. 7i,
closely follows the observed throughput shown in Fig. 7b.
It is important to know the proportion of generated re-
quests that are successfully executed by policies. Fig. 7j
provides success rate (%), the number of successfully ex-
ecuted requests in percentage. Theoretically, an increased
load in the system increases the chances of saturation
and contention. However, throughput-aware, and latency-
aware policies, which allow for the highest number of gen-
erated requests, did not exhibit the highest rate of failure.
The reason for this is that high throughput policies tend
to utilize efficient nodes with a lower response time, allow-
ing them to handle a relatively higher number of requests
before saturation. Therefore, if a policy, despite generat-
ing less workload, distributes the load on low throughput
nodes, it can increase the number of failed requests, as ob-
served in Fig. 7j by the precision-aware policy. Note that,
the drops in the success rate of particular policies such as
precision-aware in high concurrency suggest another evi-
dence for the lower energy consumption and throughput
of such policies (shown in Fig. 7a and 7b). That is, if re-
quests are failed then the nodes skip the execution of such
requests and hence consume less energy.

Requests latency (sec.), i.e., the response time or
end-to-end processing time of all requests in seconds, is
shown in Fig. 7k. It increases in line with the concurrency
level, from 1 to 9. To compare policies, the latency-aware
policy, which works based on the responsiveness charac-
teristic of nodes (Fig. 6) exhibits the shortest response
time along with the throughput-aware policy. This occurs
despite the higher number of generated and executed re-
quests by nodes under such policies, which once again ev-
ident that it matters where the requests are distributed.
The superiority of the throughput-aware policy lies in the
fact that it relatively follows the responsiveness weight-
ing scheme, with the highest weight given to the super-
fast TPU-enabled device and appropriate weights to the
weaker nodes. Therefore, the two policies share a common
property. In general, a system with high throughput will
have a lower response time because it can handle more re-
quests in the same amount of time. To analyze the impact
of long backlogs and latency at larger concurrency, the tail
latency (sec.) at the 90th percentile can provide par-
ticular insights as shown in Fig. 7l. The well-performing
policies in the average latency managed to maintain the
tail latency as well while the precision-aware and random
show the longest tail latency. The same behavior was ob-
served in the tail latency at the 95th and 99th percentiles,
so they are not reported.

Hybrid Metric. The function cost (GB-second)
metric, shown in Fig. 8, is measured by multiplying the

memory usage of the function in Gigabyte and the exe-
cution time of the function per request in second, akin
to AWS Lambda services7. The results show that the
cost-aware policy exhibits a relatively reasonable cost-
efficiency. In contrast, the precision-aware policy presents
the least cost-efficiency since it strives for precision satis-
faction which is achievable through emphasizing the cost-
inefficient GPU-enabled node. It is important to note that
cloud providers’ pricing models are mainly agnostic to the
heterogeneity of resources such as CPU, GPU, and TPU.
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Figure 8: Comparison of Load Balancing Policies using a Hybrid
Metric: Function Cost, Given Varied Requests Concurrency.

6.2.3. Single-objective vs. Multi-objective Load Balancing

Here, we demonstrate the realization of multi-objective
policies using our proposed performance-driven weight-
tuning approach. The throughput-aware and precision-
aware policies are suitable examples for showcasing con-
tradictory objectives with the highest trade-off. As
shown previously in Fig. 6, the former exhibits the most
positively-skewed distribution (1.15) while the latter ex-
hibits the most negatively-skewed distribution (-0.46) of
weights they give to nodes. Intuitively, to achieve both ob-
jectives equally, one may assign 50% weights to both poli-
cies. We conducted experiments with this simple solution,
named as Thr.-Prec. (50—50), and the results of through-
put and precision are shown in Fig. 9 and 10. While the
metrics’ results are expected to stand in the middle com-
pared to the single-objective version of each policy, it is
clear that simply setting equal 50% weights does not yield
the expected outcome, as the throughput tends to lean
towards the single-objective precision-aware policy.
Our proposed solution for a better approximation, as

explained in Section 4.3, is to determine the Pareto fronts
of the combined policies. We conducted experiments for
the same policies, shown in Fig. 11. We examine differ-
ent weight combinations given to each policy at 20% in-
crements, from 0 to 100. The trade-off curve showcases
the best possible compromises between the different ob-
jectives. The Pareto front as provided in Fig. 11 for dif-
ferent concurrency levels allows decision-makers to explore
different weight combinations of objectives and determine
how they impact the overall performance.

7https://aws.amazon.com/lambda/pricing/
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6.2.4. Central vs. Distributed Load Balancing

So far, a central load balancer has been employed as a
single point of reference to implement the load distribution
logic, specifically the performance-driven weighted round-
robin policy. However, relying on a centralized approach
can lead to scalability challenges due to the serviceability
limitations associated with having a single central point of
control. This limitation can be quantified by comparing
the serviceability capacity of a central load balancer with
that of the distributed version. Hence, we set an equal
limit for the maximum requests the gateway can handle to
evaluate the throughput-aware policy in both centralized
and distributed modes. Technically, the implementation of
this limit is based on the circuit-breaking8 concept in load
balancing, where a maximum allowed in-flight request is
always maintained by the load balancer.

The maximum value for both the central and distributed
modes must be set equally to ensure a fair comparison. To
achieve this, we base our comparison on the maximum load
of the central mode, which is nine requests—equivalent to
the maximum workload concurrency. In all experiments
within the central mode, the in-flight requests are main-
tained at, or below, the maximum workload concurrency,
which is nine. Consequently, the same capacity is allot-
ted to the distributed load balancer to ensure a fair com-
parison. While intuitively, the distributed load balancer
appears to offer superior performance due to its capacity
multiplied by the number of devices, understanding the de-

8https://www.envoyproxy.io/docs/envoy/latest/intro/arch
overview/upstream/circuit breaking

gree of this improvement and the system’s behavior under
varying loads warrants further investigation.

Results in Fig. 12 show that high-rate workloads in the
central mode not only fail to improve the throughput but
cause a decrease in the throughput due to the overwhelm-
ing backlog on the load balancer. The other effect of this
pressure is observable in Fig. 13, where the latency signif-
icantly increases in the central mode. Note that we allow
the excess requests to remain pending on the central load
balancer until a token is available to prevent an even worse
performance scenario for the central mode.
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Figure 12: Throughput Compar-
ison: Central vs. Distributed
Load Balancing.
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Central vs. Distributed Load
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6.2.5. Static vs. Dynamic Load balancing

The previously designed policies we used follow a static
setting of weights at system setup time. Now, one may
question the limitations of this approach, especially when
other factors such as co-existing applications on nodes
could affect the effectiveness of the statically set weights.
A proper benchmark for such a comparison is the least-
request policy. The least-request policy is a dynamic load
balancing algorithm where requests are forwarded to the
node with the least number of active/in-flight requests at
the time the request is received. This policy attempts to
dynamically adjust its preference to edge nodes with better
throughput performance in an online mode. We compare
this algorithm with our statically weighted round-robin
throughput-aware policy in Fig. 14. An improvement is
observed with the least-request load balancer. A key fac-
tor in its success is its awareness of the dynamics of the
system, especially under heavy loads, whereas the static
load balancer fails to maintain the high success rate, as
shown in Fig. 15.

However, it must be acknowledged that dynamic load
balancers such as the least-request approach need to main-
tain a list of active requests for all endpoints consistently,
which may impose considerable overhead on the load bal-
ancer in large-scale scenarios. Furthermore, the least-
request policy, in its original form, primarily emphasizes
throughput. It lacks out-of-the-box support for other met-
rics such as energy, precision, or cost, although achieving
such support, including multi-objective policies, is not im-
possible through this policy. Lastly, the dynamic load
balancer is evaluated under the assumption that no limit
is set on network bandwidth, energy consumption of node,
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Comparison: Static vs. Dynamic
Throughput-Aware Policies.

and function cost to allow high throughput experiment
observations representing intensive workloads.

6.2.6. Load Balancing in Self-contained vs. Cooperative
Edges

All the previous experiments were conducted with the
assumption that edge nodes should be enabled with re-
source sharing to utilize peers’ resources for improving
their performance needs. However, it is worth investigat-
ing the impact of locality and self-contained edge nodes
with no resource sharing to see how the objectives are
affected. We call the former strategy cooperative edge
while the latter is called self-contained edge. In the self-
contained mode, we run the same experiments on the Hedgi
using its central load balancer, with the difference that
the load balancer distributes the requests originating from
each node to the same node to be executed by its own local
function, which we call it the local policy. This way nodes
are operating self-contained.

Results for all the previously introduced cooperative
policies compared to the local policy are shown in Fig. 16
and 17. The local policy fails to guarantee a consider-
ably shorter latency compared to the cooperative latency-
aware and throughput-aware policies, despite its higher
energy efficiency. Not to mention that no limit on the
energy consumption of the nodes is considered in our ex-
periments while otherwise, the self-contained nodes may
be affected significantly by their limited energy resources
such as batteries. Furthermore, note that the local policy
fails to allow an under-performing node to improve its re-
quests’ precision, while in the cooperative mode, nodes can
achieve that. For example, if a node can execute requests
in isolation with a precision of 40%, it cannot achieve any
improvement if the objective demands a higher precision.
Overall, a significant performance trade-off between self-
contained and cooperative edges exists when it comes to
load balancing.

The improvements in some metrics such as throughput
and latency for the local policy in the self-contained mode
can be attributed to the elimination of data transfer over
the network to access the object storage remotely, To as-
sess such hypotheses, we examine the concurrency level
of 3, where the local policy shows the highest through-
put at 8.52, and compare it to its closest alternative, the

latency-aware policy, which has a throughput of 5.13. If
the high throughput is due to not having to download data
remotely, we would expect to see a significant decline in the
local policy’s throughput if it is customized to download
data remotely. We examined this by customizing the local
policy so each function downloads its required data for a
given request from remote nodes in a round-robin man-
ner. The obtained throughput declined notably, from 8.52
to 6.02. In contrast, we modified the latency-aware pol-
icy to eliminate the need for data download from remote
storage, by assuming that the required data for a given re-
quest is always available on the node of the function that
is assigned to execute the tasks. Results show an increase
in throughput from 5.13 to 6.35 for the latency-aware pol-
icy. The improvement from removing the burden of data
download is substantial and confirms the hypothesis.
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Self-contained (Local) vs. Coop-
erative (Others) Edge.
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7. Discussions

7.1. Edge Computing

Our investigation of the differences between a cluster
of self-contained edge nodes and cooperative edge nodes
implies that the self-contained edge design can offer addi-
tional resource efficiency benefits in certain cases, in par-
ticular data and bandwidth-intensive applications such as
SSD.

Self-contained and cooperative edge

With the trade-off between designing self-contained
or cooperative edge, a dynamic load balancer that
can shift the load balancing scheme between iso-
lation mode and resource sharing or consider data
locality opens up intriguing future directions for
further exploration.

The evaluation of load balancing policies was conducted
with certain assumptions, such as an unlimited energy sup-
ply to nodes and a constant request rate over time, to
ensure fairness and an isolated analysis of the respective
performance metrics, as suggested by [50]. However, these
assumptions may not be appropriate for use cases that in-
volve battery-powered edge nodes with variable energy in-
put (e.g., solar panels) in Smart Cities and Smart Farming,
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as studied in [47, 2, 8], or for use cases with variable work-
load that follow random patterns, as studied in [12, 8, 7].
Therefore, care must be taken when applying the findings
to other contexts in order to achieve the desired results.

Variable energy and load in real-world

Evaluating load balancing strategies under varying
arrival rates of users/IoT requests and varying en-
ergy inputs demands special considerations to en-
sure the resiliency of the strategy in real-world sce-
narios.

7.2. Serverless Computing

Auto-scaling for serverless computing originally occurs
at the granularity of individual requests. With the in-
creasing use of AI-based applications in the serverless land-
scape, this work has uncovered additional limitations. For
example, initializing a new replica can cause long cold
starts, typically a few seconds, due to the loading time
of an AI inference model. This is unacceptable for per-
request scaling. Furthermore, our designed system re-
vealed that functions that rely on accelerators such as
TPU cannot be replicated easily over the same node by
the serverless platform due to access control limitations.
To overcome these shortcomings, we investigated the pos-
sibility of vertical scaling of serverless functions, rather
than employing horizontal scaling. Our experiments con-
firm the feasibility and practicality of this approach. It is
noteworthy that horizontal scaling is not completely dis-
couraged since it brings benefits such as isolation, multi-
tenancy, and resiliency opportunities.

Vertical and hybrid scaling of serverless functions

Due to the deteriorated cold-start problem of
serverless functions caused by heavy AI models, im-
plementing vertical scaling of serverless functions
can allow a more smooth adaptation of AI-based
applications in the serverless domain, as exam-
ined in this work. The next ambitious improve-
ment could be hybrid scaling, which combines the
benefits of both vertical and horizontal scaling ap-
proaches.

Resource sharing between functions on hosts with GPUs
and accelerators is not trivial, leading us to design the
functions in a way that a single function will exclusively
use the accelerator. Additionally, it is beneficial for an
accelerator-enabled device to be allowed to switch between
its processing resources, i.e., CPU and accelerator to sat-
isfy varied performance metrics. For example, a node can
switch to CPU when running out of battery and then
switch to its high throughput accelerator when shorter la-
tency is desired.

Dynamic CPU and accelerator allocation

A dynamic resource allocation that shifts between
processors, i.e., CPU and accelerators, can allow a
higher degree of resource efficiency, especially when
multi-objective optimization is desired.

The cost model of serverless computing is currently only
applicable to CPU-based computation and is not yet ma-
ture for accelerator-enabled environments. To the best of
our knowledge, there is currently no practical accelerator-
based pricing model in place. Hence, our measurements
also follow CPU-driven pricing models, although compa-
nies such as DataRobot (https://www.datarobot.com/)
have started to fill this gap.

Heterogeneity-aware serverless pricing model

The original CPU-based pricing model of serverless
appears outdated with the emergence of GPU and
accelerator-demanding applications.

Furthermore, we designed a novel multi-purpose server-
less function that handles all the pre-processing, process-
ing, and post-processing of a task. This allowed us to sim-
plify the workflow and remove inter-dependencies. Func-
tion decomposition is also a common practice in serverless.

Single- and multi-purpose functions’ trade-offs

Contrary to the initial idea of FaaS, which fo-
cused on single-purpose short-lived applications,
our study demonstrates that multi-purpose and
long-lived functions are also feasible and can be
suited for certain applications.

7.3. AI Models

To characterize heterogeneous edge nodes in terms of
AI-related performance, we measured the precision metric.
However, it is important to note that other metrics such
as recall and F1 score can be similarly employed.

Application-specific evaluation of AI models

To address heterogeneity from an AI application’s
perspective, an important line of research will be to
conduct a comprehensive application-specific com-
parison of devices and AI models.

Furthermore, we chose the TensorFlow framework for
deploying the function since the TPU device is specifically
designed to use TensorFlowLite and also a pre-trained
model, i.e., SSD MobileNet, is publicly available for CPU-,
TPU-, and GPU-based inferences for a relatively fair com-
parison. However, if resource efficiency of the AI frame-
work is concerned, alternatives such as Pytorch or MXNet
are also worthy of exploration, as initial studies evidence
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their desirable performance in memory footprint, through-
put, and loading time of an inference model [42].

8. Conclusions and Future Directions

In this paper, we proposed a performance-driven load
balancing approach based on empirical weight-tuning, sup-
porting the realization of several single-objective load bal-
ancing policies for serverless edge computing, such as
energy-aware and cost-aware. We further extended our ap-
proach to encompass multi-objective and distributed load
balancing. Additionally, we presented Hedgi, a heteroge-
neous edge computing architecture facilitating the deploy-
ment of AI-based IoT applications in a serverless man-
ner. Through extensive experiments, we explored the per-
formance implications of our load balancing approach in
a heterogeneous serverless edge computing setup by the
Hedgi. Our results provide valuable insights into the de-
sign trade-offs of various load balancing policies and trig-
ger an informative discussion on the challenges posed by
load balancing in heterogeneous environments.

Future research can be conducted to extend those in-
sights in the following aspects: (a) self-adaptive load bal-
ancing policies for variable objectives, (b) self-contained
and cooperative edge switching of edge nodes, (c) vari-
able energy input and request arrival in IoT, (d) vertical
and hybrid scaling of AI functions, (e) dynamic CPU and
accelerator harvesting for multi-objective applications, (f)
heterogeneity-aware serverless pricing models to support
accelerators, (g) the trade-offs of using the single- and
multi-purpose design of functions, and (h), application-
specific evaluation of AI models for load balancing.
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[46] G. Casale, M. Artač, W. J. van den Heuvel, A. van Hoorn,
P. Jakovits, F. Leymann, M. Long, V. Papanikolaou, D. Pre-
senza, A. Russo, S. N. Srirama, D. A. Tamburri, M. Wurster,
L. Zhu, RADON: rational decomposition and orchestration for
serverless computing, Software-Intensive Cyber-Physical Sys-
tems 35 (1-2) (2020) 77–87. doi:10.1007/s00450-019-00413-w.

[47] H. Hacid, O. Kao, M. Mecella, N. Moha, H.-y. P. Eds, B. Stef-
fen, G. Woeginger, M. S. Aslanpour, A. N. Toosi, R. Gaire,
M. A. Cheema, WattEdge: A Holistic Approach for Empirical
Energy Measurements in Edge Computing, in: International
Conference on Service-Oriented Computing, Vol. 2, Springer,
2021, pp. 531–547. doi:10.1007/978-3-030-91431-8.
URL http://dx.doi.org/10.1007/978-3-030-91431-8 33

[48] R. B. Roy, T. Patel, D. Tiwari, IceBreaker: warming
serverless functions better with heterogeneity (2022) 753–
767doi:10.1145/3503222.3507750.

[49] R. Mahmud, A. N. Toosi, Con-Pi: A Distributed Container-
Based Edge and Fog Computing Framework, IEEE Internet
of Things Journal 9 (6) (2022) 4125–4138. arXiv:2101.03533,
doi:10.1109/JIOT.2021.3103053.

[50] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange,
J. L. Henning, P. Cao, How to Build a Benchmark, in: Pro-
ceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, ICPE ’15, Association for Com-
puting Machinery, New York, NY, USA, 2015, pp. 333–336.
doi:10.1145/2668930.2688819.
URL https://doi.org/10.1145/2668930.2688819

18


