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Abstract

In the emerging era of Internet of Things (IoT), fog computing plays a critical role in serving delay-sensitive and location-aware
applications. As a result, fog nodes are envisioned to be heavily deployed and form future distributed data centers. Powering fog
nodes with green energy sources (such as solar and wind), not only helps in environmental and CO2 emission control but also paves
the way towards a “sustainable IoT technology”. However, the downside of green energy is its variation and unpredictability, which
needs to be engineered. In this paper, we use the Lyapunov optimization technique to derive algorithms for dynamic dispatching
of the users’ requests among the nearby fog nodes and remote data centers. The proposed algorithms take into account the time
constraints of the requests and maintain the system stability while efficiently utilizes the available green energy sources. Exhaustive
simulation results, based on solar radiation data supplied by the Australian Bureau of Meteorology, confirm the efficiency of the
proposed algorithms. In particular, in terms of service time, the number of deadline misses and green energy utilization, the
proposed algorithms outperform the state-of-the-art alternative up to 6%, 17% and 12%, respectively.

Keywords: Fog Computing, Lyapunov Optimization Technique, Request Dispatching, Renewable Energy, Virtual Queue.

1. Introduction

Fog computing is a new paradigm which brings process-
ing, storage and control to the edge of the network, close
to the end devices. As a result, fog computing promotes
bandwidth conservation, fast response time, and context-
aware applications [1]. Potential benefits of fog computing
can be fully harvested through proper resource manage-
ment which addresses service placement and request dis-
patching. However, the heterogeneity of the computing
nodes and variety in the requests and their requirements
in terms of computation, communication and energy make
the request dispatching challenging [2, 3].

The fog paradigm introduces a highly distributed plat-
form with a large number of computing nodes. The energy
consumption of fog nodes becomes challenging if the nodes
are all powered by the centralized power grid [4]. Further-
more, due to the wide distribution of the fog nodes, it is not
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possible to implement the central, intelligent power man-
agement techniques deployed in cloud data centers. In ad-
dition, It is impossible to reduce the energy cost by placing
the nodes where the cheaper energy is available, because
they should be placed somewhere in the user premises.
Although the fog paradigm implies a different condition
compared with cloud from the energy management point
of view, it also brings other new opportunities. Therefore,
it requires some new methods of its own based on the fog
properties [5, 6].

With respect to cloud, fog nodes consume less power
and have smaller footprints [7], which lead them to have a
better position in effective utilization of on-site cheap re-
newable energy (green energy) sources. Recently, renew-
able energy technology is growing very fast (increasing in
performance and efficiency, and decreasing in cost). There-
fore, it seems to be feasible and reasonable to utilize on-
site renewable sources in fog computing environment [8].
However, the renewable energy is unpredictable and inter-
mittent. For example, solar energy is available during the
day and depends on weather conditions. Therefore, to mit-
igate the amount of produced energy, fog nodes can bank
green energy in batteries or on the grid network (called
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net metering). However, both batteries and net metering
accompany some problems [9]. In batteries, self-discharge
and internal resistance cause energy losses, chemicals that
are used are harmful to the environment, and the purchas-
ing and maintaining (P&M) is costly (the cost of P&M can
dominate in a solar system). On the other hand, net me-
tering may not be available in every part of the world, and
the voltage transformation while feeding the green energy
into the power grid also leads to energy losses. Therefore,
we focus on fog nodes powered with grid-tied solar sys-
tems having no energy storage. Fog nodes use the grid as
a ‘backup’ source of energy when renewable energy is not
sufficient.

In this paper, we investigate the problem of managing
workload to shape the electricity demands to match the
available green energy supply. We state the problem as
designing a request dispatching controller. The controller
dispatches requests among available computing nodes in
fog or cloud tier to jointly minimize service time and main-
tain green energy utilization and system stability at a sat-
isfactory level.

The controller’s optimum decision making process is
first formulated as a stochastic optimization problem. The
green energy utilization and selection between fog and
cloud are presented as the constraints beside the main ob-
jective (i.e., service time minimization). We use the idea
of virtual queues [10] and turn the satisfaction of these
constraints into a pure stability problem. Then Lyapunov
Optimization Technique (LOT) is leveraged to develop ef-
fective online algorithms with guaranteed performance.

Our main contributions in this paper are summarized
as follow:

• Utilizing the on-site renewable energy sources, we
introduce a dynamic request dispatching strategy to
lessen the burden on the power grid while minimizing
the service time and stabilizing the queues.

• Based on the Lyapunov optimization technique and
the concept of virtual queues, we introduce easy-to-
implement online request dispatching algorithms.

• The proposed methods are evaluated by extensive
simulations based on real solar irradiation data.

• Analysis is performed to assess the sensitivity of the
proposed method to different conditions.

In the remainder of the paper, the related works are
summarized in Section 2, the system model is described in
Section 3, Section 4 is devoted to the problem statement.
The basics of our methods is explained in Section 5. The
proposed methods are introduced in Section 6. Section
7 presents the simulation results and Section 8 provides
a further discussion. Finally, the paper is concluded in
Section 9.

2. Related Works

In this section, some of the most relevant works are
presented and discussed. We classify the prior research
works into four subsections and separately discuss them.

2.1. Resource Management in Fog Computing Environ-
ment

Resource management and request dispatching in the
context of fog computing have been widely studied in the
literature [11, 12, 13]. For example, in [11], Ni et al. sug-
gested a resource allocation strategy based on priced time
Petri nets which considers the price and time cost of task
completion. They also take into account the credibility
score of both users and fog nodes. Also, Yousefpour et
al. [12] proposed an offloading policy for minimizing ser-
vice time. They employ inter fog communication to de-
crease service time through load sharing. However, these
works are based on estimated waiting time, and therefore,
the estimation precision may affect the performance of the
methods.

Energy consumption is an important metric at the time
of dispatching requests. As a result, there have been some
studies on energy-efficient resource management and re-
quest dispatching [14, 15]. For example, in [14], Deng et
al. suggested a workload allocation algorithm to minimize
power consumption while taking into account constrained
service time. Our work is different from these works in
two aspects. First, we investigate the problem of request
dispatching subject to system stability. Indeed, we jointly
minimize service time and maintain green energy utiliza-
tion and stability at a satisfactory level. Second, utilizing
on-site renewable energy source, we investigate the prob-
lem of request dispatching to properly deal with intermit-
tency and varying nature of renewable energy sources.

2.2. Renewable Energy in Fog Computing Environment

Renewable energy technology has been grown very fast
in the last decade. It is now considered as a low cost,
high-performance alternative for providing energy for fog
nodes [5]. However, a carefully designed dispatching re-
quest strategy will be required to utilize the capacity of
fluctuating renewable energy sources properly. Recent work
suggested a framework for energy management which han-
dles distributed renewable energy sources [4]. In order to
fully utilize renewable energy and improve the Quality of
Service (QoS) for constrained service time, the framework
supports the cooperation of computing and energy sources.
In a similar work, Li et al. [8] proposed an analytic model
for offloading computation to edge or cloud resources. The
model improves QoS while considering the availability of
renewable energy sources. Although such works deal with
better utilizing renewable energy sources, they do not take
into consideration the system stability.
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Table 1: THE COMPARISON BETWEEN THIS WORK AND THE MOST RELEVANT WORKS

Reference Technology Problem Lyapunov
Objectives Architecture

RNE5

S.T 1 E.C 2 Cntr3 Dstr4

[4] Edge Computing Energy management X X X
[8] Edge Computing Computation offloading X X X
[11] Fog Computing Resource allocation X X
[12] Fog Computing Computation offloading X X
[14] Fog Computing Workload allocation X X X
[16] Cloud, Edge and Fog Computing Deployment options ranking X X X
[17] Industrial Fog Computing Computation offloading X X X
[18] Content delivery wireless network Resource allocation X X X
[19] Mobile Cloudlet Platforms Computation offloading X X X
[20] Fog Computing Computation offloading X X X X
[21] Homogeneous Fog Networks Tasking scheduling X X X X
[22] Industrial Fog computing Computation offloading X X X X
[23] Mobile Cloud Computing Transmission scheduling X X X X
[24] Mobile Cloud Computing Computation offloading X X X X
[25] Mobile Cloud Computing Scheduling and link selection X X X X
[26] Mobile Cloud Computing Resource management and allocation X X X X
[27] Mobile Cloud Computing Computation offloading X X X X

This work Fog Computing Request dispatching X X X X X

1 S.T: Service Time 2 E.C: Energy Consumption 3 Cntr: Centralized 4 Dstr: Distributed 5 RNE: Renewable Energy

2.3. Stochastic Methods for Resource Allocation

There have been extensive studies on resource alloca-
tion based on stochastic methods, such as the Markov De-
cision Processes (MDP) or LOT. MDP is a powerful math-
ematical framework in a dynamic environment which also
is leveraged for resource allocation and power management
in the context of fog and edge computing [16, 28, 17]. For
example, Kochovski et al. [16] introduced a mechanism
for automatically ranking candidate deployment options
for micro-services. They deployed a Markov-based proba-
bilistic model by taking into account the Non-Functional
requirements and usage context. Wang et al. [17] investi-
gated task offloading in fog computing by considering both
energy consumption and service time. They formulated
the problem as a cost-minimization one, and exploited
MDP and reinforcement learning to devise dynamic schedul-
ing algorithms. However, MDP-based methods suffer from
the curse dimensionality. As it is mentioned in [16], in-
creasing the number of transitions can significantly impact
the computational complexity of the MDP-based methods.

Recently, LOT has been adopted in several works as
a means to derive resource management strategies in the
fog computing environment [18, 19]. In particular, Zhao et
al. proposed an online node assignment and resource allo-
cation algorithm based on LOT, to improve service time,
network throughput and fairness [18]. The request dis-
patching problem is decomposed into two separate oper-
ations, namely node assignment at fog control node and
bandwidth allocation at the fog access node, and then,
LOT is leveraged to solve each part separately. Similarly,
in [19] LOT is utilized to control the request admission and
dispatching, purchase required computing service, and re-
source allocation. While the cost (in terms of service time
or price) is the main objective in the above-mentioned
works, there also have been studies on energy consumption
minimization, such as [20, 21, 22, 23, 24, 25]. For exam-
ple, in [21], Yang et al. suggested a scheduling scheme to
minimize energy consumption while reducing service time.

Adopting LOT, Yang et al. proposed an online algorithm
to balance between overall energy consumption and aver-
age service time. Furthermore, Chen et al. [22] studied
the problem of service placement and task admission in a
fog network. The problem is formulated as a stochastic
optimization problem subject to conditions in the form of
long-term constraints. Leveraging LOT, Chen et al. de-
veloped an online algorithm to minimize average service
time while satisfying the battery constraints of fog nodes.

2.4. Focus of the Paper

Our work is very relevant to [26] and [27]. In [27],
Zhang et al. studied the problem of computation offload-
ing, and proposed an energy-efficient algorithm based on
LOT as the solution. The problem is formulated as a
stochastic optimization problem to minimize average en-
ergy consumption while satisfying both data and energy
queue stability. Then, the problem is transformed into
more deterministic easy-to-solve subproblems. They con-
sider an execution model consists of both local and Mobile-
Edge Computing (MEC) server execution, and introduce
an asleep/awake decision to improve the energy harvested
by devices. In contrast, we consider a computing ecosys-
tem consisting of computing nodes in the fog and the
cloud. Also, in this paper, these are fog nodes, not the
end devices, which are capable of harvesting green energy.
In other words, we do not deal with decisions of computa-
tion offloading at end devices level, but with dispatching of
the incoming requests into the controller, among available
computing nodes with on-site renewable energy sources.
On the other hand, unlike [27], in which energy consump-
tion is minimized, our focus in this paper is to minimize
the service time while maintaining the utilization of the
fluctuating renewable energy above a predefined thresh-
old. The summary of the comparison between this paper
and most relevant works is presented in Table 1.
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Figure 1: High Level Fog Network Architecture.

3. System Model

We consider a fog environment consisting of N hetero-
geneous fog nodes, a cloud at a remote data center, IoT
nodes, and a request dispatching controller. We assume
that the fog nodes can be powered with on-site renewable
energy sources, the power grid network, or both. In con-
trast to fog nodes, the only source of energy for the cloud
is the grid.

The fog nodes are highly distributed and heteroge-
neous. Therefore, they have different amounts of comput-
ing capability, and the IoT devices may encounter different
delay to access them. The access delay related to each fog
node varies depending on its properties and location, and
is significantly lower than the cloud access delay, Fig. 1.
The cloud is assumed to have more processing power with
respect to the fog nodes.

The IoT and fog nodes are divided into some domains
(for example, a domain of nodes in a university campus, a
factory or shopping center and etc.), which induces a clus-
tering structure of the system. Each cluster of domains
is under the control and management of one request dis-
patching entity (Controller). Requests with different sizes
and requirements come into the system from IoT devices
or other fog nodes, as shown in Fig. 2. Actually, the IoT
devices send their requests to the IoT gateway where the
controller can be embedded as a component in the gate-
way software. Requests’ and resources’ information are
registered in the controller. The controller, based on the
available resources, system and network conditions, and
requests’ demands, makes a decision on how to dispatch
the requests among computing nodes. Upon making the
decision, the requests are assigned to the most proper com-
puting nodes.

Notation: In this paper, vectors are specified by bold-
face letter. X̄ indicates the average of the variable X. We
interchangeably may use y(t) or ŷ(f(t)) where the latter is
to clearly represents the dependency of y(t) to f(t). E{.}
denotes the expectation operator. lim sup represents for
Limit Superior1. Furthermore, the definition of key sym-

1A well defined limit while t → ∞, for a function f(t) may or

Table 2: THE SUMMARY OF KEY SYMBOLS

Symbol Definition

t Index of time slots
A(t) Request arrival rate into the system
i Index of computing nodes

Ri(t) Request arrival rate into the computing node i
Bi(t) Service rate of the computing node i
Cpi Processing capability of the computing node i
c(t) Vector of decision control
Qi(t) Queue backlog related to the computing node i
ei(t) Energy consumption of the computing node i

ePi (t) Energy consumed for processing

eCi (t) Energy consumed for communication
k Index of requests

MI
k,i Input data volume of request k

MR
k,i Output data volume of request k

ηk,i
Energy consumed by the computing node i to process the
request k

Xk Processing demand of the request k
Sk(t) Service time of the request k
uk,i Time to upload the request k to the computing node i

wt,i
Waiting time of the request k in the queue of computing
node i

pk,i Processing time of request k on the computing node i

dk,i
Time to send back the result of request k from the computing
node i

L(t) Lyapunov function
∆(L(t)) Drift in Lyapunov function

bols are summarized in Table 2.
We look at the system in a time-slotted manner indexed

by t, where t ∈ {0, 1, 2, . . . }. At each time slot, requests
arrive to the system with arrival rate A(t), where A(t) is
independent and identically distributed (i.i.d) over time
slots and E{A(t)} = λ. We assume that the system condi-
tions (including the amount of resources, wireless channel
condition and etc.) during each time slot remain fixed, but
can vary from one time slot to the next one. It is at the
beginning of each time slot that the controller performs
the request dispatching algorithm.

3.1. Queue Model of Computing Nodes

We model each computing node as an M/M/1 queue.
Requests arrive at queue i with arrival rate Ri(t) and are

may not exist, while the function is relay limited (like function sin).
Therefore, lim supt→∞ f(t) is defined as the largest value that limit
f(t) over any subsequence of tk that increase to infinity while limit
f(tk) exists.
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Figure 2: Queue Model of The System.

served with service rate Bi(t), which is related to the com-
puting capability of the nodes2, Cpi. The dynamic equa-
tion for each queue at time slot t is described by,

Qi(t+ 1) = max[Qi(t)−Bi(t), 0] +Ri(t) (1)

for t ∈ {0, 1, 2, . . . }, where Qi(t) denotes the queue backlog
of the ith computing node at time slot t. Equation (1)
states that from the requests which come into the queue
at each time slot and those remained from previous slots
as much as the service rate is processed and the remainder
is left for the next slot, as the queue backlog.

At each time slot, the controller makes a decision c(t)
to assign requests to the most suitable computing nodes.
Where, c(t) is a vector defined in the form3 of c(t) ,
{(k, i)|k ∈ {1, 2, . . . ,Kt} and i ∈ {1, 2, . . . , N + 1}}, Kt is
the number of requests in the current time slot and N + 1
is the number of computing nodes4. Each element of c(t)
indicates which requests are assigned to which computing
nodes. Therefore, Ri(t) is a function of decision control
c(t), Ri(t) = R̂i(c(t)), and satisfies 0 ≤ Ri(t) ≤ Rmaxi .
Furthermore, it is assumed that the rate of request arrival
is in the capacity region of the system [10]. In other words,

A(t) =
∑N+1
i=1 Ri(t) and A(t) ≤

∑N+1
i=1 Bi(t) for all time

slots, which is performed by admission control.

3.2. Queue Stability

Regarding the queue model of the system in the previ-
ous section, we say a queue is stable if the average queue
backlog is always finite. Therefore, we can formally define

2Bi(t) is considered a fixed value for each computing node and
equal to its computing capability, Bi(t) = Cpi.

3We also define ci(t) to determine all requests assigned to node
i as ci(t) , {(k, i)|k ∈ {1, 2, . . . ,Kt

i}} where Kt
i denotes the total

number of requests assigned to node i. Also, ck(t) is defined to
indicate which node the request k is assigned, as ck(t) = (k, i).

4In N + 1, N indicates the number of fog nodes and 1 is for the
cloud.

the queue stability [10] as,

Q̄i(t) = lim sup
T→∞

1

T

T−1∑
t=0

E{|Qi(t)|} <∞ (2)

Equation (2) requires that not only the long term be-
havior of the queues to be finite, but also the queues’ back-
log always remain under some finite value.

3.3. Energy Consumption Models

In this section, we present energy consumption models
(ECM) for requests and computing nodes. The request-
related ECM indicates the amount of energy which is re-
quired for processing a request on a computing node. It is
a fine-grained model and depends on the amount of pro-
cessing that a request needs to be done. The node-related
ECM indicates the energy consumption of a specific com-
puting node under the current overall workloads. The
node-related ECM is relatively coarse-grained. It is cu-
mulative and related to the utilization of the computing
node5.

3.3.1. Request-related ECM

For each request k and fog node i, we define request
energy consumption, ηk,i, which is related to its processing
amount, Xk. The request energy consumption determines
how much energy is needed to serve the request k on the
selected node i. We can calculate the request energy con-
sumption by a quadratic function as in [14],

ηk,i = aiX
2
k + biXk + αi, (3)

where ai > 0 and bi, αi ≥ 0 which are defined accordingly
for each node.

3.3.2. Node-related ECM

We consider the energy consumption of a computing
node at each time slot, ei(t), as the sum of energy con-
sumed for processing purpose, ePi (t), and the energy con-
sumed for communication purpose, eCi (t), at that time slot
as:

ei(t) = ePi (t) + eCi (t), (4)

where ei(t), e
P
i (t) and eCi (t) are functions of the decision

control c(t). Therefore, we can rewrite (4) in the form
of ê(ci(t)) = êP (ci(t)) + êC(ci(t)). In the following we
explain how to obtain each part.

Processing ECM: Computing nodes consume energy,
whether idle or active. The energy consumption of a com-
puting node for processing purpose at each time slot, ePi (t),
can be modeled as [22, 29],

ePi (t) = eP,Ii (t) + eP,Ai (
λi(t)

µi(t)
), (5)

5The ECM for a computation node is not simply the summation
of the energy required to accomplish its assigned tasks. The reason
is that in practice, other parameters, such as idle wake-up energy,
play important roles in the node’s ultimate energy consumption.
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where eP,Ii and eP,Ai are idle energy consumption and ac-
tive energy consumption (when a computing node is pro-
cessing the workloads) of the ith node, respectively. Con-
sidering the queue model of the computing node, λi(t) =
E{Ri(t)} denotes the average requests arrival rate into the
queue, µi(t) = E{Bi(t)} denotes the average service rate of
the queue, and (λi(t)/µi(t)) < 1 represents the utilization
of the computing node.

Communication ECM: Each request to be processed in
a computing node needs to transfer the required input data
to the selected node. Also, after the request get processed,
the results need to be sent back. The sum of the required
energy for receiving the input data, eC,ri (t), and returning

back the results, eC,si (t), is called communication energy

consumption6, eCi (t) = eC,ri (t) + eC,si (t).
Considering εi as the amount of energy (Joule) that fog

node i consumes to operate each unit of data, we obtain
the required energy to receive input data as [30],

eC,ri (t) =

Kt
i∑

k=0

(εiM
I
k,i) (6)

and the required energy to transmit the results as [30],

eC,si (t) =

Kt
i∑

k=0

((εi + ςij(t))M
R
k,i) (7)

where ςij(t) denotes the amount of energy (Joule) node
i consumes to transmit a unit of data to device j. Fur-
thermore, M I

k,i and MR
k,i represent the volume of input

and output data (Kbytes) that is needed to be transferred
for each request k to/from node i, respectively. Based on
Shannon’s channel capacity theorem, we can write ςij(t) in
terms of the data-rate, rij(t), and link’s bandwidth, Wij ,
as [26],

ςij(t) = βij(t)(2
rij(t)/Wij − 1)/rij(t), (8)

where βij(t) depends on the parameters such as noise level,
transmission quality and etc. Equation (8) shows that the
increase in communication speed requires more power.

4. Problem Statements

In this section, we first deal with expressing the green
energy utilization constraint satisfaction by defining two
lateral constraints. Then, we go through the formulation
of the main problem by defining the objective function and
considering related constraints.

6The communication energy consists of different parts; the energy
is consumed by the computing nodes, network equipment (routers
and switches) in the path and IoT devices, but here we just concern
about part of it that is consumed by the computing nodes.

4.1. Average Utilization of Green Energy in Fog Nodes

As we assumed that the fog nodes are equipped with
on-site renewable energy sources, it is desirable to utilize
green energy as much as possible whenever it is available
(i.e. green energy is not zero). Because the requests are
assumed to be time-constrained, we cannot postpone re-
quests to a later time. On the other hand, the extra energy
cannot be stored in a battery to be used later. As a re-
sult, an optimal controller will use green energy as much
as possible at each time slot. We can categorize the status
of energy consumption with respect to the produced green
energy for each fog node into two states, as illustrated in
Fig. 3. First, the situation where the energy consumption
of the node is lower than (or equal to) the green energy
produced by the on-site renewable sources, such as e1 and
e2. Second, the energy consumption is higher than the
on-site produced green energy, which leads the node to
borrow the remainder energy from the main grid, such as
e3.

e1

e2

e3

Grid Consumption

Figure 3: Grid Consumption.

In order to maximize the total utilization of green en-
ergy, the requests have to be first assigned to the nodes
with the available green energy greater than the energy
consumption which best suits the requests demands, if
any ones exist. We take this constraint into considera-
tion by defining a utilization function, Ui(t), which is a
function of decision control, Ui(t) = Û(ci(t)). The green
energy-related utilization function is defined based on the
description of grid consumption as expressed in Fig. 3, in
the form of,

Û(ci(t)) = max[e(ci(t))− eipro(t), 0], (9)

where, eipro(t) denotes the amount of energy produced by

the green energy sources at time slot t, and e(ci(t)) de-
notes the amount of energy consumed by node i at time
slot t under the decision control c(t), which is obtained
by (4). Grid (or brown energy) consumption indicates the
amount of energy borrowed from the grid after the green
energy is completely used. Therefore, our goal is finding
a decision (c(t)) which leads to lower amount of grid con-
sumption. Accordingly, it is sufficient here to have the
energy consumption for all the fog nodes lower than the
produced green energy. For all decisions which satisfy the
condition, it is the choice of performance. We present this
constraint in the form of long term average grid consump-
tion and aim to keep it below a predetermined threshold



/ Future Generation Computer Systems 00 (2020) 1–17 7

(Υ), Ūi(t) = lim supT→∞
1
T

∑T−1
t=0 E{Ui(t)} ≤ Υ for some

finite value of Υ.

4.2. Fog or Cloud Energy Aware Selection

The controller may deal differently with requests de-
pending on the green energy availability. Whenever there
is not any green energy available, it is better to serve some
heavy requests at the cloud because cloud computing is
utilizing smarter and more efficient energy management,
along with the opportunity of utilizing cheaper energy.
Therefore, those requests that are best suited to be of-
floaded to cloud can be sent to a remote data center. The
best fit requests are those with large amount of energy con-
sumption and less amount of data communication. So, we
define utility function ν(t) for request k and the selected
node i, as ν(t) = ν̂(ck(t)) = ηk,i/M

I
k,i, where ηk,i and M I

k,i

denote the request’s energy consumption in Joules defined
by (3) and the input data volume of request k needed to
be transferred to node i in Kbytes, respectively. The value
of utility function for the requests that need high amount
of energy and have low communication demands are large,
these requests are sent to cloud. Accordingly, the value
of this function for requests that are best suited to be
served in fog is small. So, we have to choose the decision
c(t) in the way to lower the value of utility function for
requests assigned to fog nodes. Therefore, we define the
long term average utility constraint for the requests that
are served by the fog nodes under decision control c(t), as

ν̄(t) = lim supT→∞
1
T

∑T−1
t=0 E{

∑
ck(t)∈cf (t) ν̂(ck(t))} ≤ Γ,

where cf (t) is a subset of c(t) and cf (t) = {(k, i)|k ∈
{1, 2, . . . ,Kt} and i ∈ {1, 2, . . . , N}}. Moreover, Γ is a
constant with a non-negative finite value.

In some cases, invoking specific services on some fog
nodes may pose certain limitations on the placement of
other services. For example, in the case of micro-services
with fairly long invocation chains, it may be preferred to
place requests on fog nodes completely to avoid the pro-
hibitive latency of the cloud data center. Thus, further in-
vestigation is required to involve such considerations into
the method, which can be appeared in the form of sending
invocation chain characteristics along with other param-
eters to the controller in order to schedule the chain on
proper fog nodes.

4.3. Problem Formulation

Towards mathematically describing the problem, we
first introduce the service time related objective function.
Then considering the aforementioned constraints and the
objective function, we present a mathematical definition
of the problem.

The service time is calculated from when the request
is sent to the selected computing node until the time the
results come back to the requesting node. We can ignore
the time required to submit a request to the controller and
get informed about the controller’s decision regarding the
place (one of the fog nodes or the cloud) for serving the

request, because introducing the requests to the controller
is via metadata which leads to a negligible and fixed time
for all the requests. So, we define the service time7 for
request k as the sum of the time to upload the request to
the computing node, uk,i, the time that the request waits
in the related queue, wt,i, the time needed the request gets
served, pk,i, and the time to return back the results, dk,i,

in the form of Sk(t) = Ŝ(ck(t)) = uk,i + wt,i + pk,i + dk,i.
wt,i and pk,i are obtained by X/Cpi, where X is the queue
backlog or the processing amount for the request k, respec-
tively. uk,i and dk,i are obtained by Mk,i/rij(t), where
Mk,i denotes the volume of input/output data. It is worth
noting that the network level metrics (jitter, packet loss,
bandwidth, and latency), depending on the application,
can be differently affected by the variations of rij(t), and
consequently influence user-experienced QoS [31]. Finally,
the total service time in time slot t is obtained by S(t) =

Ŝ(c(t)) =
∑Kt

k=1 Ŝ(ck(t)).
We investigate the request dispatching problem in or-

der to minimize service time while maintaining green en-
ergy utilization and queue stability at a satisfactory level.
Therefore, considering the service time in the form of long
term average, green energy utilization in the form of two
aforementioned constraints, and the definition of stability,
we can formulate the main problem as,

P1:min
c(t)

(lim sup
T→∞

1

T

T−1∑
t=0

E{Ŝ(c(t))}) (10)

S.T Ūi(t) ≤ Υ (10a)

ν̄(t) ≤ Γ (10b)

Q̄i(t) ≤ ∞ for i ∈ {1, 2, . . . , N + 1} (10c)

P1 is a stochastic optimization problem where (10a)
induces the grid energy consumption constraint, (10b) is
related to the selection between the fog and cloud, and
(10c) ensures the stability condition. In order to solve
P1, one needs the dynamics of the system to be known in
advance, but it is difficult and imprecise if not impossible.
So, P1 is a highly challenging problem to solve while its
solution depends on the statistical information of system
dynamics.

One of the promising methods to deal with such stochas-
tic optimization problems is the Lyapunov Optimization
Technique (LOT). LOT leads to an approximation solu-
tion to P1 which is adjustable by parameter V within
[O( 1

V ), O(V )] of the optimum solution in terms of service
time and green energy utilization, respectively [10]. By
increasing the value of V , we put more emphasis on min-
imizing the service time; while by decreasing it, there is

7It is assumed that the central request dispatching controller has
complete knowledge about link level information (such as links’ de-
lays and data rates) throughout the edge network. In practice,
this assumption holds in software-defined network (SDN) architec-
tures [3].
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less emphasis on the service time and more on the green
energy utilization. Queues’ backlogs, processing demand,
the volume of input and output data, and the link through-
put are the inputs of the algorithm that are determined at
run-time. Moreover, the number of fog nodes, the avail-
ability of green energy harvesting equipment, and the fog
nodes’ service rates which depends on their processing ca-
pabilities are given parameters at the design time. In the
next section, we briefly introduce the fundamental basics
of LOT, and then in section VI, we return to our primary
problem P1, apply the LOT, and develop our proposed
request dispatching algorithms.

5. Queue-stable Optimized Solution

In this section, we first describe the Lyapunov opti-
mization technique. Then we explain the idea of virtual
queues which are used to satisfy lateral constraints of an
optimization problem.

5.1. Lyapunov Optimization Technique

The Lyapunov method has been widely adopted in the
theory of control systems to prove system stability without
solving the system dynamic equation [32, 33]. Further-
more, a variation of the Lyapunov method, called Lya-
punov Optimization Technique (LOT) is used to jointly
stabilize system and minimize a cost function. LOT is
also used in computer science to investigate the system
queue stability and also the problem of jointly minimizing
a sort of penalty and stabilizing the system queues [10].
The main idea of LOT is based on starting from a stable
condition and preserving its stability by controlling system
changes continuously. In LOT, a positive scalar function
called Lyapunov function, L(t), is defined to assess the sta-
bility condition. A small value of L indicates that all the
queues are working normally, but a large value of L indi-
cates that at least there is a queue which gets congested.
Here Lyapunov function is defined as in [10], in the form
of a quadratic function:

L(t) =
1

2

N+1∑
i=1

Qi(t)
2 (11)

where Qi(t) denotes the backlog of the ith queue. The
Lyapunov function is a scalar measure of congestion in
the queues.

We also define drift in Lyapunov function as the differ-
ence in Lyapunov function at two consecutive time slots:

∆(L(t)) = E{L(t+ 1)− L(t)|Q(t)}, (12)

where, Q(t) is the vector of all the queues, Q(t) , (Q1(t),
Q2(t), . . . , QN+1(t)). The drift helps to push Lyapunov
function towards a low congestion state, by setting control
on the change in Lyapunov function from one slot to the
next. If we start from a stable initial condition (finite

initial queue state), bounding the drift to a finite value in
each time slot leads to a stable condition.

Although, greedily minimizing the drift at each time
slot guarantees the queue stability, but it may affect the
objective function which has not yet been incorporated.
Therefore, we incorporate the objective function by in-
volving penalty function with a scaling factor V into the
drift, which now is called Drift plus Penalty (DpP). The
penalty is an appropriate function to which the objective
function is mapped. Thus, in the LOT, we now try to
minimize the DpP in each time slot. We write the DpP
expression as:

∆(L(t)) + V E{S(t)|Q(t)}, (13)

where E{S(t)|Q(t)} represents the penalty function. In
equation (13), the non-negative constant value V relatively
determines the importance of stability against the penalty
function. For instance, defining V = 0 means stabilizing
the queue with no consideration of the penalty. On the
other hand, increasing V to larger values (V > 0) includes
the weighted penalty function in the decision.

5.2. Virtual Queue

Besides the real queues that exist in the system, we
can also define some new queues called virtual queues. In-
deed, we can map some requirements in the system (such
as constraints on the power, cost and etc.) to these vir-
tual queues. The virtual queues can be used to satisfy
constraints in a long term average representation of the
parameters besides the main problem [34]. For example,
if we have a constraint in the form of x̄(t) ≤ 0 in the sys-
tem, then, by defining an appropriate virtual queue and
stabilizing the queue we can satisfy it.

Let’s define the virtual queue H(t) with the update
equation as:

H(t+ 1) = max[H(t) + x(t), 0], (14)

then the following proposition holds.
Proposition 1: Stabilizing the virtual queue H(t) en-

forces the x̄(t) ≤ 0 constraint.
Proof : see Appendix A. �
Leveraging the virtual queues helps us to turn the prob-

lem of satisfying the constraints into a pure stability prob-
lem within LOT.

6. Proposed Request Dispatching Algorithms

In this section we employ the LOT to solve the opti-
mization problem P1. We define the virtual queues Zi and
G related to the constraints (10a) and (10b), respectively.

Corresponding to the constraint (10a) which imposes
Ūi(t) ≤ Υ, we define yi(t) = ŷ(ci(t)) = Û(ci(t)) − Υ to
rewrite the constraint in the form of ȳi(t) ≤ 0. Now, we
can define the virtual queue Zi(t) with the updating equa-
tion

Zi(t+ 1) = max[Zi(t) + yi(t), 0]. (15)
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The constant value Υ in the constraint (10a) and in the
definition yi(t) is a predetermined threshold representing
the maximum desirable brown energy consumption defined
by power management policies.

Furthermore, because of constraint (10b), We need to
add another virtual queue. Therefore, with regard to con-
straint (10b) which states that ν̄(t) ≤ Γ, we define f(t) =

f̂(cf (t)) =
∑
ck(t)∈cf (t) ν̂(ck(t)) − Γ. Now, we can define

the virtual queue G(t) to satisfy the constraint with the
following update equation:

G(t+ 1) = max[G(t) + f(t), 0]. (16)

where, in the definition of f(t) (and also in constraint
(10b)), the parameter Γ presents the desirable threshold
for the proportionality of requests to be sent to the cloud,
and is obtained by Z̄(t) × Ω, where Z̄(t) denotes the av-
erage backlog of virtual queues Zi, for i ∈ {1, 2, . . . , N},
at time slot t and the constant value Ω is a predefined
threshold.

The above transformation of constraints into the vir-
tual queues, convert the original problem into a pure sta-
bility problem in which the goal is to stabilize the requests
real and virtual queues. Therefore, the vector θ(t) is de-
fined as concatenation vector of real and virtual queues in
the form of θ(t) , [Q(t),Z(t), G(t)]. Accordingly, we can

define Lyapunov function as, L(t) =
1

2
(ρ1

∑N+1
i=1 Qi(t)

2 +

ρ2

∑N+1
i=1 Zi(t)

2 + ρ3G(t)2) where ρj , j = 1, 2, 3 are aux-
iliary variables that help to prioritize different types of
queues related to each others. Accordingly, Lyapunov
DpP expression based on vector θ(t) takes the form of
∆(L(t)) + V E{S(t)|θ(t)}.

Proposition 2: Considering c(t) as an arbitrary dis-
patching control decision that is adoptable for all time slots
t, the Lyapunov DpP satisfies:

(17)∆(L(t)) + V E{S(t)|θ(t)} ≤ Ψ + V E{Ŝ(c(t))|θ(t)}

−ρ1

N+1∑
i=1

Qi(t)Bi(t) + ρ1

N+1∑
i=1

Qi(t)E{Ri(t)|θ(t)}

+ ρ2

N+1∑
i=1

Zi(t)E{yi(t)|θ(t)}+ ρ3G(t)E{f(t)|θ(t)},

where Ψ is a constant.
Proof : The proof is presented in Appendix B. �
Inferring from proposition 2 and starting from a sta-

ble condition, we can solve the minimization problem P1
by minimizing the upper bound of Lyapunov DpP. Thus,
based on proposition 2, the minimization problem P1 is
transferred to P2 at each time slot as follow:

P2:min V
Kt∑
k=1

Sk(t) + ρ1

N+1∑
i=1

Qi(t)Ri(t)

+ρ2

N+1∑
i=1

Zi(t)yi(t) + ρ3G(t)f(t) (18)

Remark 1: Solving P2 in each time slot not only min-
imizes the service time as the objective function but also
enables us to jointly satisfy the lateral constraints and sta-
bilize system queues.

In order to solve P2, we present an algorithm which is
called Joint Algorithm (JoA). The algorithm uses only the
current system, network and green energy sources’ condi-
tions to make a decision. JoA is implemented in the con-
troller. It makes decision control c(t) at the beginning of
each time slot which leads to a condition that minimizes
the long term average service time and satisfies stability
and green energy-related constraints.

6.1. Joint Algorithm

At each time slot, JoA goes through all the possible
combinations of assigning the requests to the computing
nodes and choose the best among all, c∗(t). Thus, all the
requests in the current time slot get dispatched at once
with overall effect that those requests may have on each
others and the queues.

It can be implemented by exhaustive search or branch
and bound methods, but in either way, JoA comes with
c∗(t) that induces the minimal value to the expression in
(18). Here, we use exhaustive search to find c∗(t). The
proposed algorithm is summarized in Algorithm 1.

Algorithm 1: Joint Algorithm (JoA)

Input: List of requests and computing nodes
Output: Decision control c∗(t)

1: Initialization
Initialize the control parameters in the LOT

2: While t < tend, do
/*Obtaining required parameters and finding the best c∗(t) */

3:
I(t) = all possible combinations of assigning Kt requests

to N + 1 computing nodes
4: cj(t) = Ij(t), j ∈ {1, 2, . . . , |I(t)|}

/* c(t) , {(k, i)|k ∈ {1, 2, . . . , Kt} and i ∈ {1, 2, . . . , N+1}}*/
5: For all cj(t) in I(t)
6: value DpP [j] = V Ŝ(cj(t)) + ρ1(Q(t)R̂(cj(t)))+

ρ2(Z(t)y(cj(t))) + ρ3(G(t)f(cf (t)))
End for

7: c∗(t) = arg mincj(t)
(value DpP )

8: Dispatch according to c∗(t)
9: Update the Queues

End While

The algorithm takes the list of arrived requests and
existing computing nodes as the input. It returns the de-
cision control c∗(t) as the output.

Line 1: Initialize the control parameters in the LOT,
such as control parameter V . It helps to adjust the system
according to the system management policy.

Line 3-4: Provide all the possible combinations of re-
quest dispatching and defining cj(t) to access each combi-
nation in the set of all combinations I(t).

Line 5: Go through all the possible combinations of
request dispatching.

Line 6-7: Calculate the value of expression in the min-
imization problem P2 and find the smallest value and its
related decision control c∗(t) among all c(t).

Line 8-9: Dispatch requests according to the selected
decision control c∗(t) and update the queues.
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The complexity of the solution is of the order (N+1)K
t

,
where N + 1 denotes the number of computing nodes (in
fog and the cloud) and Kt indicates the number of re-
quests that are ready to be dispatched in the current time
slot. Therefore, JoA suffers from the growth of dimension-
ality with the increase in the arrival rate or the number of
computing nodes.

In order to deal with the issue of dimensionality, we
introduce a Greedy Algorithm (GrA) in the next section.
In the greedy solution instead of considering the problem of
dispatching all the requests at once, the requests greedily
get dispatched one by one.

6.2. Greedy Algorithm

In the greedy solution, requests are assigned one by
one. It is like a situation where the controller stops the
time, dispatches a request and observes the effects then
updates the queues and goes through further requests in
the time slot. Finally, the controller issues the decisions as
a whole. We assume that time slot t is divided into small
enough sub time slots (S-T), which only one request arrives
in each S-T. Therefore, the decision control for each S-T
(ck(t)) only includes assigning a request to a computing
node. The union of ck(t) for all S-T determines c(t). GrA
is summarized in Algorithm 2.

Algorithm 2: Greedy Algorithm (GrA)

Input: List of requests and computing nodes
Output: Decision control c∗(t)

1: Initialization
Initialize the control parameters in the LOT

2: While t < tend, do
/*Obtaining required parameters and finding the best c∗(t) */

/* ck(t) , (k, i) */
3: For k = 1 to Kt

4: For i = 1 to N + 1
5: value DpP [k] = V Ŝ(ck(t)) + Q(t)R̂(ck(t))+

Z(t)y(ck(t)) +G(t)f(cf (t))
End For

6: c∗
k(t) = arg minck(t)(value DpP )

7: Logically update the queues based on the model
End For

8: c∗(t) = ∪Kt

k=1c
∗
k(t)

9: Dispatch according to c∗(t)
10: Update the Queues

End While

Line 1: Initialize the control parameters in the LOT,
such as control parameter V . It helps to adjust the system
according to the system management policy.

Line 3: Moves on the set of arrived requests to find the
best computing node to be dispatched to it.

Line 4: Moves on the set of computing nodes to find
the best candidate.

Line 5: Calculate the value of expression in minimiza-
tion problem P2.

Line 6: Find the smallest value and its related decision
control c∗k(t) among all ck(t).

Line 7: After finding the best computing node for the
request of the current round, we assume the request is
dispatched to the selected node and logically update the
queues and other system model parameters.

Line 8-10: Form the final decision control c∗(t) as the
union of each decision control related to each request in
the set of arrived requests, dispatch requests according to
it and update the queues.

The complexity of GrA is of the order Kt(N + 1). It
is a low complexity solution and has a very close perfor-
mance to JoA. In order to evaluate the effectiveness of
the proposed methods and compare our Joint (JoA) and
Greedy (GrA) solution to each other, in the next section,
we report some simulations.

7. Evaluation and Simulation Results

In this section, we first describe our simulation setup.
Then, we present the results of the fixed-parameters sim-
ulations, analyzing the effect of control parameter V , and
evaluating the scalability of the algorithms. Finally, we
go through different scenarios (by changing a specific pa-
rameter at each scenario; such as arrival rate, computing
and communication demands) to show how the proposed
algorithms behave under different conditions.

7.1. Simulation setup

In order to evaluate the proposed methods, we designed
a custom simulator in Matlab and simulated a fog network
consisting of N fog nodes (three fog nodes [N = 3] for
fixed-parameter simulations and up to 40 nodes for scala-
bility analysis) and a cloud server at a remote data center
based on the system queue model in Fig. 2. The comput-
ing nodes are described with their processing capabilities
in terms of million instructions per second (MIPS) and
the link properties toward requesting devices in terms of
transmission rates. The processing capability for the fog
nodes are denoted by the uniform distribution U [50, 700],
and for the cloud server is set to 3500 MIPS. Also, the
transmission rates from the computing nodes towards the
requesting nodes are uniformly generated by U [1, 5] Mbps.

It is assumed that the requests arrival rate follows the
Poisson process with the average rate of λ. Furthermore,
the requests’ computing and communication demands fol-
low the exponential distribution process with the average
rate of γ1 and γ2, respectively. The selected values for
model parameters are summarized in Table 3.

Table 3: CONFIGURATION OF SYSTEM MODEL PARAME-
TERS

λ γ1 γ2 V Υ Γ

0.23 0.12 0.35 7e+14 1 10e+5.6

We adopt real data on green energy production by us-
ing Australian hourly information about solar radiation [35]
in the form of solar Global Horizontal Irradiance (GHI).
GHI presents the instantaneous intensity of solar radiation
falling on a horizontal surface. The irradiance unit is watts
per square meter (W/m2).
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Figure 4: Output PV Power related to the site of each fog node on
the 17th of January 2018.

Besides the solar irradiation density, we need the in-
cident angle of solar radiation to the photovoltaic (PV)
module to measure the effective solar incident. For a tilted
module surface, the perpendicular component of the inci-
dent solar radiation to the module surface determines the
amount of solar radiation incident on the tilted absorb-
ing surface. We adopt the model in [36] to calculate the
effective solar incident on the PV module.

The tilt angle, to achieve the maximum power for a
tilted PV module over the course of year, should be equal
to the latitude of its location [36]. Each solar panel has
an efficiency level, and we assume 30% efficiency for PV
modules.

We consider three fog nodes in our fixed-parameter
simulation setup. The node F1 is placed in Monash Clay-
ton campus, F2 in Caulfield campus and F3 in the center
of Melbourne city. The simulations are performed on infor-
mation related to the 17th of January 2018. Fig. 4 depicts
the output PV power related to each fog node for 24 hours
of the selected day in our scenario.

Different performance metrics have been considered to
evaluate the efficiency of the proposed method, namely,
average queue backlog, average service time, the average
number of deadline misses and average brown energy con-
sumption.

As a benchmark, we compare the results to a state-
of-the-art request dispatching method, called “workload-
aware scheme (WAS)”. The WAS method based on com-
munication to computation ratio (CCR) assigns incoming
requests to the most proper computing node [4]. Further-
more, to highlight the results, we also compare our meth-
ods against the random dispatching method (Rnd). The
Rnd method randomly assigns the requests to the comput-
ing nodes [21].

7.2. Simulation Results

Extensive simulations are performed to assess the effi-
ciency of the proposed methods in terms of stability, ser-
vice time, deadline miss and green energy utilization for
the configuration given by Table 3. In the following, we
explain the experiments’ results.

7.2.1. Fixed-Parameters Simulation

We assume the requests from a domain of IoT nodes
come into the system with the average arrival rate λ =
0.23. The computing and communication demands of the
requests follow the exponential distribution with average
γ1 = 0.12 and γ2 = 0.35, respectively. The requests are
introduced to the controller and get dispatched to four
computing nodes. The experiment is conducted for 100
runs and finally the results are expressed in the form of
average of all experiments.

In Fig. 5, the average queue backlog related to each
computing node is plotted for different methods. As illus-
trated in the figure, all the queues in our proposed meth-
ods and WAS work nearly to each other, but for example,
the queue related to F1 in Rnd scheme has grown dra-
matically (the queue backlog of 1294 compared to order
of 100 in our proposed methods or WAS ). In Fig. 6, the
average service time (from left) and the average number
of deadline misses (from right) are depicted, it is observ-
able that JoA has better performance (in terms of average
service time and average number of deadline misses) than
others and also GrA has very close performance to JoA
(JoA performs 5.7% and 6% better than GrA in terms
of average service time and average number of deadline
misses, respectively). It can be seen from Fig. 7 that JoA
can utilize the on-site green energy sources more efficient
than WAS and Rnd. Also, GrA can provide a very close
utilization to JoA (JoA performs 1.8% better than GrA).
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Figure 5: Average Queue Backlog of each node for different methods.
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7.2.2. The effect of Control Parameter V

The control parameter V in DpP, relatively determines
the importance of stability against service time. Indeed,
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stabilizing the queues can be in the cost of performance.
Therefore, by increasing or decreasing the value of V we
determine how it should judge the trade-off between sta-
bility and performance. For example, increasing the value
of V means we intend to put more emphasis on the per-
formance. In the second scenario, we made changes in the
control parameter V to see how the system metrics would
change. Fig. 8 and Fig. 9 plot the average of queues’ back-
log, service time, the number of deadline misses and brown
energy consumption when V changes from a small to a
large value.

As the value of V increases, more emphasis is put on
the service time. Therefore, we see the service time de-
creases (Fig. 8a). Consequently, the number of deadline
misses is decreased (very slight decrease in Fig. 8b). On
the other hand, it is observed that more requests are dis-
patched to close fog nodes and consequently the queues’
backlog are increased for these fog nodes (Fig. 9). More re-
quests mean more demands for energy. Considering that
in some hours, the green energy is not available or ade-
quate to fulfill the demands, the amount of brown energy
consumption is increased accordingly (Fig. 8c).

7.2.3. Scalability

Further, we provide investigation on the scalability of
the system by increasing the number of fog nodes. In this
scenario, we only involve GrA algorithm in our simula-
tions, because JoA suffers from the growth of dimensional-
ity, as we previously mentioned. Regarding that we tend to
evaluate how the system behaves when the system scales,
we simultaneously increase the number of fog nodes and
the workload injected into the system. Therefore, with re-
spect to the fixed-parameters simulation setting, we con-
sider one domain of IoT nodes that inject requests with
the average arrival rate of λ = 0.23 into the system, for
every three fog nodes. In this way, we can easily extend
the simulation setup by adding more fog nodes and more
domains of IoT nodes at each step (for instance, 5 domains
of IoT nodes with 15 fog nodes or 10 domains with 30 fog
nodes). Fig. 10a to Fig. 10c depict the behavior of the
proposed method by scaling the system in terms of aver-
aged service time, averaged number of deadline misses and
averaged brown energy consumption, respectively.

As it is understood from Fig. 10a the average service

time slightly increases with scaling the system, because in
a large system with more number of fog nodes and with
regard to geo-distribution and heterogeneity of the nodes,
we may have more available green energy at different time
intervals which causes the controller dispatches more re-
quests to such nodes. Consequently, we see it comes with
some performance degradation. Therefore, from Fig. 10b,
we observe that the number of deadline misses grows ac-
cordingly. Furthermore, by increasing the number of fog
nodes more energy is consumed, as it can be observed from
Fig. 10c. Increasing the number of fog nodes, however,
provides the opportunity for better utilization of green en-
ergy sources, as it is demonstrated by Fig. 11. Therefore,
the optimal fog size can be determined by considering the
trade off between service time minimization and green en-
ergy utilization. Finally, from Fig. 10 and Fig. 11, we can
observe that the proposed method outperforms the base-
line schemes under different scales.

7.3. Evaluation under different conditions

In this section, we will provide further investigation
to show how the proposed methods work under different
conditions. We vary system parameters, such as arrival
rate, computing and communication demands, based on
the system queue model in Fig. 2, to see the behavior of
the proposed methods.

7.3.1. Arrival Rate

We conduct an experiment to evaluate the behavior of
the proposed method against changes in the arrival rate.
It enables us to test the proposed methods under more
pressure. In this scenario, we increase the arrival rate to
inject more workloads into the system and observe the
metrics. The experiment contains an average of 24 hours
simulation in 100 runs for each arrival rate in the range8.

Injecting more workloads into the system causes larger
queue backlog (Fig, 12), which leads the requests to wait
for a longer time in the queues. Consequently, the requests
encounter longer service time (Fig. 13a) which causes more
requests to miss their deadlines, Fig. 13b. Furthermore,
the energy consumption increases because there are more
requests to be served and more demands for energy. Re-
garding that the green energy is not available all the time
or may not be enough at some hours, it gets forced to
draw more energy from the main grid which leads to an
increment in brown energy consumption, Fig. 13c.

7.3.2. Computing demand

The computing demand determines how much process-
ing a request needs. It is assumed that the computing de-
mand follows the exponential distribution with average γ1.
In a different scenario, we made changes in γ1 and assessed
the behavior of the proposed methods under different pro-
cessing loads.

8From 0.1 to 0.9 by step 0.1, for each step.
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Figure 8: Behavior of the proposed algorithms with respect to control parameter V in terms of (a) Average Service Time, (b) Average Number
of Deadline Misses, and (c) Average Brown Energy Consumption.
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Figure 9: Behavior of the proposed algorithms with respect to control parameter V in terms of Average Queue Backlog, in the case of (a)
JoA and (b) GrA.

When heavy requests come to the system, more pro-
cessing demand is injected into the system. Therefore, the
queue backlog increases (Fig. 14) and leads to a longer
service time (Fig. 15a), which results in more requests to
miss their deadlines, Fig. 15b. On the other hand, more
energy is consumed by the computing nodes and regarding
that part of the consumed energy is provided by the brown
energy sources, we see the consumption of brown energy
is increased, Fig. 15c.

7.3.3. Communication demand

The communication demand determines the amounts
of data that a request needs to communicate. It is assumed
that the communication demand follows exponential dis-
tribution with average γ2. To see how it can affect the
behavior of the proposed methods, we made changes in γ2

to inject requests with different communication require-
ments.

The proposed algorithms try to dispatch a request with
larger amounts of data communication to the nearest com-
puting nodes to lessen the burden on the network core.
Regarding that such nodes are provided with less power-
ful resources, the service time increases, Fig. 17a. There-
fore, the queue backlog increases accordingly, because the
requests have to wait for a longer time, Fig. 16. Con-
sequently, more requests miss their deadlines, Fig. 17b.
On the other hand, with more requests get dispatched to
the nearest nodes the demand for energy is increased, and
it goes behind the capability of on-site renewable energy
sources which results in an increment in the brown energy
consumption, as observed from Fig. 17c.

8. Discussion

Remark 1: In this work, by leveraging the LOT,
we proposed two online algorithms, JoA and GrA, as so-

lutions for request dispatching problem. The methods
are independent of the system dynamics and work based
on the current system conditions and the queues’ back-
log information. The JoA exhaustively searches the re-
quests’ assignment space at each time slot and dispatches
all the requests at once (near optimum solution), while
GrA greedily dispatches the requests one by one. Request
dispatching is a multi-objective problem. Therefore, in
order to make a better comparison, we provide a multi-
axis graph, the Kiviat diagram in Fig. 18, to show how
different schemes perform with respect to each metric and
against each other. The values on each axis are normalized
with the biggest value. As it can be observed from Fig.
18, JoA outperforms other schemes. In particular, JoA
outperforms WAS [4] up to 6%, 17% and 12% in terms
of service time, deadline miss and green energy utiliza-
tion, respectively. Furthermore, it is observed that GrA
performs very close to JoA. In comparison to GrA, on av-
erage JoA performs 5.8%, 6% and 1.8% better in terms of
service time, deadline miss and green energy utilization,
respectively. Considering that GrA has much less compu-
tational complexity, it may be an attractive solution when
scale matters.

Remark 2: The requests that come into the system
are defined as some jobs with certain amounts of comput-
ing and communication demands. The controller makes
its one-off decisions to allocate jobs to fog nodes based on
the current situation of the fog nodes, network conditions
and tasks’ demands. Thus, the system never preempts
or replaces the allocated jobs. However, if there exists
a mechanism in the system to issue the performance de-
graded jobs as new ones, then, because in our strategy, we
leverage the virtual queues, our ultimate goal turns into
keeping the queues stable. Therefore, it may take several
time slots for any change to be reflected in the queues’ sta-
tus. This prevents oscillations in our methods as it needs
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Figure 10: Behavior of GrA with respect to the number of fog nodes in terms of (a) Average Service Time, (b) Average Number of Deadline
Misses, and (c) Average Brown Energy Consumption.
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Figure 11: The ratio of Brown Energy Consumption to the Total
Energy Consumption with respect to the number of fog nods.

to violate the thresholds.9

9. Conclusions and Future Work

There are a large number of computing nodes in the fog
paradigm, which are geographically distributed over a wide
area. Providing the required energy for this large number
of nodes becomes challenging if they are all powered by the
main grid. Utilizing renewable energy sources emerges as
a feasible solution, which not only reduces the burden on
the main power grid but also leads to lower CO2 emission
and environmental harms.

Considering the on-site renewable energy sources, we
investigated the request dispatching problem to lessen the
burden on the main power grid (by better utilizing renew-
able energy sources) while providing system stability and
minimizing service time. The problem is of the typical
problems that need dynamics of the system to be known
in advance. In this paper, we proposed two online algo-
rithms, one optimum (JoA) and one greedy (GrA), based
on the Lyapunov optimization technique and the concept
of virtual queues. The algorithms work only based on the
current system condition and queues’ backlog and do not
require statistical information of system dynamics. The
simulation results proved the efficiency of the proposed
methods. The complexity and performance of the pro-
posed algorithms were studied. The main result is that
although JoA outperforms GrA, the performance of GrA
remains very close to that of JoA with much less com-
putational complexity. Therefore, GrA provides a better

9The threshold in equation (15) and the definition of yi(t) (or in
equation (16) and the definition f(t)) induces that a change in the
system condition whenever can affect the queue status that pass its
bound.

pragmatic solution for large scale systems. Our sensitiv-
ity analyses show that the proposed methods keep their
efficiency under different conditions.

While our paper presents a comprehensive framework
for request dispatching problem subject to the effective
utilization of green energy and system stability, there are
still many open problems to pursue in this new research
direction. For instance, in this paper, we assumed that
the controller has the updated information of the queues
in the system, but the problem can be investigated under
the condition of outdated information. Furthermore, we
investigated the stability of the system asymptotically con-
sidering the long-term behavior of the system. The study
of the transient behavior of the system is an interesting
research area. Also, the use of LOT framework can be
extended to more domains, to satisfy their special require-
ments. For example, applying learning schemes in many
end-user devices and applications results in a huge surge in
processing required for such applications at the edge. The
proposed method of virtual queues can be used to meet the
requirements of such requests by properly mapping them
into the Lyapunov framework. Another future work might
be consideration of storage or battery for the fog nodes.

Appendix A. Proof Proposition 1

Proof: Recall if H(t) satisfies (14) then for all t > 0 we
have:

H(t+ 1)−H(t) ≥ x(t). (A.1)

For any t1 and t2 such that 0 ≤ t1 < t2, summing (A.1)
over τ ∈ {t1, . . . , t2} and using the law of telescoping sums,
yields:

H(t2)−H(t1) ≥
t2−1∑
τ=t1

x(t). (A.2)

Substituting t1 = 0 and t2 = t, and dividing both sides
by t, yields:

H(t)

t
− H(0)

t
≥ 1

t

t−1∑
τ=0

x(τ). (A.3)
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Figure 12: Behavior of the proposed algorithms with respect to arrival rate (λ1) in terms of Average Queue Backlog, in the case of (a) JoA
and (b) GrA.
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Figure 13: Behavior of the proposed algorithms with respect to arrival rate (λ1), in terms of (a) Average Service Time, (b) Average Number
of Deadline Misses, and (c) Average Brown Energy Consumption.
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Figure 14: Behavior of the proposed algorithms with respect to computing demand (1− γ1) in terms of Average Queue Backlog, in the case
of (a) JoA and (b) GrA.
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Figure 15: Behavior of the proposed algorithms with respect to computing demand (1−γ1) in terms of (a) Average Service Time, (b) Average
Number of Deadline Misses, and (c) Average Brown Energy Consumption.

Taking expectation of both sides of above inequality
and taking lim sup as t→∞ yields:

lim sup
t→∞

E{H(t)}
t

≥ lim sup
t→∞

x̄(t). (A.4)

Thus, if H(t) is stable, it means the left-hand-side of
(A.4) is 0 and we have:

lim sup
t→∞

x̄(t) ≤ 0. (A.5)

This means the time average constraint x̄(t) is satisfied.

Appendix B. Proof Proposition 2

Proof: First, squaring both sides of the dynamic equa-
tion (1), using the fact that max[a− b, 0]2 ≤ (a− b)2 and
multiplying both sides by 1

2 , yields:

Qi(t+ 1)2 −Qi(t)2

2
≤ Bi(t)

2 +Ri(t)
2

2
− B̃i(t)Ri(t)

−Qi(t)[Bi(t)−Ri(t)],
(B.1)

where B̃i(t) = min[Qi(t), Bi(t)].
Do similarly for Zi and G yields:

(B.2)
Zi(t+ 1)2 − Zi(t)2

2
≤ yi(t)

2

2
+ Zi(t)yi(t),

and

(B.3)
G(t+ 1)2 −G(t)2

2
≤ f(t)2

2
+G(t)f(t).

Then, multiplying by ρ1, ρ2 and ρ3 both sides of above
three equations, taking conditional expectation with re-
spect to θ(t) and summing over i ∈ {1, 2, . . . , N} and
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Figure 16: Behavior of the proposed algorithms with respect to communication demand (1− γ2) in terms of Average Queue Backlog, in the
case of (a) JoA and (b) GrA.
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Figure 17: Behavior of the proposed algorithms with respect to communication demand (1 − γ2) in terms of (a) Average Service Time, (b)
Average Number of Deadline Misses, and (c) Average Brown Energy Consumption.
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Figure 18: Overall comparison of the proposed methods.

k ∈ {1, 2, . . . ,Kt} gives an upper bound on ∆(L(t)) as
follows:

∆(L(t))

≤ Ψ + ρ1

N+1∑
i=1

Qi(t)E{Ri(t)|θ(t)} − ρ1

N+1∑
i=1

Qi(t)Bi(t)

+ ρ2

N+1∑
i=1

Zi(t)E{yi(t)|θ(t)}+ ρ3G(t)E{f(t)|θ(t)},

(B.4)

where Ψ ≥ 1
2 (ρ1

∑N+1
i=1 E{Ri(t)2 +Bi(t)

2|θ(t)}+ ρ2

∑N+1
i=1

E{yi(t)|θ(t)}+ ρ3E{f(t)|θ(t)} − ρ1

∑N+1
i=1 E{B̃i(t)

Ri(t)|θ(t)}).
Finally, adding V E{S(t)|θ(t)} to both sides proves the

results.
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