

Cross-MapReduce: Data Transfer Reduction in
Geo-Distributed MapReduce

Saeed Mirpour Marzuni
Department of Computer

Engineering
Faculty of Engineering

Ferdowsi University of Mashhad
Mashhad, Iran

mirpour@um.ac.ir

Abdorreza Savadi
Department of Computer

Engineering
Faculty of Engineering

Ferdowsi University of Mashhad
Mashhad, Iran

savadi@um.ac.ir

Adel N. Toosi
Faculty of Information

Technology
Monash University
Clayton, Australia

adel.n.toosi@monash.edu

Mahmoud Naghibzadeh
Department of Computer

Engineering
Faculty of Engineering

Ferdowsi University of Mashhad
Mashhad, Iran

naghibzadeh@um.ac.ir

Abstract— The MapReduce model is widely used to store and
process big data in a distributed manner. MapReduce was
originally developed for a single tightly coupled cluster of
computers. Approaches such as Hierarchical and Geo-Hadoop are
designed to address geo-distributed MapReduce processing.
However, these methods still suffer from high inter-cluster data
transfer over the Internet, which is prohibitive for processing
today’s globally big data. In line with our thinking that there is no
need to transfer the entire intermediate results to a single global
reducer, we propose Cross-MapReduce, a framework for geo-
distributed MapReduce processing. Before any massive data
transfer, our proposed method finds a set of best global reducers
to minimize transferred data volumes. We propose a graph called
Global Reduction Graph (GRG) to determine the number and the
location of global reducers. We conduct extensive experimental
evaluations using a real testbed to demonstrate the effectiveness of
Cross-MapReduce. The experimental results show that
Cross-MapReduce significantly outperforms the Hierarchical and
Geo-Hadoop approaches and reduces the amount of data transfer
over the Internet by 40%.

Keywords— MapReduce, Geo-distributed, Data Center, Big
Data.

I. INTRODUCTION
With the dramatic increase in the size of collected and stored
data that is known as big data, the need for building data-driven
applications for analyzing large datasets becomes increasingly
essential in many areas of science and business. The current
Internet-based applications such as Internet of Things (IoT),
smart cities, and social networks produce huge amount of data
and the processing has to be fast. The input data for many of
these applications are often distributed in different locations.
Moreover, in many cases, the geo-distributed data is generated
at even much higher speed compared to the actual data transfer
speed [2,3], for example, data from modern satellites [4].

There are three common reasons for having geo-distributed
data: (i) many organizations work in different countries and
create local data in different parts of the world; (ii)
organizations may prefer to use multi-clouds to enhance their
reliability, security, and processing [5,6]; (iii) data is often
stored close to where it is produced and needs to be processed
in other locations, for example, sensor data is stored close to the
sensors and needs to be processed in the cloud infrastructure.

The ability to analyze and process geo-distributed data has
become an important and challenging mission in many
domains. Many applications need to process and analyze a
massive amount of geo-distributed data [18]. For example, a

bioinformatics application that analyzes existing genomes in
different laboratories, a smart surveillance application that
analyzes video feeds from distributed cameras, a monitoring
system that inspects log files from distributed servers, or a
social networking application that finds common friends of its
users.

Processing massive amount of data can be done best by
running many parallel tasks operating on various parts of the
dataset. Several frameworks have been proposed for big data
processing, for example, Hadoop [20], Spark [21], Storm [27]
and Flink [28]. Thus, in this paper, we focus on the MapReduce
programming model, a well-accepted model for big data
processing. The traditional frameworks supporting MapReduce
(e.g., Hadoop and Spark) are not designed to process geo-
distributed data. For instance, Telegram servers are spread
worldwide or Facebook maintains a growing number of data
centers across the world and both of them use the MapReduce
for processing their batch data [30,31]. In practice, a naïve
solution of gathering all raw data into a single cluster to process
geo-distributed data is used, which is not scalable. In such a
naïve solution, data transfer between clusters can become a
bottleneck. Moreover, it is also unreasonable to move the raw
data to a single location when the output results of the
computation in each cluster is smaller than its input data [7,8,9].
Thus, two other approaches to facilitate geo-distributed
MapReduce are proposed in the literature which we call them
Hierarchical and Geo-Hadoop approaches [22].

The Hierarchical and Geo-Hadoop approaches are far from
perfect since they require a large amount of data transfer over
the Internet. In the Hierarchical approach, each cluster
processes data independently, then the entire results are
transmitted to a single cluster (global reducer), and the final
process is executed on a single global reducer. This approach
requires a significant amount of data to be transferred to a single
cluster. In the Geo-Hadoop approach, all required inter-cluster
transfers are performed in the shuffle phase of the MapReduce
process. It is needless to say that in the geo-distributed
MapReduce the inter-data center data transfer is much slower
than the data transfer among the cluster nodes of a single
cluster. Therefore, this approach, in particular, increases the
processing time for many applications whose intermediate
results are more than the final results. For example, the
invertedindex application with an input data of 1.4 GB
generates 4.5 GB intermediate data, as shown in [9].

The use of frameworks which support only the original
MapReduce model do not provide acceptable performance for
processing geo-distributed data in multiple data centers. The
MapReduce model needs to be extended in order to provide
appropriate solutions for processing data scattered across
multiple data centers. Therefore, in this paper, we aim to tackle
this issue and address the research problem of “how to reduce
the total data transfer over the Internet in processing big data
volumes scattered over multiple geographically distributed data
centers?” We develop Cross-MapReduce to answer three
important questions: (i) How many clusters should be selected
as global reducers and which clusters are selected? (ii) What
fraction of the results will be sent to the global reducers? (iii)
What are the best parameters for selecting a global reducer?

Cross-MapReduce is inspired by the integration of
Hierarchical and Geo-Hadoop approaches to reduce inter-
cluster data transfers. Cross-MapReduce runs jobs in each
cluster independently, similar to the Hierarchical approach. In
the next step, instead of transferring all the results to a single
cluster, like Geo-Hadoop approach, it shuffles the results that
are required between clusters. The primary purpose of Cross-
MapReduce is to cover the weaknesses of both Hierarchical and
Geo-Hadoop approaches. Moreover, Cross-MapReduce is a
framework-independent approach that can work with any other
frameworks supporting MapReduce such as Spark and Hadoop.
In fact, Cross-MapReduce is a framework which manages the
several clusters each capable of supporting MapReduce.

Our key contributions in the Cross-MapReduce
framework are as follows:

• Gshuffling: We present a novel process called
Gshuffling to distinguish between inter-cluster traffic
over the Internet and intra-cluster traffic within the
cluster. In MapReduce jobs, the volume of
intermediate data is often greater than or equal to the
volume of the final results. Thus, in Cross-
MapReduce, the data transfer in the shuffle phase of
MapReduce is divided into two phases. The first phase
is between nodes of each cluster (intra-cluster), which
is performed independently within each MapReduce
cluster. The second phase that includes the inter-
cluster transfer over the Internet which is performed
via Gshuffling. Gshuffling finds multiple global
reducers in a way that the amount of data transfer
between clusters is reduced.

• GRG: In order to transfer the required data between
clusters, as part of Gshuffling process, we propose and
build a novel graph called Global Reduction Graph
(GRG). GRG represents the required inter-cluster data
transfer and determines the number and the location of
global reducers. For the subsequent reduce cycles,
instead of transferring the entire results, Cross-
MapReduce identifies the portion of the results which
is required by the global reducers.

• Load balancing: We propose a new load balancing
algorithm to increase performance and spread tasks

among clusters. All the existing Hierarchical methods
select a single global reducer for the final processing.
However, Cross-MapReduce selects multiple global
reducers to reduce overall data transfer and balance it
between global reducers.

The rest of the paper is organized as follows: Section 2
describes the MapReduce programming model. In the next
section, we discuss the problem tackled in this research. The
Cross-MapReduce framework is proposed in Section 4. Section
5 presents the experimental results. Section 6 covers the study
of existing methods and related work, and the final section
concludes the work.

II. BACKGROUND
MapReduce is one of the most commonly used programming
models for big data processing. In the MapReduce model
(Figure 1), data transfer is needed in two phases: map and
reduce. The map function receives the key-value input pairs and
generates a list of key-value intermediate pairs. Then the reduce
function is run, which integrates all values with the same key.
The output results of map tasks are the inputs of the reduce
tasks. The input data is divided into input splits, and a map task
processes each split. After the completion of one the map task,
the shuffle phase is started, and the required data for the reduce
task is moved to the reducer nodes. The reduce tasks are started
when all map tasks are completed, while the shuffling phase can
be overlapped with the mapping tasks.

Fig. 1 The MapReduce model [1]

The processing of map tasks includes read, map, collect,
spill, and merge. Each map task processes a logical piece of
input data located on a distributed file system. Data is split into
blocks of the same size (the default block size is 64 or 128 MB)
and are distributed to cluster nodes. The map task reads a block
of data and runs the map function (the code written by the user)
on each record. Output results are stored in the main memory. If
the volume of output results (intermediate data) is greater than
the buffer, then it is written to the local disk which is known as
spill. Before data is written to the disk, a thread divides the data
into partitions. For each partition, a reduce task is created. A
reduce task needs particular partitions from several map tasks
across the cluster.

A reduce task includes shuffle, reduce, and write steps. In the
shuffle stage, reduce tasks fetch the intermediate data from
completed map tasks. The fetched intermediate data from all
map tasks are sorted and merged in this stage. The reduce
function is then executed on the merged data. Finally, the reduce
phase output data is written to the distributed file system in the
write step.

There is another element in the MapReduce programming
model: combiners. Combiners allow for the local aggregation.

They are “mini-reducers” that take place on the output of the
mappers, prior to the shuffle and sort phase. Each combiner
operates in isolation and therefore does not have access to the
intermediate output from other mappers. Our method extends
the combiners in multi-cluster level.

III. PROBLEM STATEMENT
We assume that there are several MapReduce clusters
connected through the Internet. Any framework supporting the
MapReduce model can be set up on clusters. All clusters
include one master node that the Cross-MapReduce
communicates with it for running the desired commands.

In each cluster, there is a portion of the data that should be
processed. For the sake of simplicity, in this paper, the clusters
and network bandwidth are considered to be homogeneous. We
also assume that clusters are point-to-point interconnected over
the Internet. The bandwidth between clusters over the Internet
is limited which can become a bottleneck of the system and
increases the runtime.

As a pilot experiment, we ran the MapReduce model on
different volumes of data and observed the results. In all
observations, the amount of produced intermediate data by map
tasks is much larger than the amount of final data produced by
reducer tasks. This is reasonable because, in the MapReduce
structure, a new key is not produced in the reduce phase, only
the records that were produced in the map phase are merged.
Therefore, it is obvious that the volume of intermediate data is
practically always greater than or equal to the volume of the
final results.

We distinguish between inter-cluster data transfer which
happens over the Internet and intra-cluster data transfer which
happens within each cluster. So, by proposing GShuffling, we
postpone the inter-cluster data transfer to the time that
MapReduce jobs are finished in each cluster. Instead of
shuffling time, the data transfer between clusters happens after
all reduce tasks are finished in all clusters. Using GShuffling,
we expect that the volume of data transfer will be significantly
reduced since the number of records transmitted between
clusters is reduced.

A. Motivational Examples
In this section, we describe a very simple example to motivate
the idea behind this work. The volume of data in this example
is chosen to be small to be easily understood by the readers.
However, in the performance evaluation section, the high-
volume datasets are selected to evaluate the proposed method.
In Figure 2, we consider 3 clusters, each of which
independently processes its job. If we use the Hierarchical
approach and select Cluster 1 as a global reducer, then the entire
output of Clusters 2 and 3 are sent to Cluster 1 with a total of
12 records. But in Cross-MapReduce, the output of Cluster 3 is
not transmitted at all, since in the production of the final result,
there is no need for those keys. Only 4 overlapping records
(Key1, Key3, Key5, Key6) from Cluster 2 are transmitted to
Cluster 1.

1 https://www.tutorialspoint.com/hadoop/hadoop_tutorial.pdf

Fig. 2. An example of output results in each cluster

In Figure 3, we present another example to illustrate how
data transfers can be reduced in the proposed Cross-
MapReduce framework compared to the Geo-Hadoop
approach. Suppose that the map phase is done and intermediate
data is produced. As shown in Figure 3, there are two records
with the key “key1” in two separate nodes in both clusters. The
dashed lines represent the data transfer between nodes for the
Geo-Hadoop approach. Now, we select one of the nodes as the
reducer node. If Node N1 in Cluster 1 is selected as the reducer,
we find that it needs to read its data from three other nodes, so
that there are two nodes in the other cluster. Thus, the number
of records to be transferred between clusters is two. Now
consider the solid lines representing the data transfer between
nodes for Cross-MapReduce. In this model, records containing
the key “key1” are combined together in each cluster; therefore,
only one record is transmitted from Cluster 2 to Cluster 1. This
means that inter-cluster data transfer will be reduced. Note that
inter-cluster bandwidth is more limited (almost 60 times
slower) than intra-cluster connections since traffic has to
traverse through the internet. Cross-MapReduce and Geo-
Hadoop both have three edges for merging but Cross-Hadoop
has only one over the internet.

Fig. 3. Inter-cluster data transfer in the Cross-Hadoop and Geo-Hadoop

approaches. Dashed lines show data transfer in Geo-Hadoop while solid lines
show Cross-Hadoop data transfer.

Furthermore, to test our hypothesis, we prepared two
purposely small files, hadoop_tutorial 1 and
mapreduce_tutorial 2 and executed wordcount job on them.
After processing, the hadoop_tutorial output file contained
2899 records and the mapreduce_tutorial output file contained
2821 records. By comparing two output files, it is found that
there are only 202 records with the same keys which is
interestingly small for two relevant topics. Therefore, according
to our hypothesis, it is only necessary to transfer 202 records (2
KB) between clusters to generate final results. However, if we

2 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.pdf

,value)
1

(Key

,value)
3

(Key

,value)
5

(Key

,value)
6

(Key

,value)
7

(Key

,value)
8

(Key

,value)
1

(Key

,value)
2

(Key

,value)
3

(Key

,value)
4

(Key

,value)
5

(Key

,value)
6

(Key

(Key
9
,value)

(Key
10

,value)

(Key
11

,value)

(Key
12

,value)

(Key
13

,value)

(Key
14

,value)

Cluster 1 Cluster 2 Cluster 3

Cluster 1

, value)1 (key

Cluster 2

(key1,value)

(key3,value)

,value)1(key

N3

2N

N1

(key2,value)
N1

N2
N3

,value)1 (key

produce the final results using the Hierarchical approach, 2821
records (36 KB) should be transferred (18 times more data). We
also tested this for the Geo-Hadoop approach, which we found
that it is necessary to transfer 8005 records (90 KB) in the
shuffle phase (45 times more data). The example shows that we
can save significant amount of data transfer if we only transfer
common keys between clusters.

IV. CROSS-MAPREDUCE
In the following sections, we propose the Cross-MapReduce
framework for the processing of geo-distributed data. In the
beginning, Cross-MapReduce works similar to the Hierarchical
approach, and all clusters independently run their jobs and
produce their results. In the Geo-Hadoop approach, after
generating intermediate data (output of map tasks), the
shuffling phase occurs on all the nodes. However, in Cross-
MapReduce, all the inter-cluster transfers happen after the job
is completed in each cluster. Figure 4 shows the entire process
of running a job in Cross-MapReduce, where MRi represents
the MapReduce job in the ith cluster that processes the data
independently, and GRi shows the ith global reducer.

Fig. 4. The process of running a job in the Cross-Hadoop framework

The combiners in MapReduce merge the records that have

the same key on a single machine in the cluster. The combined
map result is transferred to reducers as one record. In Cross-
MapReduce, we use the same concept at the cluster level and
we call it MapCombine. Cross-MapReduce merges the records
that have the same keys in a cluster using the reduce function.
Thus, our proposed method follows these steps:

MapCombine -> Gshuffle -> GlobalReducer.

MapCombine runs user’s jobs containing the map and reduce
functions in each cluster. After running MapCombine it is
expected that there would be unique keys in each cluster.

One of the main novelties of the Cross-MapReduce is
Gshuffling, where a single global reducer in the Hierarchical
approach is replaced with multi global reducers. We identify
the portion of results that must be transferred by the early
transfer of keys instead of the total intermediate results. Then,
global reducers are determined by the construction of the
Global Reduction Graph (GRG). Having built GRG, we send
the required key-value pairs to the global reducers. GShuffling
has two key advantages: (i) unlike the Hierarchical approach,
only a portion of data that is required for processing is
transmitted; (ii) the reduce task is executed on local values of

the same key in each cluster prior to GShuffling. As a result,
the data transfer between clusters is reduced compared to the
Geo-Hadoop approach.

A. System Design
The proposed Cross-MapReduce system architecture is shown
in Figure 5. It is a distributed multi-cluster system consisting of
three layers. Cross-MapReduce architecture like SDN and NFV
[34,35] architectures splits the control and data transferring
elements. The SDN controller is a logically central entity that
receives instructions or requirements from the application layer
and relays them to the networking components. Similarly, in
Cross-MapReduce architecture, the lowest layer includes
MapReduce clusters in which the real data is saved. The second
layer is a management and orchestration layer which includes
GRG and Gshuffling components. In fact, Layer 2 is a software
layer that determines the data transfer between clusters of Layer
3 and global reducers for a job. The first layer is the control
layer which includes JobManager and DataManager
components.

First, a user submits the job to JobManager. JobManager
divides the job into sub-jobs and sends each one to the clusters
in the third layer. In the third layer, data is processed
independently in each cluster. The completion of each sub-job
is reported to JobManager, including the address of the results
which is recorded in the DataManager. Afterwards,
DataManager selects a cluster whose key volume is the largest.
This cluster is called master. In Layer 2, the master fetches the
keys from all clusters. Then, in the master cluster, GRG is
formed for the Gshuffling process. The required global reducers
and their best placement are determined according to the GRG
algorithm in Layer 2, which is explained in more details in the
following section. Afterwards, a portion of the result that is
needed is sent to the selected global reducers. Finally, the
process is completed when the address for results of global
reducers is added to the DataManager.

Algorithm 1 shows the steps of Cross-MapReduce. In Line
5-6, all clusters send their key set to the master cluster in
parallel. Then, GRG is built on the master in Line 7. After
running the GRG algorithm on the GRG Graph, global reducers
are determined. Each cluster is requested to send the required
key-values to the allocated global reducers. In fact, the master
sends keys along with the target global reducer to clusters and
asks them to send their key-value pairs to their global reducer.
The input data for global reducers is collected in Line 10-11.
Cross-MapReduce ensures that all the intermediate results (sub-
job execution results) for a given key in multiple clusters is
collected to one of the global reducers. More details are given
when we discuss GRG in the next section. In Line 12, each
global reducer runs a MapReduce job written by the user.
Global reducers are run and generate the final results.
Eventually, the addresses of results in global reducers are sent
to DataManager. In Cross-MapReduce results are distributed
among the clusters, and DataManager keeps track of the address
for the specific key-value pair.

MapReduce Job

MR
1
 MR

2
 MR

n

Gshuffling

GR
1

 GR
m

…

…

Algorithm 1: Cross-MapReduce
1: submit a job to JobManager;
2: run a sub-job in each cluster on local data;
3: register results address along with their volume in DataManager;
4: select cluster Ci for Gshuffling process;
5: for cluster Cj; 0< j ≤ number of cluster and j≠i, do in parallel
6: Cj sends the key set along with their number of values to the

Ci;
7: create GRG graph in Ci;
8: run GRG algorithm on GRG graph;
9: Ci sends required key to other clusters;
10: for cluster Cj; 0< j ≤ number of cluster
11: Cj sends the required key-value to its global reducer;
12: run global reducers;
13: add new results address in DataManager;
14: end;

B. GRG Graph
In this section, we describe how to form a graph to select

global reducers. We create an undirected Global Reduction
Graph (GRG) using all the keys in the master. The vertices of
the graph represent clusters with intermediate results of each
sub-job. GRG itself is created by running a MapReduce job.
The input to this job is a key set, and its output is a list of key-
value pairs with values representing the cluster number
associated with the key. For instance, if key “A” exists in
Clusters 1, 2, and 3, key “B” in Clusters 2 and 3, and key “C”
in Clusters 2, 3 and 4, the output of the MapReduce job includes
(“A”, <1,2,3>), (“B”, <2,3>), (“C”, <2,3,4>) key-value pairs.

To build GRG, we scan through the output. We assume that
the values in the list of clusters (e.g., <1,2,3>) for a specific key
(e.g. “A”) are sorted based on the cluster numbers. We do this
to avoid the creation of any loop in the graph for that key. The

first cluster in this list (e.g. 1 for “A” and 2 for “B”) is selected
as the target cluster for the key. Then, we create an edge
between all other vertices containing the key to the target vertex
in the graph. If the edge already exists between two vertices, the
weight of the edge is increased by one unit. Note that the way
that clusters are numbered would not affect the overall inter-
cluster data transfer after GRG is formed.

The number of created edges impacts the selection process
of global reducers. In fact, the edges represent the existence of
the common keys among the clusters and their weight show the
number of the common keys between two clusters. It means that
the higher the weight, the more the number of common keys
between two corresponding clusters. We define a weight
coefficient, υ", to represent the ratio of the volume of values to
the number of keys for every vertex. υ" is calculated by
Formula 1.

υ" =
𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒𝑠	𝑖𝑛		𝐶"
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑘𝑒𝑦𝑠	𝑖𝑛	𝐶"

																			(1)

where Ci represents the ith cluster (or vertex).
We also define weight for vertices. Vertices weight are

calculated based on the number of common keys and the
volume of corresponding values. By using vertices weight, we
estimate the data volume that should be exported from the
vertex. Therefore, the algorithm selects the maximum weight as
the first global reducer to keep the maximum data volume
stagnant (not transferred). This way, Cross-MapReduce
reduces data transferring. The weight of a vertex is calculated
by Formula 2.

 𝑊" = ∑ υ< × 𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓 < 𝑖. 𝑗 >"F< (2)
where Wi is the weight of the ith vertex.

We use υ" to incorporate the volume of value in the
selection process of the global reducer. Accordingly, the cluster

 Fig. 5. System architecture

that has the highest weight keeps the key-values, and other
clusters send the required key-values to this cluster. For
example, consider the above list, we have keys “A”, “B”, and

“C”. For the key “A”, the edge is created from Vertices 2 and 3
to 1. Similarly, an edge is created from 3 to 2 for “B”, and 3 and
4 to 2 for “C”.

Layer 2

DataManager Layer 1

Layer 3

…

JobManager

Cluster 1

NameNode, JobTracker

TaskTracker
Datanode

TaskTracker
Datanode

NameNode, JobTracker

TaskTracker
Datanode

TaskTracker
Datanode

Cluster n

Master

GRG Gshuffling

 Figure 6 shows the corresponding GRG for the above list. Note
that edgeless GRG means no need to transfer data between the
clusters.

Fig. 6. Example of GRG graph

In order to determine global reducers, we use GRG
algorithm. Algorithm 2 shows how global reducers are selected
and load balancing between them is performed.

Algorithm 2: GRG
 Input: GRG Graph
Output: List<global reducers, weight>
1: Function GRG (GRG Graph)
2: NewVertex = (weight (vertexi));

3: If (weight(NewVertex) == 0)
4: Return List;
5: If there exist several vertices with the same weight
6: Select one that has a higher weight in the original graph
7: List.Add(NewVertex, WNewVertex);
8: If (List.lenght > 1)
9: If there exist edge between NewVertex and other member of List

(Vi) in the original graph
10: For each edge <NewVertex, Vi>
11: D = WNewVertex – WVi;
12: If D > weight of <NewVertex, Vi>
13: WNewVertex = WNewVertex + weight of <NewVertex, Vi>;
14: Wvi = Wvi – weight of <NewVertex, Vi>;
15: GRG Graph ← Remove adjacent edges of NewVertex;
16: GRG (GRG Graph);
17: End function;

Algorithm 2 selects the global reducers based on the weight
of the vertex. The highest weight vertex is selected as a global
reducer for the key-value pairs of that vertex. These key-value
pairs are kept in the global reducer and other key-values are sent
to it. Since the weight of the vertex is obtained based on the
volume of key-values, this action results in reduced inter-
cluster data transfer. In Line 1, the algorithm selects a vertex
that has the maximum weight. Then selected vertex is added to
the list in Line 7. In Line 15, adjacent edges of the selected
vertex are removed and the graph is updated. The new graph is
passed to the GRG and all previous steps are run until there is
no edge in the graph (Line 3). In Line 5-6, the algorithm gives
priority to the vertices with the same weight. If there exist
several vertices with the same weight in the GRG graph, the
algorithm searches the maximum vertex weight between them
in the original graph (the initial graph). If the vertices have the
same weight in the original graph as well, then a vertex is

selected arbitrarily. Lines 7 to 13 show the load balancing
between the global reducers in each level. These steps are run
when more than one global reducer is needed. In fact, we
specify the direction of data movement between global
reducers. Typically, from the global reducer with a lower
weight to a global reducer with a higher one. In each iteration
of the algorithm, a vertex is selected as a global reducer.
Suppose that the algorithm is run in two iterations and two
global reducers are selected (the first global reducer is selected
in the first iteration and the second one is selected in the second
one). To move data, in this case, the algorithm moves data from
the second global reducer to the first one. However, in order to
perform load balancing between global reducers, the algorithm
can change the direction of data movement in each iteration. In
Line 8, the algorithm checks whether the data is transferred
between global reducers. If there exists an edge between global
reducers, the difference between two global reducers weight is
obtained (global reducer’s weight is fetched from the graph in
the corresponding iteration). Note that, global reducer’s weight
shows the number of key-values that is needed to process and
the edge’s weight also shows the number of key-values that is
needed to transfer. After that, if the difference is higher than the
edge weight between the two global reducers, then the direction
of data movement is reversed. The algorithm’s operation is
explained using Figure 7. Figure 7 shows two global reducers,
and the weight difference between them (gap). The goal is to
reduce the gap between them. The data is moved from Vertex
2 to Vertex 1 typically. If the gap’s value is higher than the edge
weight (d), then edge weight is removed from first global
reducer and is added to the second weight. This means the
direction of data movement is reversed, and the gap value is
reduced.

Fig. 7. Operation of load balancing
Consider the graph in Figure 6. For the sake of simplicity,

we assume that υ" = 1 while in Algorithm 2 υ" is calculated
based on Formula 1. In this graph, Vertex 2 has the maximum
weight of 4. The algorithm in the first iteration selects it and
add it to list. Then adjacent edges of Vertex 2 are removed.
Vertices 1, 3 and 4 include data transfer to Vertex 2 so far. In
the next iteration, one edge remains in the graph between
Vertices 1 and 3. Since the weight of these vertices are equal,
so the algorithm searches the maximum weight in the original
graph. In the original graph, Vertex 3 has the maximum weight;
therefore, it is selected by the algorithm. Currently, Vertex 2
should process four key-values and Vertex 3 only process one
key-value. Here, the algorithm performs the load balancing
between Vertices 2 and 3. The weight of Vertices 2 and 3 are 4
and 1, respectively. Their weight difference is 3, that is higher
than the edge weight 2. So the algorithm changes the direction

1

32

4

2
11

1

ivertex
ArgMax

1

2

Gap = W1 – W2

Movement
Direction

d = size of data
 transferred

W1= x

W2= y

1

2

Gap
if gap > d

W1= x - d

W2= x + d

of data movement from Vertex 3 to 2. Therefore, the weight of
Vertices 2 and 3 is updated, and the data is transferred from
Vertex 2 to 3. Now, after the load balancing, Vertices 2 and 3
should process 2 and 3 key-values respectively.

Algorithm 2 is a recursive algorithm with polynomial time
complexity. The maximum number of edges in the graph is n(n-
1)/2, where n is the number of vertices (clusters). In each
iteration, the algorithm removes one the edges. The algorithm
finishes when there is no other edge in the graph. Therefore, the
overall time complexity of Algorithm 2 is O(n2).

C. Global Reducer
In the final stage, some clusters are selected to run a job as
global reducers by the GRG algorithm. Each global reducer
cluster runs a MapReduce job. Two methods for the
programming of the global reducer’s job can be followed. The
first method runs a MapReduce job like a sub-job with a do-
nothing map function. Since the MapReduce job cannot run
without map function, the map function only reads the input
data and saves it as an intermediate key-value without any
modification. Then the reduce function is run and generates the
final results. By this way, jobs like GetAverage (calculate the
average of numbers) cannot be executed by Cross-MapReduce.
The second method runs a MapReduce job written by the user.
In this method, the user has the responsibility to develop the
task for the global reducers. This way, the scope of MapReduce
jobs that can be executed by Cross-MapReduce is expanded and
includes the non-associative or non-commutative reducer
functions. An example can better explain the purpose of
choosing this method. Consider two jobs: WordCount and
GetAverage (calculating the average of several numbers). The
first method generates the correct results in multi clusters for
the WordCount job because the reducer functions are
associative (each sub-job in WordCount sums the values of the
common keys, and then the global reducers sum the common
keys value.). However, for GetAverage job, sub-job calculates
the average locally. So, the input of global reducers is the
average values from multiple clusters. In this case, the first idea
cannot generate the correct results. Therefore, in Cross-
MapReduce, users submit two jobs, sub-job and global reducers
job for non-associative jobs. Sub-job is run on each cluster
locally, and finally the global reducers’ job is run on the clusters
determined by GRG.

V. PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate the

effectiveness of the Cross-MapReduce in reducing data transfer
among multiple geographically distributed clusters when
MapReduce is used. We evaluate the performance of Cross-
MapReduce using a testbed and compared it to the Hierarchical
and Geo-Hadoop approaches. Here, we use four applications,
wordcount, invertedindex, adjacency-list and sql-query with
different ratios of the key to value volume. Adjacency-list [17]
is similar to search-engine computation to generate adjacency
and reverse adjacency lists of vertices of a graph to be used by
PageRank-like algorithms. In sql-query, the log file of
administrative data of a job scheduling mechanism is used. For

confidentiality reasons, the algorithm and log file data are
obfuscated. The log data has 8 columns of information:

• TaskId: a unique number identifies each task.
• TaskStatus: indicates that a task has been

successfully completed.
• TaskExecutionTime: shows the execution time of

the task.
• TaskDeadline: it shows the deadline of the task.
• TaskArriveTime: shows the time when a task was

submitted.
• TaskStartTime: indicates the time when a task is

run.
• TaskWaitTime: shows the time when a task waits

to run.
• TaskType: it shows the type of the task.

We do data processing on the log data such as counting the
number of task runs and obtaining the average of task execution
time, and the average of TaskWaitTime where the TaskStatus
is ‘Success’ in the log file. In wordcount, the ratio of the value
volume is less than the key volume in contrast to others. In this
paper, we focus on the data transfer size and job run time. We
use Hadoop 2.6.5 for MapReduce processing in our
experiments. We run our experiments on three clusters over
three different hosts. Each node has 2 cores, 4 GB memory and
50 GB disk. To measure the bandwidth, we send 500 MB data
from one host to another five times and calculate the bandwidth
between the hosts. The average bandwidth between each host is
1.37 MB/s.

 For wordcount, adjacency-list and invertedindex, we use
PUMA [17] dataset for our evaluation. Our clusters are point-
to-point interconnected, and all clusters and bandwidth are
homogeneous. Table 1 shows the existing data volume in each
cluster. Note that, due to limitations in academic research
laboratories, running experiments in big scales (e.g., petabyte
and exabyte scale) is not feasible. However, this does not imply
that the Cross-MapReduce cannot be executed on big data
scales. The proposed method can be easily applied for big data
scale and reduce inter-cluster data transferring. As noted in
section IV-B, the order of algorithm is O(n2) and the number of
GRG vertices (clusters) will be practically small in real cases.
In sql-query, our data is distributed over three clusters in each
data about 5 GB (Table 1 shows the amount of data exactly).
Our query results are the number of tasks runs, the average of
task execution and task waiting time where the TaskStatus is
‘Success’.

We compared Cross-MapReduce with the Hierarchical and
Geo-Hadoop approaches in terms of inter-cluster data transfer
and makespan. First, we examine the volume of the key set and
the final output results for all applications, shown in Figures 8,
9, 10 and 11 for every three clusters. According to Figure 8, 10
and 11 in invertedindex, sql-query and Adjacency-list, the
volume of the key set is almost less than the half of the volume
of output results. Whereas, as it can be seen in Figure 9, in
wordcount, the volume of the key set is very large in
comparison with the volume of output results, so that almost
90% of the results is made up of keys.

In both Cross-MapReduce and Hierarchical approaches,
each cluster independently runs its own application. After
running MapReduce on each cluster and producing
intermediate results in the Hierarchical approach, one cluster is
selected as a global reducer and results of the other clusters are
sent to this cluster. Here, we select the cluster whose volume of
intermediate results is larger than the other clusters. The reason
is that the size of data transfer between clusters in the
Hierarchical approach is minimized this way. In Cross-
MapReduce, instead of sending the total intermediate results to
a single cluster, we only send keys to the master cluster in order
to build GRG. Then we determine clusters that should run
global reducers, and only part of the data that is required is sent
to global reducers. The amount of exported data from each
cluster is shown in Figures 12, 13, 14 and 15 for each
application.

According to experiments, Geo-Hadoop has the highest
data transfer between clusters since the applications’
intermediate data (output of map tasks) size is very large
compared to the raw data. Figure 12 shows the size of the
exported data for the invertedindex application. As shown in
Figure 18, the volume of intermediate results in cluster 1 is
higher than in other clusters. Therefore, for the Hierarchical
approach, Cluster 1 is selected as the individual global reducer,
and the results of the other clusters are transferred to it. Hence,
the size of the exported data for the Hierarchical approach in
Cluster 3 is zero in Figure 12. But in Cross-MapReduce,
clusters send their keys to Cluster 1. After processing and
forming GRG, Cluster 3 is selected as the first global reducer,
so the exported data from Cluster 3 only contains the keys that
are sent from the master. Cluster 1 is then selected as the second

global reducer. The size of the exported data in Cluster 1
consists of the data that is required by the first global reducer
and the master. And in Cluster 2, the amount of exported data
is equal to the total volume of keys and the data that is required
by other clusters.

Figure 13 shows the same process for the wordcount
application. Since in wordcount, the volume of the key set is
very large compared to the volume of the output, hence the
amount of exported data in Cross-MapReduce, in Cluster 1 and
Cluster 2, is greater than the Hierarchical approach and only
Cluster 3 is slightly less than the other one. In wordcount,
Cluster 1 is chosen as a global reducer for the Hierarchical
approach, so the size of the exported data in this cluster is zero.
As shown in Figure 10, the size of results in cluster 3 is larger
than other clusters in sql-query. So, cluster 3 is selected as the
global reducer in Hierarchical approach and results of other
clusters are transferred to it. Thus, the size of the exported data
for the Hierarchical approach in Cluster 3 is zero in Figure 15.
In Cross-MapReduce, Cluster 3 is selected as the master where
GRG is created. Then Cluster 1 is selected as the first global
reducer, and Cluster 3 is the second one. As shown in Figure
11, the result size of all clusters is almost equal. However, the
result size of Cluster 1 is slightly more, so Cluster 1 is selected
as a global reducer in Adjacency-list for Hierarchical
approaches. Other Clusters transfer their result to Cluster 1.
Therefore, the total size of inter-cluster data transferring is 6.5
GB for the Hierarchical approach. In Cross-MapReduce Cluster
1 is selected as the master. Finally, Cluster 1 and 3 are selected
as global reducers. The summary of the total data transfers in
all approaches for each application is shown in Table 2.

Table 1. The cluster data volume for each application

 wordcount invertedindex Sql-query Adjacency-List

Cluster 1 4.6 G 4.6 G 5.2 G 3.1 G

Cluster 2 2.8 G 2.8 G 5.1 G 3.1 G

Cluster 3 4.3 G 4.3 G 5.2 G 3.2 G

Fig. 8. The volume of key set and output results in invertedindex

Fig. 9. The volume of key set and output results in wordcount

Fig. 10. The volume of key set and output results in Sql-query

Fig. 12. The amount of exported data from clusters in invertedindex

Fig. 11. The volume of key set and output results in Adjacency-List

Fig. 13. The amount of exported data from clusters in wordcount

Fig. 14. The amount of exported data from clusters in Adjacency-List

Fig. 15. The amount of exported data from clusters in Sql-query

Table 2. Compression of Cross-MapReduce, Hierarchical and Geo-Hadoop approaches
 Make-span Inter-cluster transfer
 Adjacency-List Sql-query Invertedindex Wordcount Adjacency-List Sql-query Invertedindex Wordcount

Cross-MapReduce 44.53 min 32.03 min 61.38 min 32.1 min 1775.3 MB 788.6 MB 1080.3 MB 1020.9 MB

Hierarchical 80.8 min 42.81min 65.76 min 30.41 min 6500 MB 1664.4 MB 1791.6 MB 1008.3 MB

Geo-Hadoop 105.15 min 51.1min 73.40 min 37.2 min 15.2 GB 11.1 GB 6.6 GB 5.6 GB

In invertedindex, Sql-query and Adjacency-list the total data
transfer by Cross-MapReduce is about 39%, 52% and 73% less
than the Hierarchical approach, respectively, as shown in Table
2. But in wordcount, the size of data transfer among clusters
increased by 2% in Cross-MapReduce. This is expected due to
the volume of the key set. Cross-MapReduce is efficient in
applications whose key volume is smaller than the value
volume.

Table 2 also shows the makespan of execution of
applications under three approaches. Due to the data transfer
reduction in Cross-MapReduce, the makespan has significantly
decreased for Invertedindex, sql-query and Adjacency-list. The
important point at the wordcount makespan is that in spite of
the slight increase in data transfer for Cross-MapReduce, its

makespan is still very competitive to the Hierarchical approach.
There are two reasons for this observation: (i) in the
Hierarchical approach, the amount of processing data for the
global reducer is considerably high compared to Cross-
MapReduce. The total data volume to be processed for the
global reducer is about 1.5 GB while in Cross-MapReduce,
each global reducer processes less than 300 MB of data; (ii) in
Cross-MapReduce, multiple clusters are selected as global
reducers rather than a single global reducer, and the final
processing is performed in parallel to produce the final results.

Cross-MapReduce is divided into nine phases as shown in
Figure 16. This Figure shows the timespan of different phases
of Cross-MapReduce for wordcount, invertedindex, adjacency-
list and sql-query applications in details. In the first phase, each

cluster runs sub-job for the application. Then, in the Get Key
phase, another job is run to extract keys from the sub-job
results. Instead of sending the result to a single cluster, in the
keys transferring phase, Cross-MapReduce sends keys to a
single cluster (master). After that, it finds keys that are common
among the clusters in the next phase (find common keys).
Based on these common keys, GRG graph is created (create
GRG) and all required keys are transferred (send keys) to
acquire the corresponding values. Before receiving these
values, a MapReduce job is run to extract the required values
(getting required key-values). Then the global reducers receive
the required key-values (receiving key-values) and in the last
phase, all global reducers run their jobs. The timespan of each
step is shown with a different color in Figure 16.

Our approach reduces the data transfer between clusters in
the cost of more processing. As shown in Figure 16, in each
application, the maximum time is used by running sub-jobs and
transmission of keys. Figure 16 shows that the extra local
processing time compared to the data transferring time is
negligible, in Cross-MapReduce.

In the experiments that have been performed so far, the
distribution of data keys is not considered, and the data is
distributed among clusters randomly.

Fig. 16. Process of Cross-Hadoop in each application

We investigate the impact of the percentage of common keys
among the clusters on the overall data transfer in the following.
Since the InvertedIndex, Adjacecy-list and WordCount data are
text documents, we only use sql-query data which is structured
to control the distribution of common keys in these
experiments.

Fig. 17. Inter-cluster data transfer in the controlled distribution of keys.

Figure 17 shows the total inter-cluster data transferring

among clusters in Cross-MapReduce in different distribution of
common keys. As shown in Figure 17, four cases are
considered. In the first case, keys are distributed randomly. In
this case, the inter-cluster data transferring is 788.6 MB which
is the highest. In the second case, the distribution of keys is
controlled in a way that only 30% of keys are common among
clusters. In this case, the inter-cluster data transferring is 616.9
MB, and Cross-MapReduce performs better than others. In the
third case, only 15% of keys are common among clusters. The
total inter-cluster data transferring is reduced to 535.3 MB. In
the last case, the distribution of keys is fully controlled in a way
that no common keys exist among clusters. Cross-MapReduce
transferred 412.2 MB data among the clusters in this case.
According to Figure 17, the data transfer reduction is linear
because the data is structured, and the size of value for all keys
are almost equal. As we expected, when the key distribution is
controlled, Cross-MapReduce performs better as less inter-
cluster data transfer is required.

 (a) Fisrt phase of Cross-MapReduce (b) First phase of Hierarchical

Figure 18: Comparison of Cross-MapReduce phase 1 with Hierarchical

In Figures 18 to 20, the runtime of Hierarchical and Cross-
MapReduce are compared in details. There exists tree phases in
Hierarchical approach, Run sub-job, Result Transferring and
Run global reducers job. In fact, the first phase in Hierarchical
is computation phase, the second phase is communication or
data transferring and the third phase is a computation phase
again. According to this, we divide Cross-MapReduce into
three phases and compare it with the Hirarchical approach.

Figure 18 (a) shows the first phase including run sub-job
and Get Keys jobs for the Cross-MapReduce approach. In
contrast, Figure 18 (b) shows the first phase of Hierarchical
approach that includes the run sub-job. In the first phase,
Hierarchical approach finishes the job earlier in all applications
because it does not need to run the GetKey job. While in phase
2 (Figure 19), although Cross-MapReduce runs more jobs, it
finishes them earlier than the Hierarchical approach. This is due
to the fact that Cross-MapReduce reduces the inter-cluster data
transfer significatly at the cost of a higher computation volume.
Figure 20 shows the phase three for Hierarchical and Cross-
MapReduce approaches. In this phase, Cross-MapReduce
transfers the required keys-values and then runs the global
reducer job. Hence, in this phase, Cross-MapReduce runtime is
more than the Hierarchical approach. But the data volume that
should be transferred is not considerable. Because Cross-
MapReduce only transfers the data that is required. In Cross-
MapReduce, the runtime of Global reducer job is lower than
that of the Hierarchical aproach. Because Cross-MapReduce
selects multi global reducers and runs the global reducer job in
parallel on multiple clusters. However, the Hierarchical

approach runs it on a single cluster. Therefore, Cross-
MapReduce finishes the job earlier than the other approaches,

overall.

A. Discussion
In this section, we formalize the possible performance gain in
Cross-MapReduce. In general, three types of data transfer
happen in Cross-MapReduce: 1) the collection of keys in the
master, 2) the set of required keys sent from master to each
cluster to inform them to transfer their data to the global
reducers, and 3) key-value results that should be sent to the
global reducers from the informed clusters. Cross-MapReduce
would be deemed beneficial when its total data transfer is at
least less than the Hierarchical approach. Let D denote the total
data transfer in the Hierarchical approach. Equation 3
represents this line of thinking:

∑ KeyJ + ∑ RequiredKeyJ + ∑ KeyValueJ < 	D			

J
	
J

	
J (3)

where keyi presents the size of the key set in the ith cluster.
RequiredKeyi shows the size of the key set sent to the ith cluster
from the master and KeyValuei is the size of the key-value set
that are transferred from the ith cluster to a global reducer as an
input. For the sake of brevity, we rewrite Equation 3 as:

K + R + KVWX < D		 (4)

Let 𝐷 − 𝑉 ≈ 𝐾, where V is the size of values in the final
results. Here, we assume that the size of the final results is
almost equal to the amount of data transfer for the Hierarchical
approach. This is true to a large extent if the size of locally

 (a) Second phase of Cross-MapReduce (b) Second phase of Hierarchical

Figure 19: Comparison of Cross-MapReduce phase 2 with Hierarchical

 (a) Third phase of Cross-MapReduce (b) Third phase of Hierarchical

Figure 20: Comparison of Cross-MapReduce phase 3 with Hierarchical

produced intermediate results in the global reducer in the
Hierarchical approach is relatively small. Kval is equal to R+VR,
where VR stands for the size of the value set that is transferred
to the global reducers in Cross-MapReduce. Thus, Equation 5
is obtained as follows:

D − V + R + R + V] < D
⇒ 2R − V+ V] < 0

⇒ V > 2R + Va (5)

According to Equation 5, when the volume of the value set in
the final results is greater than twice size of the key set
requested to be transferred to the global reducers plus their
values, the use of Cross-MapReduce will be beneficial. This is
the case for many applications whose values are considerably
larger than their keys.

VI. RELATED WORK
In the data-driven application, communication among nodes is
a critical element of the system performance. Many studies
have been performed in a single cluster and schedule tasks to
reduce data transfer and run-time. Chang [36] presents a
framework based on MapReduce for analyzing weather data
and simulating temperature distributions. The author first used
MapReduce to forecast temperature of three cities in a period
of over two years and demonstrated its accuracy. Then the
paper illustrates an optimized eight-step process of MapReduce
for visualizing temperature distribution. Deldari et al. [23]
propose the algorithm that attempts to minimize the execution
cost considering a user-defined deadline constraint. They
divide tasks into a number of clusters, and then an extendable
and flexible scoring approach chooses the best cluster
combinations to achieve the algorithm’s goals. Benelallam et
al. [32] argue that model transformation with rule-based
languages like AtlanMod Transformation Language (ATL) is a
problem that fits to the MapReduce execution model. As a
proof of concept, they introduce semantics for ATL distributed
execution on MapReduce. Also, they propose a distributed
engine model transformation with ATL on MapReduce [33].
They utilize MapReduce as a tool to execute ATL on a
MapReduce cluster. In contrary, we focus on data transferring
among multiple clusters in this paper. However, when data is
distributed in multi-cluster, the inter-cluster data transfer can
become a bottleneck. UniCrawl [26] is an efficient geo-
distributed crawler that aims at the minimization of inter-site
communication costs. UniCrawl uses multiple geographically
distributed sites. Each site uses an independent crawler and
relies on well-established techniques for fetching and parsing
the content of the web. In general, there are three primary
solutions to solve the problem of processing geo-distributed
data using a MapReduce model [8][10]. (1) collecting all raw
data from different clusters in a single cluster and process them
locally; (2) run MapReduce task in an entirely distributed
fashion on all clusters while data transfers and communications
among inter-cluster nodes happen through the Internet, also
known as Geo-Hadoop approach; (3) MapReduce processing is
run independently at each cluster and results are aggregated in

a Hierarchical fashion. The first solution for big data is not
cost-effective. Therefore, in the following, we review related
works based on Hierarchical and Geo-Hadoop approaches.

A. Geo-Hadoop Approach
Wang et al. [11] presented the G-Hadoop framework for

processing geo-distributed data across multiple clusters without
changing the architecture of the existing cluster. G-Hadoop
stores data in a geo-distributed file system, known as Gfarm file
system. The G-Hadoop framework contains a master node in a
central location. The master node accepts jobs from the user,
splits them into several sub-jobs and distributes them across the
slave nodes. The Master node also manages all metadata files
in the system. The master node contains a metadata server and
a global JobTracker. The slave node contains a TaskTracker, a
local JobTracker, and an I/O server.

Jayalath et al. [8] presented the G-MR which is a hadoop-
based framework (See Figure 21). The G-MR runs MapReduce
jobs across multiple data centers. Unlike G-Hadoop, G-MR
does not place reducers randomly [13] and uses a single
directional weighted graph for data movement using the
shortest path algorithm. G-MR deploys a GroupManager at a
single data center. In each data center there exist a JobManager.
GroupManager distributes map and reduce codes to all data
centers and executes a data transformation graph (DTG)
algorithm. Using a Hadoop cluster, a JobManager manages and
executes assigned local MapReduce jobs. Each JobManager
has two components, namely a CopyManager for copying
outputs of the job of a data center to other data centers and an
AggregationManager for aggregating results from data centers.

Fig. 21. G-MR

Heintz et al. [9] presented shuffle-aware data pushing at the
map phase. In this method, they find all those mappers that
affect the completion of the job in a DC, then reject those
mappers that cause delay. In other words, they select mappers
which can execute a job and shuffle the intermediate data under
a time constraint. Mappers are selected based on recent jobs
monitoring. In this method, an algorithm is provided for a single
data center that can be extended to a geo-distributed
environment. Similarly, Resilin [24] provides a hybrid cloud-
based MapReduce computation framework. Resilin,
implements Amazon Elastic MapReduce (EMR) [25] interface
and uses the existing Amazon EMR tools for interacting with
the system. In particular, Resilin allows a user to process data
stored in a cloud with the help of other clouds resources.
Nithyanantham and Singaravel [19] present Multivariate
Metaphor based Meta-Heuristic Glowworm Swarm Map-
Reduce Optimization (MM-MGSMO) for processing massive
data in GDDC by selecting resource and cost-optimized virtual
machines. The selection of resource and cost-optimized virtual
machine results in the minimization of workload between data

centers. A multi objective functions were defined for each
virtual machine in terms of bandwidth, storage capacity, energy
and computation cost. Finally, with the aid of the MapReduce
function, the optimal virtual machine was identified using the
mapping and in turn, allocated the big data to the selected
optimal virtual machine. Wang et al. [29] propose task
scheduling with deadlines and data locality to save energy
consumption in MapReduce clusters with a variable total
number of slots. In each heartbeat, a new job sequence is
generated in order to better meet deadline constraints and a new
assignment among tasks and slots is produced to increase data
locality.

B. Hierarchical Approach
Hierarchical MapReduce (HMR) [12] is a two-level
programming model (See Figure 22), so that the upper level is
a global controller layer and the lower layer consists of several
clusters that execute MapReduce jobs. HMR processes data
separately in each cluster and then a single global reducer
collects all the results generated in other clusters. Finally, the
global reducer is executed and final result is generated.
A simple extension to HMR is proposed in [14], where the
authors suggested to consider the amount of data to be moved
and the resources required to produce the final output at the
global reducer. However, like HMR, this extension does not
consider heterogeneous inter-DC bandwidth and available
resources at the clusters [18]. Another extension is provided in
[10], where the authors consider the availability of clusters’
resources and different network link capacities. Cavallo et al.
[22] focused on the data fragmentation technique as a way to
improve the performance of the scheduling system. They
designed many distributed computing scenarios, both balanced
and imbalanced, and for each scenario they analyzed the
performance of several type of jobs by applying many data
fragmentation schemes. They aim to distribute data on clusters
so that performance is improved, while in this paper the data is
distributed and Cross-MapReduce should process the data so
that the inter-cluster data transferring is reduced. Medusa [15]
handles three new types of faults: processing corruption that
leads to wrong outputs, malicious attacks and power outages
that may lead to the unavailability of MapReduce instances and
their data. A job is executed on 2f + 1 clouds to handle faults in
a way that f faults are tolerable. In addition, a cloud is selected
based on parameters such as available resources and bandwidth
so that the job completion time is decreased [18]. Chrysaor [16]
is based on a fine-grained replication scheme that tolerates
faults at the task level. It modifies the user code and does not
change the Hadoop framework. It consists of two phases: first,
the MapReduce job is run in each cluster, second, the global
MapReduce job is run to aggregate the results of all clusters to
produce a final result.

In this paper, we presented a novel solution aimed at
rectifying the weaknesses of Hierarchical and Geo-Hadoop
solutions. One of the problems in the Hierarchical solution is
that all outputs of clusters should be sent to a single cluster and
then the final results are produced there. While a large portion
of the data that is sent are not be needed to produce final results.

So, in Cross-MapReduce framework, we proposed the Global
Reduction Graph (GRG) to answer the following three
important questions: (i) How many clusters are selected as
global reducers and which clusters are selected? (ii) What
fraction of the results will be sent to the global reducers? (iii)
What are the best parameters for selecting a global reducer? On
the other hand, one of the main problems in the Geo-Hadoop
approach is that when the volume of intermediate results is
greater than the input data, a high volume of data transfer is
required.

Fig. 22. HMR [18]

VII. CONCLUSIONS AND FUTURE WORK
Many applications require data to be read and processed by
multiple data centers, since the data is produced and stored in a
distributed fashion. One of the main challenges in the
processing of distributed data in multiple data centers is that the
data transfer between data centers significantly affects the
processing time. Another problem of a distributed big data
processing is that frameworks such as Hadoop and Spark are
not designed to support multi-clusters. Therefore, novel
solutions are required to process such data. In this paper, we
proposed Cross-MapReduce based on the MapReduce model
and the combination of Hierarchical and Geo-Hadoop
approaches. Our novel solution reduces the inter-cluster data
transfers compared to the existing common approaches for the
execution of MapReduce over geo-distributed data. We argued
that for most applications, there is no need to send the entire
intermediate results to a global reducer especially when the
volume of keys is less than the volume of the value. Therefore,
by only transferring keys instead of transferring entire datasets,
we created a graph to determine the global reducers and the
portion of data that is required for processing in global reducers.
We chose Wordcount, Invertedindex and Sql-query applications
to compare our proposed approach with the Hierarchical and
Geo-Hadoop methods. These applications are different in the
size of key and value volumes and are selected with the purpose
of showing their impact on the proposed Cross-MapReduce.
We conducted experiments on real clusters. Results show that
Cross-MapReduce is remarkably effective in cases where the
key set volume is less than the value volume. It also reduces the

amount of data transfer and makespan by 40% and 23%
respectively.

In this paper, the bandwidth between the clusters and their
computational power are assumed to be homogeneous. One of
the future work is that heterogeneous clusters and bandwidth
are considered. One of the other challenges in this area is
privacy and the geolocation of the sensitive data. Therefore, in
future, we will also investigate privacy and legislation/policy
awareness in the proposed method. Besides, we are interested
in adapting our proposed method to applications with deadline-
constraints. Cross-MapReduce relies on the performance of
underlying MapReduce frameworks. A future direction can be
the optimization of these frameworks.

REFERENCES
[1] T. White, “Hadoop: The Definitive Guide”, Fourth edition O'Reilly

Media, Inc., 2015.
[2] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,

“WANalytics : Analytics for a Geo-Distributed Data-Intensive World.”
ACM SIGMOD International Conference on Management of Data, pp.
1087-1092, 2015.

[3] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Commun. ACM, vol. 58, no. 7, pp. 56–68, 2015.

[4] K. A. Hawick, P. D. Coddington, and H. A. James, Distributed
frameworks and parallel algorithms for processing large-scale
geographic data, vol. 29, no. 10. 2003.

[5] K. Kloudas, M. Mamede, and N. Preguic, “Pixida : Optimizing Data
Parallel Jobs in Wide-Area Data Analytics,” pp. 72–83, 2014.

[6] http://www.computerworld.com/article/2834193/cloud-computing/5-
tips-for-building-a-successful-hybrid-cloud.html.

[7] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman,
“Exploring MapReduce efficiency with highly-distributed data,” Proc.
Second Int. Work. MapReduce its Appl. - MapReduce ’11, p. 27, 2011.

[8] C. Jayalath, J. Stephen, and P. Eugster, “From the cloud to the
atmosphere: Running MapReduce across data centers,” IEEE Trans.
Comput., vol. 63, no. 1, pp. 74–87, 2014.

[9] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, “End-to-End
Optimization for Geo-Distributed MapReduce,” IEEE Trans. Cloud
Comput., vol. 4, no. 3, pp. 293–306, 2016.

[10] M. Cavallo, G. Di Modica, C. Polito, and O. Tomarchio, “H2F: A
Hierarchical Hadoop Framework for big data processing in geo-
distributed environments,” Proc. - 3rd IEEE/ACM Int. Conf. Big Data
Comput. Appl. Technol. BDCAT 2016, pp. 27–35, 2016.

[11] L. Wang, J. Tao, R. Ranjan and H. Marten, “G-Hadoop: MapReduce
across distributed data centers for data-intensive computing,” Futur.
Gener. Comput. Syst., vol. 29, no. 3, pp. 739–750, 2013.

[12] Y. Luo and B. Plale, “Hierarchical MapReduce programming model and
scheduling algorithms,” Proc. - 12th IEEE/ACM Int. Symp. Clust. Cloud
Grid Comput. CCGrid 2012, pp. 769–774, 2012.

[13] J. Zhang, L. Zhang, H. Huang, Z. L. Jiang, and X. Wang, “Key based data
analytics across data centers considering bi-level resource provision in
cloud computing,” Futur. Gener. Comput. Syst., vol. 62, pp. 40–50, 2016.

[14] M. Cavallo, G. Di Modica, C. Polito, and O. Tomarchio, “Application
profiling in Hierarchical Hadoop for geo-distributed computing
environments,” Proc. - IEEE Symp. Comput. Commun., vol. 2016–Augus,
pp. 555–560, 2016.

[15] P. A. R. S. Costa, X. Bai, F. M. V. Ramos, and M. Correia, “Medusa: An
Efficient Cloud Fault-Tolerant MapReduce,” Proc. - 2016 16th
IEEE/ACM Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2016, pp.
443–452, 2016.

[16] P. A. R. S. Costa, F. M. V. Ramos, and M. Correia, “Chrysaor: Fine-
Grained, Fault-Tolerant Cloud-of-Clouds MapReduce,” Proc. - 2017 17th
IEEE/ACM Int. Symp. Clust. Cloud Grid Comput. CCGRID 2017, pp.
421–430, 2017.

[17] PUMA: Purdue mapreduce benchmark suite.
https://engineering.purdue.edu/~puma/

[18] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer, “A Survey on
Geographically Distributed Big-Data Processing using MapReduce,” vol.
7790, no. c, 2017.

[19] S. nithyanantham and G. Singaravel, “Resource and Cost Aware
Glowworm Mapreduce Optimization Based Big Data Processing in Geo
Distributed Data Center” in Wireless Personal Communications, 2020.

[20] Apache Hadoop. Available at: http://hadoop.apache.org/
[21] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica,

“Spark: Cluster computing with working sets,” in HotCloud, 2010.
[22] M. Cavallo, G. Di Modica, C. Polito, O. Tomarchio, “Fragmenting Big

Data to boost the performance of MapReduce in geographical computing
contexts”, International Conference on Big Data Innovations and
Applications, 2017.

[23] A. Deldari, M. Naghibzadeh, S. Abrishami, "CCA: a deadline-constrained
workflow scheduling algorithm for multicore resources on the cloud",
Journal of Supercomputing, 2016.

[24] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau, “Resilin:
Elastic MapReduce over multiple clouds,” in CCGrid, pp. 261–268, 2013.

[25] Amozon Elastic MapReduce. Available at:
http://aws.amazon.com/elasticmapreduce/.

[26] D. L. Quoc, C. Fetzer, P. Feiber, E. Rivier, V. Schiavoni and P. Sutra,
“UniCrawl: A Practical Geographically Distributed Web Crawler”, IEEE
8th International Conference on Cloud Computing, 2015.

[27] Apache Storm. Available at: http://storm.apache.org/.

[28] Apache Flink. Available at: https://flink.apache.org/.
[29] Jia Wang, Xiaoping Li, Rub´en Ruiz, Jie Yang and Dianhui Chu,

“Energy Utilization Task Scheduling for MapReduce in Heterogeneous
Clusters”, IEEE, Transactions on Services Computing, 2020.

[30] M. Traverso, "Presto: Interacting with petabytes of data at facebook.
https://www.facebook.com/notes/facebook-engineering/presto-interacting-
with-petabytes-of-data-at-facebook/10151786197628920/
[31] Telegram, https://www.telegram.org.
[32] A. Benelallam, A. Gomez, M.Tisi, J. Cabot, “Distributed model-to-model
transformation with ATL on MapReduce”, International Conference on
Software Language Engineering, 2015.

[33] A. Benelallam, A. Gomez, M. Tisi, J. Cabot, “Distributing Relational
Model Transformation on MapReduce”, Journal of Systems & Software,
2018.
[34] C. Kuo, V. Chang, C. Lei, “A feasibility analysis for edge computing
fusion in LPWA IoT environment with SDN structure”, International
Conference on Engineering and Technology (ICET), 2017.
[35] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, A. V. Vasilakos, “Low-latency
and Resource-efficient Service Function Chaining Orchestration in Network
Function Virtualization”, IEEE Internet of Things Journal, 2019.
[36] V. Chang, “Towards data analysis for weather cloud computing”, Knowl.
Based Syst, 2017.

