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Abstract— The MapReduce model is widely used to store and 
process big data in a distributed manner. MapReduce was 
originally developed for a single tightly coupled cluster of 
computers. Approaches such as Hierarchical and Geo-Hadoop are 
designed to address geo-distributed MapReduce processing. 
However, these methods still suffer from high inter-cluster data 
transfer over the Internet, which is prohibitive for processing 
today’s globally big data.  In line with our thinking that there is no 
need to transfer the entire intermediate results to a single global 
reducer, we propose Cross-MapReduce, a framework for geo-
distributed MapReduce processing. Before any massive data 
transfer, our proposed method finds a set of best global reducers 
to minimize transferred data volumes. We propose a graph called 
Global Reduction Graph (GRG) to determine the number and the 
location of global reducers. We conduct extensive experimental 
evaluations using a real testbed to demonstrate the effectiveness of 
Cross-MapReduce. The experimental results show that 
Cross-MapReduce significantly outperforms the Hierarchical and 
Geo-Hadoop approaches and reduces the amount of data transfer 
over the Internet by 40%. 

Keywords— MapReduce, Geo-distributed, Data Center, Big 
Data. 

I. INTRODUCTION 
With the dramatic increase in the size of collected and stored 
data that is known as big data, the need for building data-driven 
applications for analyzing large datasets becomes increasingly 
essential in many areas of science and business. The current 
Internet-based applications such as Internet of Things (IoT), 
smart cities, and social networks produce huge amount of data 
and the processing has to be fast. The input data for many of 
these applications are often distributed in different locations. 
Moreover, in many cases, the geo-distributed data is generated 
at even much higher speed compared to the actual data transfer 
speed [2,3], for example, data from modern satellites [4].  

There are three common reasons for having geo-distributed 
data: (i) many organizations work in different countries and 
create local data in different parts of the world; (ii) 
organizations may prefer to use multi-clouds to enhance their 
reliability, security, and processing [5,6]; (iii) data is often 
stored close to where it is produced and needs to be processed 
in other locations, for example, sensor data is stored close to the 
sensors and needs to be processed in the cloud infrastructure.  

The ability to analyze and process geo-distributed data has 
become an important and challenging mission in many 
domains. Many applications need to process and analyze a 
massive amount of geo-distributed data [18]. For example, a 

bioinformatics application that analyzes existing genomes in 
different laboratories, a smart surveillance application that 
analyzes video feeds from distributed cameras, a monitoring 
system that inspects log files from distributed servers, or a 
social networking application that finds common friends of its 
users. 

Processing massive amount of data can be done best by 
running many parallel tasks operating on various parts of the 
dataset. Several frameworks have been proposed for big data 
processing, for example, Hadoop [20], Spark [21], Storm [27] 
and Flink [28]. Thus, in this paper, we focus on the MapReduce 
programming model, a well-accepted model for big data 
processing. The traditional frameworks supporting MapReduce 
(e.g., Hadoop and Spark) are not designed to process geo-
distributed data. For instance, Telegram servers are spread 
worldwide or Facebook maintains a growing number of data 
centers across the world and both of them use the MapReduce 
for processing their batch data [30,31]. In practice, a naïve 
solution of gathering all raw data into a single cluster to process 
geo-distributed data is used, which is not scalable. In such a 
naïve solution, data transfer between clusters can become a 
bottleneck. Moreover, it is also unreasonable to move the raw 
data to a single location when the output results of the 
computation in each cluster is smaller than its input data [7,8,9]. 
Thus, two other approaches to facilitate geo-distributed 
MapReduce are proposed in the literature which we call them 
Hierarchical and Geo-Hadoop approaches [22]. 

The Hierarchical and Geo-Hadoop approaches are far from 
perfect since they require a large amount of data transfer over 
the Internet. In the Hierarchical approach, each cluster 
processes data independently, then the entire results are 
transmitted to a single cluster (global reducer), and the final 
process is executed on a single global reducer. This approach 
requires a significant amount of data to be transferred to a single 
cluster. In the Geo-Hadoop approach, all required inter-cluster 
transfers are performed in the shuffle phase of the MapReduce 
process. It is needless to say that in the geo-distributed 
MapReduce the inter-data center data transfer is much slower 
than the data transfer among the cluster nodes of a single 
cluster. Therefore, this approach, in particular, increases the 
processing time for many applications whose intermediate 
results are more than the final results. For example, the 
invertedindex application with an input data of 1.4 GB 
generates 4.5 GB intermediate data, as shown in [9].  



The use of frameworks which support only the original 
MapReduce model do not provide acceptable performance for 
processing geo-distributed data in multiple data centers. The 
MapReduce model needs to be extended in order to provide 
appropriate solutions for processing data scattered across 
multiple data centers. Therefore, in this paper, we aim to tackle 
this issue and address the research problem of “how to reduce 
the total data transfer over the Internet in processing big data 
volumes scattered over multiple geographically distributed data 
centers?” We develop Cross-MapReduce to answer three 
important questions: (i) How many clusters should be selected 
as global reducers and which clusters are selected? (ii) What 
fraction of the results will be sent to the global reducers? (iii) 
What are the best parameters for selecting a global reducer? 

Cross-MapReduce is inspired by the integration of 
Hierarchical and Geo-Hadoop approaches to reduce inter-
cluster data transfers. Cross-MapReduce runs jobs in each 
cluster independently, similar to the Hierarchical approach. In 
the next step, instead of transferring all the results to a single 
cluster, like Geo-Hadoop approach, it shuffles the results that 
are required between clusters. The primary purpose of Cross-
MapReduce is to cover the weaknesses of both Hierarchical and 
Geo-Hadoop approaches. Moreover, Cross-MapReduce is a 
framework-independent approach that can work with any other 
frameworks supporting MapReduce such as Spark and Hadoop. 
In fact, Cross-MapReduce is a framework which manages the 
several clusters each capable of supporting MapReduce. 

Our key contributions in the Cross-MapReduce 
framework are as follows: 

• Gshuffling: We present a novel process called 
Gshuffling to distinguish between inter-cluster traffic 
over the Internet and intra-cluster traffic within the 
cluster. In MapReduce jobs, the volume of 
intermediate data is often greater than or equal to the 
volume of the final results. Thus, in Cross-
MapReduce, the data transfer in the shuffle phase of 
MapReduce is divided into two phases. The first phase 
is between nodes of each cluster (intra-cluster), which 
is performed independently within each MapReduce 
cluster. The second phase that includes the inter-
cluster transfer over the Internet which is performed 
via Gshuffling. Gshuffling finds multiple global 
reducers in a way that the amount of data transfer 
between clusters is reduced. 

• GRG: In order to transfer the required data between 
clusters, as part of Gshuffling process, we propose and 
build a novel graph called Global Reduction Graph 
(GRG). GRG represents the required inter-cluster data 
transfer and determines the number and the location of 
global reducers. For the subsequent reduce cycles, 
instead of transferring the entire results, Cross-
MapReduce identifies the portion of the results which 
is required by the global reducers. 

• Load balancing: We propose a new load balancing 
algorithm to increase performance and spread tasks 

among clusters. All the existing Hierarchical methods 
select a single global reducer for the final processing. 
However, Cross-MapReduce selects multiple global 
reducers to reduce overall data transfer and balance it 
between global reducers. 

The rest of the paper is organized as follows: Section 2 
describes the MapReduce programming model. In the next 
section, we discuss the problem tackled in this research. The 
Cross-MapReduce framework is proposed in Section 4. Section 
5 presents the experimental results. Section 6 covers the study 
of existing methods and related work, and the final section 
concludes the work. 

II. BACKGROUND 
MapReduce is one of the most commonly used programming 
models for big data processing. In the MapReduce model 
(Figure 1), data transfer is needed in two phases: map and 
reduce. The map function receives the key-value input pairs and 
generates a list of key-value intermediate pairs. Then the reduce 
function is run, which integrates all values with the same key. 
The output results of map tasks are the inputs of the reduce 
tasks. The input data is divided into input splits, and a map task 
processes each split. After the completion of one the map task, 
the shuffle phase is started, and the required data for the reduce 
task is moved to the reducer nodes. The reduce tasks are started 
when all map tasks are completed, while the shuffling phase can 
be overlapped with the mapping tasks. 

Fig. 1 The MapReduce model [1] 

The processing of map tasks includes read, map, collect, 
spill, and merge. Each map task processes a logical piece of 
input data located on a distributed file system. Data is split into 
blocks of the same size (the default block size is 64 or 128 MB) 
and are distributed to cluster nodes. The map task reads a block 
of data and runs the map function (the code written by the user) 
on each record. Output results are stored in the main memory. If 
the volume of output results (intermediate data) is greater than 
the buffer, then it is written to the local disk which is known as 
spill. Before data is written to the disk, a thread divides the data 
into partitions. For each partition, a reduce task is created. A 
reduce task needs particular partitions from several map tasks 
across the cluster.  

A reduce task includes shuffle, reduce, and write steps. In the 
shuffle stage, reduce tasks fetch the intermediate data from 
completed map tasks. The fetched intermediate data from all 
map tasks are sorted and merged in this stage. The reduce 
function is then executed on the merged data. Finally, the reduce 
phase output data is written to the distributed file system in the 
write step. 

There is another element in the MapReduce programming 
model: combiners. Combiners allow for the local aggregation. 



They are “mini-reducers” that take place on the output of the 
mappers, prior to the shuffle and sort phase. Each combiner 
operates in isolation and therefore does not have access to the 
intermediate output from other mappers. Our method extends 
the combiners in multi-cluster level. 

III. PROBLEM STATEMENT 
We assume that there are several MapReduce clusters 
connected through the Internet. Any framework supporting the 
MapReduce model can be set up on clusters. All clusters 
include one master node that the Cross-MapReduce 
communicates with it for running the desired commands.  

In each cluster, there is a portion of the data that should be 
processed. For the sake of simplicity, in this paper, the clusters 
and network bandwidth are considered to be homogeneous. We 
also assume that clusters are point-to-point interconnected over 
the Internet. The bandwidth between clusters over the Internet 
is limited which can become a bottleneck of the system and 
increases the runtime.  

As a pilot experiment, we ran the MapReduce model on 
different volumes of data and observed the results. In all 
observations, the amount of produced intermediate data by map 
tasks is much larger than the amount of final data produced by 
reducer tasks. This is reasonable because, in the MapReduce 
structure, a new key is not produced in the reduce phase, only 
the records that were produced in the map phase are merged. 
Therefore, it is obvious that the volume of intermediate data is 
practically always greater than or equal to the volume of the 
final results.  

We distinguish between inter-cluster data transfer which 
happens over the Internet and intra-cluster data transfer which 
happens within each cluster. So, by proposing GShuffling, we 
postpone the inter-cluster data transfer to the time that 
MapReduce jobs are finished in each cluster. Instead of 
shuffling time, the data transfer between clusters happens after 
all reduce tasks are finished in all clusters. Using GShuffling, 
we expect that the volume of data transfer will be significantly 
reduced since the number of records transmitted between 
clusters is reduced. 

A. Motivational Examples 
In this section, we describe a very simple example to motivate 
the idea behind this work. The volume of data in this example 
is chosen to be small to be easily understood by the readers. 
However, in the performance evaluation section, the high-
volume datasets are selected to evaluate the proposed method. 
In Figure 2, we consider 3 clusters, each of which 
independently processes its job. If we use the Hierarchical 
approach and select Cluster 1 as a global reducer, then the entire 
output of Clusters 2 and 3 are sent to Cluster 1 with a total of 
12 records. But in Cross-MapReduce, the output of Cluster 3 is 
not transmitted at all, since in the production of the final result, 
there is no need for those keys. Only 4 overlapping records 
(Key1, Key3, Key5, Key6) from Cluster 2 are transmitted to 
Cluster 1. 

                                                        
1 https://www.tutorialspoint.com/hadoop/hadoop_tutorial.pdf 

 
Fig. 2. An example of output results in each cluster 

In Figure 3, we present another example to illustrate how 
data transfers can be reduced in the proposed Cross-
MapReduce framework compared to the Geo-Hadoop 
approach. Suppose that the map phase is done and intermediate 
data is produced. As shown in Figure 3, there are two records 
with the key “key1” in two separate nodes in both clusters. The 
dashed lines represent the data transfer between nodes for the 
Geo-Hadoop approach. Now, we select one of the nodes as the 
reducer node. If Node N1 in Cluster 1 is selected as the reducer, 
we find that it needs to read its data from three other nodes, so 
that there are two nodes in the other cluster. Thus, the number 
of records to be transferred between clusters is two. Now 
consider the solid lines representing the data transfer between 
nodes for Cross-MapReduce. In this model, records containing 
the key “key1” are combined together in each cluster; therefore, 
only one record is transmitted from Cluster 2 to Cluster 1. This 
means that inter-cluster data transfer will be reduced. Note that 
inter-cluster bandwidth is more limited (almost 60 times 
slower) than intra-cluster connections since traffic has to 
traverse through the internet. Cross-MapReduce and Geo-
Hadoop both have three edges for merging but Cross-Hadoop 
has only one over the internet. 
 

 
Fig. 3. Inter-cluster data transfer in the Cross-Hadoop and Geo-Hadoop 

approaches. Dashed lines show data transfer in Geo-Hadoop while solid lines 
show Cross-Hadoop data transfer. 

Furthermore, to test our hypothesis, we prepared two 
purposely small files, hadoop_tutorial 1  and 
mapreduce_tutorial 2  and executed wordcount job on them. 
After processing, the hadoop_tutorial output file contained 
2899 records and the mapreduce_tutorial output file contained 
2821 records. By comparing two output files, it is found that 
there are only 202 records with the same keys which is 
interestingly small for two relevant topics. Therefore, according 
to our hypothesis, it is only necessary to transfer 202 records (2 
KB) between clusters to generate final results. However, if we 

2 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.pdf 
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produce the final results using the Hierarchical approach, 2821 
records (36 KB) should be transferred (18 times more data). We 
also tested this for the Geo-Hadoop approach, which we found 
that it is necessary to transfer 8005 records (90 KB) in the 
shuffle phase (45 times more data). The example shows that we 
can save significant amount of data transfer if we only transfer 
common keys between clusters. 

IV. CROSS-MAPREDUCE  
In the following sections, we propose the Cross-MapReduce 
framework for the processing of geo-distributed data. In the 
beginning, Cross-MapReduce works similar to the Hierarchical 
approach, and all clusters independently run their jobs and 
produce their results. In the Geo-Hadoop approach, after 
generating intermediate data (output of map tasks), the 
shuffling phase occurs on all the nodes. However, in Cross-
MapReduce, all the inter-cluster transfers happen after the job 
is completed in each cluster.  Figure 4 shows the entire process 
of running a job in Cross-MapReduce, where MRi represents 
the MapReduce job in the ith cluster that processes the data 
independently, and GRi shows the ith global reducer. 

 
Fig. 4. The process of running a job in the Cross-Hadoop framework 

 
The combiners in MapReduce merge the records that have 

the same key on a single machine in the cluster. The combined 
map result is transferred to reducers as one record. In Cross-
MapReduce, we use the same concept at the cluster level and 
we call it MapCombine. Cross-MapReduce merges the records 
that have the same keys in a cluster using the reduce function. 
Thus, our proposed method follows these steps: 

 
MapCombine -> Gshuffle -> GlobalReducer. 

 
MapCombine runs user’s jobs containing the map and reduce 
functions in each cluster. After running MapCombine it is 
expected that there would be unique keys in each cluster. 

One of the main novelties of the Cross-MapReduce is 
Gshuffling, where a single global reducer in the Hierarchical 
approach is replaced with multi global reducers. We identify 
the portion of results that must be transferred by the early 
transfer of keys instead of the total intermediate results. Then, 
global reducers are determined by the construction of the 
Global Reduction Graph (GRG). Having built GRG, we send 
the required key-value pairs to the global reducers. GShuffling 
has two key advantages: (i) unlike the Hierarchical approach, 
only a portion of data that is required for processing is 
transmitted; (ii) the reduce task is executed on local values of 

the same key in each cluster prior to GShuffling. As a result, 
the data transfer between clusters is reduced compared to the 
Geo-Hadoop approach. 

A. System Design 
The proposed Cross-MapReduce system architecture is shown 
in Figure 5. It is a distributed multi-cluster system consisting of 
three layers. Cross-MapReduce architecture like SDN and NFV 
[34,35] architectures splits the control and data transferring 
elements. The SDN controller is a logically central entity that 
receives instructions or requirements from the application layer 
and relays them to the networking components. Similarly, in 
Cross-MapReduce architecture, the lowest layer includes 
MapReduce clusters in which the real data is saved. The second 
layer is a management and orchestration layer which includes 
GRG and Gshuffling components. In fact, Layer 2 is a software 
layer that determines the data transfer between clusters of Layer 
3 and global reducers for a job. The first layer is the control 
layer which includes JobManager and DataManager 
components. 

First, a user submits the job to JobManager. JobManager 
divides the job into sub-jobs and sends each one to the clusters 
in the third layer. In the third layer, data is processed 
independently in each cluster. The completion of each sub-job 
is reported to JobManager, including the address of the results 
which is recorded in the DataManager. Afterwards, 
DataManager selects a cluster whose key volume is the largest. 
This cluster is called master. In Layer 2, the master fetches the 
keys from all clusters. Then, in the master cluster, GRG is 
formed for the Gshuffling process. The required global reducers 
and their best placement are determined according to the GRG 
algorithm in Layer 2, which is explained in more details in the 
following section. Afterwards, a portion of the result that is 
needed is sent to the selected global reducers. Finally, the 
process is completed when the address for results of global 
reducers is added to the DataManager.  

Algorithm 1 shows the steps of Cross-MapReduce. In Line 
5-6, all clusters send their key set to the master cluster in 
parallel. Then, GRG is built on the master in Line 7. After 
running the GRG algorithm on the GRG Graph, global reducers 
are determined. Each cluster is requested to send the required 
key-values to the allocated global reducers. In fact, the master 
sends keys along with the target global reducer to clusters and 
asks them to send their key-value pairs to their global reducer. 
The input data for global reducers is collected in Line 10-11. 
Cross-MapReduce ensures that all the intermediate results (sub-
job execution results) for a given key in multiple clusters is 
collected to one of the global reducers. More details are given 
when we discuss GRG in the next section. In Line 12, each 
global reducer runs a MapReduce job written by the user. 
Global reducers are run and generate the final results. 
Eventually, the addresses of results in global reducers are sent 
to DataManager. In Cross-MapReduce results are distributed 
among the clusters, and DataManager keeps track of the address 
for the specific key-value pair.  
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Algorithm 1: Cross-MapReduce 
1: submit a job to JobManager; 
2: run a sub-job in each cluster on local data; 
3: register results address along with their volume in DataManager; 
4: select cluster Ci for Gshuffling process; 
5: for cluster Cj; 0< j ≤ number of cluster and j≠i, do in parallel 
6: Cj sends the key set along with their number of values to the 

Ci; 
7: create GRG graph in Ci; 
8: run GRG algorithm on GRG graph; 
9: Ci sends required key to other clusters; 
10: for cluster Cj; 0< j ≤ number of cluster 
11: Cj sends the required key-value to its global reducer; 
12: run global reducers; 
13: add new results address in DataManager; 
14: end; 

B. GRG Graph 
In this section, we describe how to form a graph to select 

global reducers. We create an undirected Global Reduction 
Graph (GRG) using all the keys in the master. The vertices of 
the graph represent clusters with intermediate results of each 
sub-job. GRG itself is created by running a MapReduce job. 
The input to this job is a key set, and its output is a list of key-
value pairs with values representing the cluster number 
associated with the key. For instance, if key “A” exists in 
Clusters 1, 2, and 3, key “B” in Clusters 2 and 3, and key “C” 
in Clusters 2, 3 and 4, the output of the MapReduce job includes 
(“A”, <1,2,3>), (“B”, <2,3>), (“C”, <2,3,4>) key-value pairs. 

To build GRG, we scan through the output. We assume that 
the values in the list of clusters (e.g., <1,2,3>) for a specific key 
(e.g. “A”) are sorted based on the cluster numbers. We do this 
to avoid the creation of any loop in the graph for that key. The 

first cluster in this list (e.g. 1 for “A” and 2 for “B”) is selected 
as the target cluster for the key. Then, we create an edge 
between all other vertices containing the key to the target vertex 
in the graph. If the edge already exists between two vertices, the 
weight of the edge is increased by one unit. Note that the way 
that clusters are numbered would not affect the overall inter-
cluster data transfer after GRG is formed. 

The number of created edges impacts the selection process 
of global reducers. In fact, the edges represent the existence of 
the common keys among the clusters and their weight show the 
number of the common keys between two clusters. It means that 
the higher the weight, the more the number of common keys 
between two corresponding clusters. We define a weight 
coefficient, υ", to represent the ratio of the volume of values to 
the number of keys for every vertex. υ"  is calculated by 
Formula 1. 

υ" =
𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒𝑠	𝑖𝑛		𝐶"
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑘𝑒𝑦𝑠	𝑖𝑛	𝐶"

																			(1) 

where Ci represents the ith cluster (or vertex). 
We also define weight for vertices. Vertices weight are 

calculated based on the number of common keys and the 
volume of corresponding values. By using vertices weight, we 
estimate the data volume that should be exported from the 
vertex. Therefore, the algorithm selects the maximum weight as 
the first global reducer to keep the maximum data volume 
stagnant (not transferred). This way, Cross-MapReduce 
reduces data transferring. The weight of a vertex is calculated 
by Formula 2. 

 𝑊" = ∑ υ< × 𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓 < 𝑖. 𝑗 >"F<                  (2) 
where Wi is the weight of the ith vertex. 

We use υ"  to incorporate the volume of value in the 
selection process of the global reducer. Accordingly, the cluster  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       Fig. 5. System architecture 
 
 

that has the highest weight keeps the key-values, and other 
clusters send the required key-values to this cluster. For 
example, consider the above list, we have keys “A”, “B”, and 

“C”. For the key “A”, the edge is created from Vertices 2 and 3 
to 1. Similarly, an edge is created from 3 to 2 for “B”, and 3 and 
4 to 2 for “C”. 
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 Figure 6 shows the corresponding GRG for the above list. Note 
that edgeless GRG means no need to transfer data between the 
clusters. 

 
Fig. 6. Example of GRG graph 

 
 

In order to determine global reducers, we use GRG 
algorithm. Algorithm 2 shows how global reducers are selected 
and load balancing between them is performed. 

 
Algorithm 2: GRG 
 Input: GRG Graph 
Output: List<global reducers, weight> 
1: Function GRG (GRG Graph) 
2:   NewVertex = (weight (vertexi)); 

3:   If (weight(NewVertex) == 0) 
4:    Return List; 
5:   If there exist several vertices with the same weight 
6:       Select one that has a higher weight in the original graph  
7:   List.Add(NewVertex, WNewVertex); 
8:   If (List.lenght > 1) 
9:      If there exist edge between NewVertex and other member of List   

(Vi) in the original graph 
10:          For each edge <NewVertex, Vi> 
11:   D = WNewVertex – WVi; 
12:   If D > weight of <NewVertex, Vi> 
13:                 WNewVertex = WNewVertex + weight of <NewVertex, Vi>; 
14:       Wvi = Wvi – weight of <NewVertex, Vi>; 
15:   GRG Graph ← Remove adjacent edges of NewVertex; 
16:   GRG (GRG Graph); 
17: End function; 
 

Algorithm 2 selects the global reducers based on the weight 
of the vertex. The highest weight vertex is selected as a global 
reducer for the key-value pairs of that vertex. These key-value 
pairs are kept in the global reducer and other key-values are sent 
to it. Since the weight of the vertex is obtained based on the 
volume of key-values, this action results in reduced inter-
cluster data transfer. In Line 1, the algorithm selects a vertex 
that has the maximum weight. Then selected vertex is added to 
the list in Line 7. In Line 15, adjacent edges of the selected 
vertex are removed and the graph is updated. The new graph is 
passed to the GRG and all previous steps are run until there is 
no edge in the graph (Line 3). In Line 5-6, the algorithm gives 
priority to the vertices with the same weight. If there exist 
several vertices with the same weight in the GRG graph, the 
algorithm searches the maximum vertex weight between them 
in the original graph (the initial graph). If the vertices have the 
same weight in the original graph as well, then a vertex is 

selected arbitrarily. Lines 7 to 13 show the load balancing 
between the global reducers in each level. These steps are run 
when more than one global reducer is needed. In fact, we 
specify the direction of data movement between global 
reducers. Typically, from the global reducer with a lower 
weight to a global reducer with a higher one. In each iteration 
of the algorithm, a vertex is selected as a global reducer. 
Suppose that the algorithm is run in two iterations and two 
global reducers are selected (the first global reducer is selected 
in the first iteration and the second one is selected in the second 
one). To move data, in this case, the algorithm moves data from 
the second global reducer to the first one. However, in order to 
perform load balancing between global reducers, the algorithm 
can change the direction of data movement in each iteration. In 
Line 8, the algorithm checks whether the data is transferred 
between global reducers. If there exists an edge between global 
reducers, the difference between two global reducers weight is 
obtained (global reducer’s weight is fetched from the graph in 
the corresponding iteration). Note that, global reducer’s weight 
shows the number of key-values that is needed to process and 
the edge’s weight also shows the number of key-values that is 
needed to transfer. After that, if the difference is higher than the 
edge weight between the two global reducers, then the direction 
of data movement is reversed. The algorithm’s operation is 
explained using Figure 7. Figure 7 shows two global reducers, 
and the weight difference between them (gap). The goal is to 
reduce the gap between them. The data is moved from Vertex 
2 to Vertex 1 typically. If the gap’s value is higher than the edge 
weight (d), then edge weight is removed from first global 
reducer and is added to the second weight. This means the 
direction of data movement is reversed, and the gap value is 
reduced. 

 
 
 
 
 
 
 
 

Fig. 7. Operation of load balancing 
Consider the graph in Figure 6. For the sake of simplicity, 

we assume that υ" = 1 while in Algorithm 2 υ"  is calculated 
based on Formula 1. In this graph, Vertex 2 has the maximum 
weight of 4. The algorithm in the first iteration selects it and 
add it to list. Then adjacent edges of Vertex 2 are removed. 
Vertices 1, 3 and 4 include data transfer to Vertex 2 so far. In 
the next iteration, one edge remains in the graph between 
Vertices 1 and 3. Since the weight of these vertices are equal, 
so the algorithm searches the maximum weight in the original 
graph. In the original graph, Vertex 3 has the maximum weight; 
therefore, it is selected by the algorithm. Currently, Vertex 2 
should process four key-values and Vertex 3 only process one 
key-value. Here, the algorithm performs the load balancing 
between Vertices 2 and 3. The weight of Vertices 2 and 3 are 4 
and 1, respectively. Their weight difference is 3, that is higher 
than the edge weight 2. So the algorithm changes the direction 
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of data movement from Vertex 3 to 2. Therefore, the weight of 
Vertices 2 and 3 is updated, and the data is transferred from 
Vertex 2 to 3. Now, after the load balancing, Vertices 2 and 3 
should process 2 and 3 key-values respectively.  

Algorithm 2 is a recursive algorithm with polynomial time 
complexity. The maximum number of edges in the graph is n(n-
1)/2, where n is the number of vertices (clusters). In each 
iteration, the algorithm removes one the edges. The algorithm 
finishes when there is no other edge in the graph. Therefore, the 
overall time complexity of Algorithm 2 is O(n2). 

C. Global Reducer 
In the final stage, some clusters are selected to run a job as 
global reducers by the GRG algorithm. Each global reducer 
cluster runs a MapReduce job. Two methods for the 
programming of the global reducer’s job can be followed. The 
first method runs a MapReduce job like a sub-job with a do-
nothing map function. Since the MapReduce job cannot run 
without map function, the map function only reads the input 
data and saves it as an intermediate key-value without any 
modification. Then the reduce function is run and generates the 
final results. By this way, jobs like GetAverage (calculate the 
average of numbers) cannot be executed by Cross-MapReduce. 
The second method runs a MapReduce job written by the user. 
In this method, the user has the responsibility to develop the 
task for the global reducers. This way, the scope of MapReduce 
jobs that can be executed by Cross-MapReduce is expanded and 
includes the non-associative or non-commutative reducer 
functions. An example can better explain the purpose of 
choosing this method. Consider two jobs: WordCount and 
GetAverage (calculating the average of several numbers). The 
first method generates the correct results in multi clusters for 
the WordCount job because the reducer functions are 
associative (each sub-job in WordCount sums the values of the 
common keys, and then the global reducers sum the common 
keys value.). However, for GetAverage job, sub-job calculates 
the average locally. So, the input of global reducers is the 
average values from multiple clusters. In this case, the first idea 
cannot generate the correct results. Therefore, in Cross-
MapReduce, users submit two jobs, sub-job and global reducers 
job for non-associative jobs. Sub-job is run on each cluster 
locally, and finally the global reducers’ job is run on the clusters 
determined by GRG. 

V. PERFORMANCE EVALUATION 
In this section, we conduct experiments to evaluate the 

effectiveness of the Cross-MapReduce in reducing data transfer 
among multiple geographically distributed clusters when 
MapReduce is used. We evaluate the performance of Cross-
MapReduce using a testbed and compared it to the Hierarchical 
and Geo-Hadoop approaches. Here, we use four applications, 
wordcount, invertedindex, adjacency-list  and sql-query with 
different ratios of the key to value volume. Adjacency-list [17] 
is similar to search-engine computation to generate adjacency 
and reverse adjacency lists of vertices of a graph to be used by 
PageRank-like algorithms. In sql-query, the log file of 
administrative data of a job scheduling mechanism is used. For 

confidentiality reasons, the algorithm and log file data are 
obfuscated. The log data has 8 columns of information:  

• TaskId: a unique number identifies each task. 
• TaskStatus: indicates that a task has been 

successfully completed. 
• TaskExecutionTime: shows the execution time of 

the task. 
• TaskDeadline: it shows the deadline of the task. 
• TaskArriveTime: shows the time when a task was 

submitted.  
• TaskStartTime: indicates the time when a task is 

run. 
• TaskWaitTime: shows the time when a task waits 

to run. 
• TaskType: it shows the type of the task. 

We do data processing on the log data such as counting the 
number of task runs and obtaining the average of task execution 
time, and the average of TaskWaitTime where the TaskStatus 
is ‘Success’ in the log file. In wordcount, the ratio of the value 
volume is less than the key volume in contrast to others. In this 
paper, we focus on the data transfer size and job run time. We 
use Hadoop 2.6.5 for MapReduce processing in our 
experiments. We run our experiments on three clusters over 
three different hosts. Each node has 2 cores, 4 GB memory and 
50 GB disk. To measure the bandwidth, we send 500 MB data 
from one host to another five times and calculate the bandwidth 
between the hosts. The average bandwidth between each host is 
1.37 MB/s. 

 For wordcount, adjacency-list and invertedindex, we use 
PUMA [17] dataset for our evaluation. Our clusters are point-
to-point interconnected, and all clusters and bandwidth are 
homogeneous. Table 1 shows the existing data volume in each 
cluster. Note that, due to limitations in academic research 
laboratories, running experiments in big scales (e.g., petabyte 
and exabyte scale) is not feasible. However, this does not imply 
that the Cross-MapReduce cannot be executed on big data 
scales. The proposed method can be easily applied for big data 
scale and reduce inter-cluster data transferring. As noted in 
section IV-B, the order of algorithm is O(n2) and the number of 
GRG vertices (clusters) will be practically small in real cases. 
In sql-query, our data is distributed over three clusters in each 
data about 5 GB (Table 1 shows the amount of data exactly). 
Our query results are the number of tasks runs, the average of 
task execution and task waiting time where the TaskStatus is 
‘Success’. 

We compared Cross-MapReduce with the Hierarchical and 
Geo-Hadoop approaches in terms of inter-cluster data transfer 
and makespan. First, we examine the volume of the key set and 
the final output results for all applications, shown in Figures 8, 
9, 10 and 11 for every three clusters. According to Figure 8, 10 
and 11 in invertedindex, sql-query and Adjacency-list, the 
volume of the key set is almost less than the half of the volume 
of output results. Whereas, as it can be seen in Figure 9, in 
wordcount, the volume of the key set is very large in 
comparison with the volume of output results, so that almost 
90% of the results is made up of keys.  



In both Cross-MapReduce and Hierarchical approaches, 
each cluster independently runs its own application. After 
running MapReduce on each cluster and producing 
intermediate results in the Hierarchical approach, one cluster is 
selected as a global reducer and results of the other clusters are 
sent to this cluster. Here, we select the cluster whose volume of 
intermediate results is larger than the other clusters. The reason 
is that the size of data transfer between clusters in the 
Hierarchical approach is minimized this way. In Cross-
MapReduce, instead of sending the total intermediate results to 
a single cluster, we only send keys to the master cluster in order 
to build GRG. Then we determine clusters that should run 
global reducers, and only part of the data that is required is sent 
to global reducers. The amount of exported data from each 
cluster is shown in Figures 12, 13, 14 and 15 for each 
application. 

According to experiments, Geo-Hadoop has the highest 
data transfer between clusters since the applications’ 
intermediate data (output of map tasks) size is very large 
compared to the raw data. Figure 12 shows the size of the 
exported data for the invertedindex application. As shown in 
Figure 18, the volume of intermediate results in cluster 1 is 
higher than in other clusters. Therefore, for the Hierarchical 
approach, Cluster 1 is selected as the individual global reducer, 
and the results of the other clusters are transferred to it. Hence, 
the size of the exported data for the Hierarchical approach in 
Cluster 3 is zero in Figure 12. But in Cross-MapReduce, 
clusters send their keys to Cluster 1.  After processing and 
forming GRG, Cluster 3 is selected as the first global reducer, 
so the exported data from Cluster 3 only contains the keys that 
are sent from the master. Cluster 1 is then selected as the second 

global reducer. The size of the exported data in Cluster 1 
consists of the data that is required by the first global reducer 
and the master. And in Cluster 2, the amount of exported data 
is equal to the total volume of keys and the data that is required 
by other clusters.  

Figure 13 shows the same process for the wordcount 
application. Since in wordcount, the volume of the key set is 
very large compared to the volume of the output, hence the 
amount of exported data in Cross-MapReduce, in Cluster 1 and 
Cluster 2, is greater than the Hierarchical approach and only 
Cluster 3 is slightly less than the other one. In wordcount, 
Cluster 1 is chosen as a global reducer for the Hierarchical 
approach, so the size of the exported data in this cluster is zero. 
As shown in Figure 10, the size of results in cluster 3 is larger 
than other clusters in sql-query. So, cluster 3 is selected as the 
global reducer in Hierarchical approach and results of other 
clusters are transferred to it. Thus, the size of the exported data 
for the Hierarchical approach in Cluster 3 is zero in Figure 15. 
In Cross-MapReduce, Cluster 3 is selected as the master where 
GRG is created. Then Cluster 1 is selected as the first global 
reducer, and Cluster 3 is the second one. As shown in Figure 
11, the result size of all clusters is almost equal. However, the 
result size of Cluster 1 is slightly more, so Cluster 1 is selected 
as a global reducer in Adjacency-list for Hierarchical 
approaches. Other Clusters transfer their result to Cluster 1. 
Therefore, the total size of inter-cluster data transferring is 6.5 
GB for the Hierarchical approach. In Cross-MapReduce Cluster 
1 is selected as the master. Finally, Cluster 1 and 3 are selected 
as global reducers. The summary of the total data transfers in 
all approaches for each application is shown in Table 2. 

 
Table 1. The cluster data volume for each application 

 wordcount invertedindex Sql-query Adjacency-List 

Cluster 1 4.6 G 4.6 G 5.2 G 3.1 G 

Cluster 2 2.8 G 2.8 G 5.1 G 3.1 G 

Cluster 3 4.3 G 4.3 G 5.2 G 3.2 G 
 

 
Fig. 8. The volume of key set and output results in invertedindex 

 

 
Fig. 9.  The volume of key set and output results in wordcount 

 



 
Fig. 10. The volume of key set and output results in Sql-query 

 

 
Fig. 12.  The amount of exported data from clusters in invertedindex 

 

 
Fig. 11. The volume of key set and output results in Adjacency-List 

 

 
Fig. 13.  The amount of exported data from clusters in wordcount 

 

 
Fig. 14. The amount of exported data from clusters in Adjacency-List 

 

 
Fig. 15.  The amount of exported data from clusters in Sql-query 

 

Table 2. Compression of Cross-MapReduce, Hierarchical and Geo-Hadoop approaches 
  Make-span  Inter-cluster transfer 
 Adjacency-List Sql-query Invertedindex Wordcount Adjacency-List Sql-query Invertedindex Wordcount 

Cross-MapReduce 44.53 min 32.03 min 61.38 min 32.1 min 1775.3 MB 788.6 MB 1080.3 MB 1020.9 MB 

Hierarchical 80.8 min 42.81min 65.76 min 30.41 min 6500 MB 1664.4 MB 1791.6 MB 1008.3 MB 

Geo-Hadoop 105.15 min 51.1min 73.40 min 37.2 min 15.2 GB 11.1 GB 6.6 GB 5.6 GB 

In invertedindex, Sql-query and Adjacency-list the total data 
transfer by Cross-MapReduce is about 39%, 52% and 73% less 
than the Hierarchical approach, respectively, as shown in Table 
2. But in wordcount, the size of data transfer among clusters 
increased by 2% in Cross-MapReduce. This is expected due to 
the volume of the key set. Cross-MapReduce is efficient in 
applications whose key volume is smaller than the value 
volume. 

Table 2 also shows the makespan of execution of 
applications under three approaches. Due to the data transfer 
reduction in Cross-MapReduce, the makespan has significantly 
decreased for Invertedindex, sql-query and Adjacency-list. The 
important point at the wordcount makespan is that in spite of 
the slight increase in data transfer for Cross-MapReduce, its 

makespan is still very competitive to the Hierarchical approach. 
There are two reasons for this observation: (i) in the 
Hierarchical approach, the amount of processing data for the 
global reducer is considerably high compared to Cross-
MapReduce. The total data volume to be processed for the 
global reducer is about 1.5 GB while in Cross-MapReduce, 
each global reducer processes less than 300 MB of data; (ii) in 
Cross-MapReduce, multiple clusters are selected as global 
reducers rather than a single global reducer, and the final 
processing is performed in parallel to produce the final results.  

Cross-MapReduce is divided into nine phases as shown in 
Figure 16. This Figure shows the timespan of different phases 
of Cross-MapReduce for wordcount, invertedindex, adjacency-
list and sql-query applications in details. In the first phase, each 



cluster runs sub-job for the application. Then, in the Get Key 
phase, another job is run to extract keys from the sub-job 
results. Instead of sending the result to a single cluster, in the 
keys transferring phase, Cross-MapReduce sends keys to a 
single cluster (master). After that, it finds keys that are common 
among the clusters in the next phase (find common keys). 
Based on these common keys, GRG graph is created (create 
GRG) and all required keys are transferred (send keys) to 
acquire the corresponding values. Before receiving these 
values, a MapReduce job is run to extract the required values 
(getting required key-values). Then the global reducers receive 
the required key-values (receiving key-values) and in the last 
phase, all global reducers run their jobs. The timespan of each 
step is shown with a different color in Figure 16. 

Our approach reduces the data transfer between clusters in 
the cost of more processing. As shown in Figure 16, in each 
application, the maximum time is used by running sub-jobs and 
transmission of keys. Figure 16 shows that the extra local 
processing time compared to the data transferring time is 
negligible, in Cross-MapReduce. 

In the experiments that have been performed so far, the 
distribution of data keys is not considered, and the data is 
distributed among clusters randomly. 

 
Fig. 16. Process of Cross-Hadoop in each application 

 
We investigate the impact of the percentage of common keys 
among the clusters on the overall data transfer in the following. 
Since the InvertedIndex, Adjacecy-list and WordCount data are 
text documents, we only use sql-query data which is structured 
to control the distribution of common keys in these 
experiments.  

 
Fig. 17. Inter-cluster data transfer in the controlled distribution of keys. 

 
Figure 17 shows the total inter-cluster data transferring 

among clusters in Cross-MapReduce in different distribution of 
common keys. As shown in Figure 17, four cases are 
considered. In the first case, keys are distributed randomly. In 
this case, the inter-cluster data transferring is 788.6 MB which 
is the highest. In the second case, the distribution of keys is 
controlled in a way that only 30% of keys are common among 
clusters. In this case, the inter-cluster data transferring is 616.9 
MB, and Cross-MapReduce performs better than others. In the 
third case, only 15% of keys are common among clusters. The 
total inter-cluster data transferring is reduced to 535.3 MB. In 
the last case, the distribution of keys is fully controlled in a way 
that no common keys exist among clusters. Cross-MapReduce 
transferred 412.2 MB data among the clusters in this case. 
According to Figure 17, the data transfer reduction is linear 
because the data is structured, and the size of value for all keys 
are almost equal. As we expected, when the key distribution is 
controlled, Cross-MapReduce performs better as less inter-
cluster data transfer is required.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                   (a) Fisrt phase of Cross-MapReduce                                       (b) First phase of Hierarchical 

Figure 18: Comparison of Cross-MapReduce phase 1 with Hierarchical 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

In Figures 18 to 20, the runtime of Hierarchical and Cross-
MapReduce are compared in details. There exists tree phases in 
Hierarchical approach, Run sub-job, Result Transferring and 
Run global reducers job. In fact, the first phase in Hierarchical 
is computation phase, the second phase is communication or 
data transferring and the third phase is a computation phase 
again. According to this, we divide Cross-MapReduce into 
three phases and compare it with the Hirarchical approach. 

Figure 18 (a) shows the first phase including run sub-job 
and Get Keys jobs for the Cross-MapReduce approach. In 
contrast, Figure 18 (b) shows the first phase of Hierarchical 
approach that includes the run sub-job. In the first phase, 
Hierarchical approach finishes the job earlier in all applications 
because it does not need to run the GetKey job. While in phase 
2 (Figure 19), although Cross-MapReduce runs more jobs, it 
finishes them earlier than the Hierarchical approach. This is due 
to the fact that Cross-MapReduce reduces the inter-cluster data 
transfer significatly at the cost of a higher computation volume. 
Figure 20 shows the phase three for Hierarchical and Cross-
MapReduce approaches. In this phase, Cross-MapReduce 
transfers the required keys-values and then runs the global 
reducer job. Hence, in this phase, Cross-MapReduce runtime is 
more than the Hierarchical approach. But the data volume that 
should be transferred is not considerable. Because Cross-
MapReduce only transfers the data that is required. In Cross-
MapReduce, the runtime of Global reducer job is lower than 
that of the Hierarchical aproach. Because Cross-MapReduce 
selects multi global reducers and runs the global reducer job in 
parallel on multiple clusters. However, the Hierarchical 

approach runs it on a single cluster. Therefore, Cross-
MapReduce finishes the job earlier than the other approaches, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overall. 

A. Discussion 
In this section, we formalize the possible performance gain in 
Cross-MapReduce. In general, three types of data transfer 
happen in Cross-MapReduce: 1) the collection of keys in the 
master, 2) the set of required keys sent from master to each 
cluster to inform them to transfer their data to the global 
reducers, and 3) key-value results that should be sent to the 
global reducers from the informed clusters. Cross-MapReduce 
would be deemed beneficial when its total data transfer is at 
least less than the Hierarchical approach. Let D denote the total 
data transfer in the Hierarchical approach.  Equation 3 
represents this line of thinking:  

 
∑ KeyJ + ∑ RequiredKeyJ + ∑ KeyValueJ < 	D			

J
	
J

	
J   (3) 

 
where keyi presents the size of the key set in the ith cluster.  
RequiredKeyi shows the size of the key set sent to the ith cluster 
from the master and KeyValuei is the size of the key-value set 
that are transferred from the ith cluster to a global reducer as an 
input. For the sake of brevity, we rewrite Equation 3 as: 
 

K + R + KVWX < D		  (4) 
 

Let 𝐷 − 𝑉 ≈ 𝐾, where V is the size of values in the final 
results. Here, we assume that the size of the final results is 
almost equal to the amount of data transfer for the Hierarchical 
approach. This is true to a large extent if the size of locally 

 
                               (a) Second phase of Cross-MapReduce                               (b) Second phase of Hierarchical 

Figure 19: Comparison of Cross-MapReduce phase 2 with Hierarchical 

 
                            (a) Third phase of Cross-MapReduce                                         (b) Third phase of Hierarchical 

Figure 20: Comparison of Cross-MapReduce phase 3 with Hierarchical 



produced intermediate results in the global reducer in the 
Hierarchical approach is relatively small.  Kval is equal to R+VR, 
where VR stands for the size of the value set that is transferred 
to the global reducers in Cross-MapReduce. Thus, Equation 5 
is obtained as follows: 

 
D − V + R + R + V] < D 
⇒ 2R − V+ V] < 0 

⇒ V > 2R + Va (5)  
 

According to Equation 5, when the volume of the value set in 
the final results is greater than twice size of the key set 
requested to be transferred to the global reducers plus their 
values, the use of Cross-MapReduce will be beneficial. This is 
the case for many applications whose values are considerably 
larger than their keys. 

VI. RELATED WORK 
In the data-driven application, communication among nodes is 
a critical element of the system performance. Many studies 
have been performed in a single cluster and schedule tasks to 
reduce data transfer and run-time. Chang [36] presents a 
framework based on MapReduce for analyzing weather data 
and simulating temperature distributions. The author first used 
MapReduce to forecast temperature of three cities in a period 
of over two years and demonstrated its accuracy. Then the 
paper illustrates an optimized eight-step process of MapReduce 
for visualizing temperature distribution. Deldari et al. [23] 
propose the algorithm that attempts to minimize the execution 
cost considering a user-defined deadline constraint. They 
divide tasks into a number of clusters, and then an extendable 
and flexible scoring approach chooses the best cluster 
combinations to achieve the algorithm’s goals. Benelallam et 
al. [32] argue that model transformation with rule-based 
languages like AtlanMod Transformation Language (ATL) is a 
problem that fits to the MapReduce execution model. As a 
proof of concept, they introduce semantics for ATL distributed 
execution on MapReduce. Also, they propose a distributed 
engine model transformation with ATL on MapReduce [33]. 
They utilize MapReduce as a tool to execute ATL on a 
MapReduce cluster. In contrary, we focus on data transferring 
among multiple clusters in this paper. However, when data is 
distributed in multi-cluster, the inter-cluster data transfer can 
become a bottleneck. UniCrawl [26] is an efficient geo-
distributed crawler that aims at the minimization of inter-site 
communication costs. UniCrawl uses multiple geographically 
distributed sites. Each site uses an independent crawler and 
relies on well-established techniques for fetching and parsing 
the content of the web. In general, there are three primary 
solutions to solve the problem of processing geo-distributed 
data using a MapReduce model [8][10]. (1) collecting all raw 
data from different clusters in a single cluster and process them 
locally; (2) run MapReduce task in an entirely distributed 
fashion on all clusters while data transfers and communications 
among inter-cluster nodes happen through the Internet, also 
known as Geo-Hadoop approach; (3) MapReduce processing is 
run independently at each cluster and results are aggregated in 

a Hierarchical fashion.  The first solution for big data is not 
cost-effective. Therefore, in the following, we review related 
works based on Hierarchical and Geo-Hadoop approaches. 

A. Geo-Hadoop Approach 
Wang et al. [11] presented the G-Hadoop framework for 

processing geo-distributed data across multiple clusters without 
changing the architecture of the existing cluster. G-Hadoop 
stores data in a geo-distributed file system, known as Gfarm file 
system. The G-Hadoop framework contains a master node in a 
central location. The master node accepts jobs from the user, 
splits them into several sub-jobs and distributes them across the 
slave nodes. The Master node also manages all metadata files 
in the system. The master node contains a metadata server and 
a global JobTracker. The slave node contains a TaskTracker, a 
local JobTracker, and an I/O server.  

Jayalath et al. [8] presented the G-MR which is a hadoop-
based framework (See Figure 21). The G-MR runs MapReduce 
jobs across multiple data centers. Unlike G-Hadoop, G-MR 
does not place reducers randomly [13] and uses a single 
directional weighted graph for data movement using the 
shortest path algorithm. G-MR deploys a GroupManager at a 
single data center. In each data center there exist a JobManager. 
GroupManager distributes map and reduce codes to all data 
centers and executes a data transformation graph (DTG) 
algorithm. Using a Hadoop cluster, a JobManager manages and 
executes assigned local MapReduce jobs. Each JobManager 
has two components, namely a CopyManager for copying 
outputs of the job of a data center to other data centers and an 
AggregationManager for aggregating results from data centers. 

  

 
Fig. 21. G-MR 

Heintz et al. [9] presented shuffle-aware data pushing at the 
map phase. In this method, they find all those mappers that 
affect the completion of the job in a DC, then reject those 
mappers that cause delay. In other words, they select mappers 
which can execute a job and shuffle the intermediate data under 
a time constraint. Mappers are selected based on recent jobs 
monitoring. In this method, an algorithm is provided for a single 
data center that can be extended to a geo-distributed 
environment. Similarly, Resilin [24] provides a hybrid cloud-
based MapReduce computation framework. Resilin, 
implements Amazon Elastic MapReduce (EMR) [25] interface 
and uses the existing Amazon EMR tools for interacting with 
the system. In particular, Resilin allows a user to process data 
stored in a cloud with the help of other clouds resources. 
Nithyanantham and Singaravel [19] present Multivariate 
Metaphor based Meta-Heuristic Glowworm Swarm Map-
Reduce Optimization (MM-MGSMO) for processing massive 
data in GDDC by selecting resource and cost-optimized virtual 
machines. The selection of resource and cost-optimized virtual 
machine results in the minimization of workload between data 



centers. A multi objective functions were defined for each 
virtual machine in terms of bandwidth, storage capacity, energy 
and computation cost. Finally, with the aid of the MapReduce 
function, the optimal virtual machine was identified using the 
mapping and in turn, allocated the big data to the selected 
optimal virtual machine. Wang et al. [29] propose task 
scheduling with deadlines and data locality to save energy 
consumption in MapReduce clusters with a variable total 
number of slots. In each heartbeat, a new job sequence is 
generated in order to better meet deadline constraints and a new 
assignment among tasks and slots is produced to increase data 
locality. 

B. Hierarchical Approach 
Hierarchical MapReduce (HMR) [12] is a two-level 
programming model (See Figure 22), so that the upper level is 
a global controller layer and the lower layer consists of several 
clusters that execute MapReduce jobs. HMR processes data 
separately in each cluster and then a single global reducer 
collects all the results generated in other clusters. Finally, the 
global reducer is executed and final result is generated.  
A simple extension to HMR is proposed in [14], where the 
authors suggested to consider the amount of data to be moved 
and the resources required to produce the final output at the 
global reducer. However, like HMR, this extension does not 
consider heterogeneous inter-DC bandwidth and available 
resources at the clusters [18]. Another extension is provided in 
[10], where the authors consider the availability of clusters’ 
resources and different network link capacities. Cavallo et al. 
[22] focused on the data fragmentation technique as a way to 
improve the performance of the scheduling system. They 
designed many distributed computing scenarios, both balanced 
and imbalanced, and for each scenario they analyzed the 
performance of several type of jobs by applying many data 
fragmentation schemes. They aim to distribute data on clusters 
so that performance is improved, while in this paper the data is 
distributed and Cross-MapReduce should process the data so 
that the inter-cluster data transferring is reduced. Medusa [15] 
handles three new types of faults: processing corruption that 
leads to wrong outputs, malicious attacks and power outages 
that may lead to the unavailability of MapReduce instances and 
their data. A job is executed on 2f + 1 clouds to handle faults in 
a way that f faults are tolerable. In addition, a cloud is selected 
based on parameters such as available resources and bandwidth 
so that the job completion time is decreased [18]. Chrysaor [16] 
is based on a fine-grained replication scheme that tolerates 
faults at the task level. It modifies the user code and does not 
change the Hadoop framework. It consists of two phases: first, 
the MapReduce job is run in each cluster, second, the global 
MapReduce job is run to aggregate the results of all clusters to 
produce a final result. 

In this paper, we presented a novel solution aimed at 
rectifying the weaknesses of Hierarchical and Geo-Hadoop 
solutions. One of the problems in the Hierarchical solution is 
that all outputs of clusters should be sent to a single cluster and 
then the final results are produced there. While a large portion 
of the data that is sent are not be needed to produce final results. 

So, in Cross-MapReduce framework, we proposed the Global 
Reduction Graph (GRG) to answer the following three 
important questions: (i) How many clusters are selected as 
global reducers and which clusters are selected? (ii) What 
fraction of the results will be sent to the global reducers? (iii) 
What are the best parameters for selecting a global reducer? On 
the other hand, one of the main problems in the Geo-Hadoop 
approach is that when the volume of intermediate results is 
greater than the input data, a high volume of data transfer is 
required.  

 

 
Fig. 22. HMR [18] 

VII. CONCLUSIONS AND FUTURE WORK 
Many applications require data to be read and processed by 
multiple data centers, since the data is produced and stored in a 
distributed fashion. One of the main challenges in the 
processing of distributed data in multiple data centers is that the 
data transfer between data centers significantly affects the 
processing time. Another problem of a distributed big data 
processing is that frameworks such as Hadoop and Spark are 
not designed to support multi-clusters. Therefore, novel 
solutions are required to process such data. In this paper, we 
proposed Cross-MapReduce based on the MapReduce model 
and the combination of Hierarchical and Geo-Hadoop 
approaches. Our novel solution reduces the inter-cluster data 
transfers compared to the existing common approaches for the 
execution of MapReduce over geo-distributed data. We argued 
that for most applications, there is no need to send the entire 
intermediate results to a global reducer especially when the 
volume of keys is less than the volume of the value. Therefore, 
by only transferring keys instead of transferring entire datasets, 
we created a graph to determine the global reducers and the 
portion of data that is required for processing in global reducers. 
We chose Wordcount, Invertedindex and Sql-query applications 
to compare our proposed approach with the Hierarchical and 
Geo-Hadoop methods. These applications are different in the 
size of key and value volumes and are selected with the purpose 
of showing their impact on the proposed Cross-MapReduce. 
We conducted experiments on real clusters. Results show that 
Cross-MapReduce is remarkably effective in cases where the 
key set volume is less than the value volume. It also reduces the 



amount of data transfer and makespan by 40% and 23% 
respectively. 

In this paper, the bandwidth between the clusters and their 
computational power are assumed to be homogeneous. One of 
the future work is that heterogeneous clusters and bandwidth 
are considered. One of the other challenges in this area is 
privacy and the geolocation of the sensitive data. Therefore, in 
future, we will also investigate privacy and legislation/policy 
awareness in the proposed method. Besides, we are interested 
in adapting our proposed method to applications with deadline-
constraints. Cross-MapReduce relies on the performance of 
underlying MapReduce frameworks. A future direction can be 
the optimization of these frameworks. 
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