
Resource provisioning for data-intensive applications

with deadline constraints on hybrid clouds using Aneka

Adel Nadjaran Toosi, Richard O. Sinnott, Rajkumar Buyya

The Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,

The University of Melbourne, Australia

Abstract

Cloud computing has emerged as a mainstream paradigm for hosting various
types of applications by supporting easy-to-use computing services. Among
the many different forms of cloud computing, hybrid clouds, which mix on-
premises private cloud and third-party public cloud services to deploy ap-
plications, have gained broad acceptance. They are particularly relevant for
applications requiring large volumes of computing power exceeding the com-
putational capacity within the premises of a single organization. However,
the use of hybrid clouds introduces the challenge of how much and when
public cloud resources should be added to the pool of resources – and es-
pecially when it is necessary to support quality of service requirements of
applications with deadline constraints. These resource provisioning decisions
are far from trivial if scheduling involves data-intensive applications using
voluminous amounts of data. Issues such as the impact of network latency,
bandwidth constraints, and location of data must be taken into account in
order to minimize the execution cost while meeting the deadline for such ap-
plications. In this paper, we propose a new resource provisioning algorithm
to support the deadline requirements of data-intensive applications in hybrid
cloud environments. To evaluate our proposed algorithm, we implement it in
Aneka, a platform for developing scalable applications on the Cloud. Exper-
imental results using a real case study executing a data-intensive application
to measure the walkability index on a hybrid cloud platform consisting of
dynamic resources from the Microsoft Azure cloud show that our proposed
provisioning algorithm is able to more efficiently allocate resources compared
to existing methods.

Preprint submitted to Future Generation Computer Systems June 6, 2017

Key words: Dynamic Provisioning, Hybrid Cloud, Aneka Cloud
Application Platform, Deadline-driven Scheduling, Data locality, Network
Bandwidth, Data-intensive Applications

1. Introduction

Data-intensive applications involving the analysis of large datasets have
become increasingly important as many areas of science and business are
facing thousand-fold increases in data volumes [1]. The explosive growth of
data is mainly driven by the rapid expansion of the Internet, smart cities,
social networks, e-commerce, and widespread usage of high-throughput in-
struments, sensor networks, Internet of Things (IoT) devices, accelerators,
and supercomputers. This expansion forms a voluminous amount of struc-
tured and unstructured data, known as big data, that needs to be processed
to be useful [1]. The ability to analyze and process such large quantities of
data has become an important and challenging mission for many fields.

Cloud computing [2] platforms are becoming one of the most preferred
ways of hosting data-intensive applications. Challenges posed by big data can
be overcome with the aid of cloud computing services offering the illusion of
an infinite pool of highly reliable, scalable, and flexible computing, storage,
and network resources. However, in many cases, data is available in local IT
infrastructure with limited processing capacity, for example, a small cluster
or resources from local area networks (desktop grids). In many cases, it
is not time or cost effective to transfer the whole dataset to clouds to be
processed. To tackle this issue, the cloud bursting model can be used in which
an application runs in a private infrastructure and bursts onto a public cloud
when more resources are required. This model has found broad acceptance
due to its benefits such as cost reduction and dealing with issues related to
the location of sensitive data [3].

To achieve the vision of cloud bursting, hybrid cloud middleware is re-
quired to acquire and release resources from both local infrastructures and
external cloud providers in a seamless fashion [4]. It is essential for such
hybrid cloud middleware to make efficient decisions regarding the workloads
that must be outsourced to the public cloud based on the timing and num-
ber of externally provisioned resources to meet deadline constraints of ap-
plications. In such a setting, however, building a middleware that jointly
minimizes cost and meets the deadline for applications is far from trivial [5].

2

There is a large body of literature aimed at cost and execution time
minimization of running computational tasks in hybrid cloud environments.
These studies mostly overlook aspects such as data locality, the impact of
network bandwidth constraints, and data transfer time which significantly
affect the time and cost performance of the scheduling. This is exacerbated
for data-intensive applications where the data transfer time to the external
cloud is often comparable to the computational time. In this paper, one of
our main goals is to take these aspects into consideration for scheduling and
resource provisioning of deadline-driven data-intensive applications in hybrid
cloud environments.

In this context, Platform-as-a-Service (PaaS) solutions offer various tools
to implement scheduling and resource provisioning policies in hybrid clouds.
We exploit the Aneka platform [6] to implement the proposed solution in this
paper. Aneka is a PaaS solution providing a middleware for the development
and deployment of applications in hybrid and multi-clouds. Aneka provides
application developers with Application Programming Interfaces (APIs) for
transparently harnessing and exploiting the physical and virtual computing
resources in heterogeneous networks of workstations, clusters, servers, and
data centers. Earlier version of Aneka had many features supporting multi-
cloud and hybrid computing. However, to provide wider support for schedul-
ing and resource provisioning of data-intensive applications, we incorporate
additional functionalities into Aneka.

In this paper, we make the following key contributions:

• We propose a new data-aware provisioning algorithm meeting the dead-
line requirements of applications executing in hybrid cloud environ-
ments. The proposed algorithm makes provisioning decisions by tak-
ing into account the data transfer time of scheduling tasks onto public
cloud resources. This significantly affects data-intensive applications
requiring large amount of data transfer. The main novelty of our ap-
proach is that while the solution takes into account bandwidth and data
locality, it continually and dynamically updates scaling decisions based
on the changes in the average runtime of the tasks and data transfer
rates.

• The proposed algorithm is plugged into the Aneka platform that al-
lows dynamically adding and removing resources from public clouds
into the Aneka resource pool to meet user-defined application deadline
requirements.

3

• Aneka is extended to support dynamic resource provisioning capabili-
ties based on the Microsoft Azure Resource Manager (ARM) deploy-
ment service model.

• In an actual hybrid cloud environment built using local resources (desk-
top machines) and Azure virtual machines, we compared our method
with existing approaches and demonstrated Aneka and its new pro-
visioning algorithm’s ability to meet deadlines for data-intensive ap-
plications. As a case study, a data-intensive application in the smart
cities context is employed to measure the walkability index for different
neighborhoods of the city of Melbourne utilizing spatial analysis of a
large dataset [7].

The rest of the paper is organized as follows: Section 2 presents the mo-
tivation for this work and defines the problem domain. Section 3 outlines a
general overview of the Aneka framework and describes the dynamic provi-
sioning mechanisms of Aneka. Our proposed algorithm for deadline-driven
data-aware resource provisioning is described in Section 4 and its realization
in Aneka is discussed in Section 5. Section 6 is dedicated to a performance
evaluation of the proposed algorithm. It discusses the hybrid cloud testbed
built on top of computing resources from desktop grids and the Microsoft
Azure cloud. Then, it describes the data-intensive case study application
focused on measuring the walkability index and the assorted experimental
results. Section 7 presents related work. Finally, Section 8 presents conclu-
sions and offers future directions.

2. Motivation and Problem Domain

One of the main challenges for efficient scaling of applications is the lo-
cation of the data relative to the available computational resources [8]. Co-
locating data and computation is evidently ideal in terms of performance
especially for data-intensive applications. However, this is not always feasi-
ble for various reasons. For example, data might be located in the storage
nodes of the user’s local organizational infrastructure (e.g., a cluster or desk-
top grid) with limited or overloaded computational resources and the user
facing deadline constraints may prefer to leverage on-demand computing re-
sources from a public cloud provider to reduce the execution time of the
application.

4

In the above particular scenario, it may not be ideal for the user to move
the entire data set to the cloud as the data transfer time, due to the data
size and network bandwidth, might dominate over the performance gain re-
sulting from utilizing external CPUs. Moving data to distant computational
resources, in particular for big data and data-intensive applications, to get
access to more CPUs is often inefficient and can become the bottleneck in
many cases. Therefore, any scheduling and resource provisioning algorithm
aimed at improving data-intensive application performance by dynamic ac-
quisition of cloud resources must take into account the time and amount of
data movement. In other words, attempts to address the scheduling prob-
lem of data-intensive application would not be successful if they take into
account computation separately from data movement. Accordingly, we fo-
cus on data-aware scheduling of data-intensive application considering data
locality as well as monetary and performance costs of transferring data that
has been neglected by many other scheduling methods in the literature.

Specifically, we focus on characteristics and requirements of hybrid cloud
schedulers for executing deadline-constrained Bag-of-Tasks applications hav-
ing large volumes of data. We assume that the application workload consists
of a number of parallel tasks that each can run on an independent computing
node. In addition, each task is associated with a data set residing within the
local infrastructure of the user that has to be fully transferred to the public
cloud for those tasks to be executed on externally provisioned computational
resources. Finally, the application has a deadline by which all its tasks must
finish their execution.

In a hybrid cloud setting, the execution of an application happens through
cloud bursting deployment models. Cloud bursting allows an application to
run in a private data center and burst into a public cloud when more re-
sources are required to meet a given deadline. In this paper, the application
is primarily scheduled on private resources allocated from organizational in-
frastructure based on a best-effort algorithm. The scheduling algorithm needs
to compute the time left for the deadline based on the average runtime of
tasks. Extra resources from public clouds are dynamically allocated if the
scheduling algorithm determines the number of resources (locally) acquired
by the application is insufficient to meet the deadline. This process must take
place repeatedly to continually update the average runtime of tasks. Note
that in the remaining part of the paper, we use the term runtime to refer to
the time period required to execute a task and the term execution time to
refer to the total execution time of the application.

5

Aneka Programming Models

Task

Thread

MapReduce

Parameter Sweep

Figure 1: Aneka Programming Models.

The main new added feature compared to our previous work is that
the scheduler explicitly takes into account the size and transfer time of in-
put/output data for the estimation of the required resources. We employ the
Aneka middleware as the basis for supporting the proposed scheduling and
provisioning algorithms to transparently execute the application in a hybrid
cloud setting.

3. Aneka and Dynamic Resource Provisioning

Aneka [6] is a software platform and framework facilitating the devel-
opment and deployment of distributed applications onto clouds. It offers a
collection of tools to build, control, and monitor cloud environment. The
Aneka cloud built up this way can be composed of a collection of heteroge-
neous resources from a public cloud virtual infrastructure available through
the Internet, a network of computing nodes in the premises of an enterprise,
or a combination of both. Aneka provides developers with Application Pro-
gramming Interfaces (APIs) for transparently exploiting physical and virtual
resources in the Aneka cloud. Developers express the logic of applications
using programming models and define runtime environments on top of which
applications are deployed and executed. As shown in Figure 1, Aneka cur-
rently supports four different programming models [6]: Bag of tasks model,
Distributed threads model, MapReduce model, and Parameter sweep model.

3.1. Aneka Architecture

The core components of the Aneka framework are designed and imple-
mented in a service-oriented fashion.We briefly describe the architecture and
the fundamental services that comprise the Aneka platform. Following this,

6

Software Development Kit

Application Development and Management

Middleware - Container

Infrastructure

Management Kit

Execution Services

Foundation Services

Fabric Services

Thread Model Task Model MapReduce Model

Membership StorageReservation

Hardware ProfilingResource Provisioning ...

AccountingLicensing ...

...

API Tutorials Samples

Platform Abstraction Layer (PAL)

Management Studio Admin Portal Web services

Desktop Cloud ClusterData Center Cloud

Secu
rity

Persisten
ce

Figure 2: Aneka Framework Overview [6].

we focus on the scheduler and provisioning services that are central to this
paper.

Figure 2 provides a layered view of the Aneka components. Aneka pro-
vides a runtime environment for executing applications by leveraging het-
erogeneous resources on the underlying infrastructure built on the top of
computing nodes employed from network of workstations, clusters, grids,
and data centers. In other words, the infrastructure layer is a collection of
nodes hosting components of Aneka middleware.

The middleware provides a collection of services for interactions with the
Aneka cloud. The container represents the unit of deployment of Aneka
clouds and the runtime environment for services. The core functionalities re-
siding in the Platform Abstraction Layer (PAL) constitute the basic services
that are used to control the infrastructure of Aneka clouds. It provides a
uniform interface for management and configuration of nodes and the con-

7

tainers instances deployed on them in the infrastructure layer. Middleware
is composed of two major components representing the building blocks of
Aneka clouds: the Aneka Daemon and Aneka Container. Each node hosts
the Aneka daemon and one or more Aneka container instances. The daemon
is a management component controlling the container instances installed on
the particular node. A node forms the infrastructure layer running the Aneka
master container which plays the role of resource manager and application
scheduler. Nodes running Aneka worker containers are responsible for pro-
cessing and executing work units of the applications. In addition, each con-
tainer provides a messaging channel for accessing features of different services
provided by the container. There are three classes of services characterizing
the container:

1. Execution services : are responsible for scheduling and executing ap-
plications. Specialized implementations of these services are defined for
execution of work units of each programming model supported by Aneka.

2. Foundation services : are in-charge of metering applications, allocating
resources, managing the collection of available nodes, and keeping the
services registry updated.

3. Fabric services : provide access to the physical and virtualized resources
managed by the Aneka cloud. The Resource Provisioning Service (RPS)
enables horizontal scaling out and allows for elastic and dynamic growth
and shrinkage of the Aneka cloud to meet Quality of Service (QoS)
requirements of applications.

The services of the middleware are accessible through a set of interfaces
and tools in the development and management layer. The Software Develop-
ment Kit (SDK) embodies a collection of abstractions and APIs for definition
of applications and leveraging existing programming models. The Manage-
ment Kit contains a collection of tools for management, monitoring, and
administration of Aneka clouds. All the management functions of the Aneka
cloud are made accessible through the Management Studio, a comprehensive
graphical environment providing a global view of the cloud for administra-
tors.

3.2. Aneka Scheduling and Dynamic Resource Provisioning

Dynamic provisioning is the ability to dynamically acquire resources and
integrate them into existing infrastructures and software systems. In the

8

most common case, resources are Virtual Machines (VMs) acquired from an
Infrastructure-as-a-Service (IaaS) cloud provider. Dynamic provisioning in
Aneka happens as part of the Fabric Services by offering provisioning services
for allocating virtual nodes from public cloud providers to complement local
resources. This is mainly achieved as a result of the interaction between
two services: the Scheduling Service and the Resource Provisioning Service.
The former triggers on-demand provisioning requests based on the system
status and the requirements of applications, while the latter is responsible
for interacting with IaaS providers to instantiate VMs and deploy Aneka
containers to meet the requests.

Execution of applications in Aneka happens through allocating tasks to
the available set of resources in a dynamic fashion using the existing schedul-
ing algorithms. Scheduling algorithms might be designed to leverage dy-
namic provisioning to cope with the application or system requirements. The
scheduling algorithm makes decisions regarding when and how many resource
allocations must take place to meet the application QoS requirements.

Aneka supports interactions with different resource providers, e.g., Ama-
zon Elastic Computer Cloud (EC2), Microsoft Azure, XenServer, and GoGrid,
using its dedicated provider-specific resource pool component. The main op-
erations performed by this component are the translation of provisioning
requests into provider specific requests, controlling the life cycle of VMs, and
shutting them down when they are no longer needed. The life cycle of re-
source pools and redirecting provisioning requests, their release, or directing
queries to the appropriate pool is the responsibility of the pool manager com-
ponent. The pool manager also notifies the provisioning service when a dy-
namic resource is activated and terminated. Figure 3 illustrates a schematic
overview of Aneka’s dynamic provisioning mechanism.

Aneka features several provisioning algorithms that are designed to sup-
port dynamic provisioning of virtual resources. Among these, the algorithms
proposed in [4] and [6] are designed to leverage dynamic resources to meet the
deadline requirements of Bag-of-Tasks applications. The algorithm proposed
by Veccholia et al. [6], which we call Default here, makes an estimation of
the expected completion time of the application with currently available re-
sources and if the expected completion time is later than the deadline defined
in the Quality of Service parameters of the application, it requests extra re-
sources from the public cloud to complete the application within given dead-
lines. This algorithm provides a best effort strategy for meeting the required
deadlines based on the average task runtime estimation. Since the Default

9

Scheduling Service

Provisioning Service

Resource Pool
Manager

GoGrid Resource Pool

Azure Resource Pool

 EC2 Resource Pool

 Xen Resource Pool

Scheduling Algorithm
(Resource Provisioning Aware)

XenServer

GoGrid

Amazon

Azure

Scheduling
Context

Figure 3: A schematic overview of Aneka’s dynamic provisioning.

algorithm ignores the deployment time of resources (e.g., VM startup time)
during the calculation of number of extra required resources, Calheiros et
al. [4] proposed an improved provisioning algorithm, which we call Enhanced
here, that dynamically leases resources to meet deadlines while it takes de-
ployment time of resources into account. The Enhanced algorithm is designed
to utilize Amazon EC2 Spot Instance resources with on average higher de-
ployment time but lower budget than the Default algorithm. One of the key
differences between our proposed provisioning algorithm in the next Section
and these existing algorithms is that we consider the network bandwidth
and data transfer time during calculation of extra resources. In Section 6,
we compare our proposed algorithm with the Default and Enhanced algo-
rithms based on different parameters such as application execution time, the
number of resources launched on the public cloud, and the cost of resources.

10

4. Deadline-driven Data-aware Resource Provisioning Algorithm

Suppose that a private cloud with a limited number of resources in the
local infrastructure is available for execution of a data-intensive Bag-of-Tasks
application. Since the number of tasks that can be running concurrently
on the private cloud is limited, to meet the deadline requirement of the
application, extra resources from the public cloud need to be acquired to scale
out available resources. We assume that the public cloud provider is able to
fulfill all requests and thus has an infinite number of resources available from
the user’s perspective. Note that the network bandwidth available between
the private and public cloud is limited and can impose a significant amount
of data transfer time for each task running on the public cloud resource.

We assume that the application’s workload consists of a number of triv-
ially parallel tasks, each requiring specific input data files located in the local
infrastructure. Bag-of-Tasks applications with independent tasks are used in
a variety of scenarios, especially when the same piece of computation logic
must be executed over a large volume of data, e.g., Monte Carlo simulations,
data mining algorithms, parameter sweep applications [9]. This makes them
suitable for hybrid cloud scenarios as tasks running on two separate clouds
do not need to communicate with each other.

Algorithm 1 presents the newly proposed dynamic resource provisioning
approach for Aneka, called Data-aware provisioning. The Data-aware algo-
rithm takes into account the available bandwidth and the data size associated
with each task and calculates the number of extra resources required to meet
the deadline constraints of the application. The algorithm is executed when
any of the following conditions are observed: (i) a task from the application
is queued, and (ii) execution of a task completes. The variable toGrow at
line 16 is True if the former condition happens and is False otherwise. If
completion of a task triggers the algorithm and the computed number of
extra resources by the algorithm is negative, a release request for the task
allocated resource is submitted to the Resource Provisioning Service; other-
wise, extra resources computed by the algorithm are requested to be added
to the pool. Moreover, in order to reduce unnecessary calls of the algorithm,
we only execute the algorithm in the growing mode if the average runtime of
tasks is increased in comparison to the previous round of algorithm execu-
tion. Similarly, we call it in the shrinking mode if the average runtime of the
task is decreased in comparison to the previous round of algorithm execution.
For the sake of brevity, these conditions are not shown in the algorithm.

11

Algorithm 1 Data-aware Provisioning Algorithm.
1: privateCores← private cores available for the application;
2: avgTaskRuntime← Average task runtime on a prviate core;
3: timeRemaining ← Time to application deadline;
4: totalTasks← Total number of tasks in the application;
5: tasksCompeleted← Total number of tasks compeleted so far;
6: startupT ime← Startup time of a resource (VM);
7: tasksInPrivate← b timeRemaining

avgTaskRuntime × privateCoresc;
8: tasksRemaining = (totalTasks− tasksCompeleted− tasksInPrivate)+;
9: totalTransferT ime← tasksRemaining × taskInputDataSize

upBandwidth ;

10: actualT imeRemaining ← (timeRemaining− startupT ime− totalTransferT ime)+;

11: avgTaskRuntimeOnPublic← Average task runtime on public core;
12: provisionedCores← Current daynamically prorvisioned cores;
13: totalExecutionT ime← tasksRemaining × avgTaskRuntimeOnPublic;
14: tasksPerCore← b actualT imeRemaining

avgTaskRuntimeOnPublicc;
15: if tasksPerCore < 1 then
16: if toGrow then
17: totalCoresRequired← provisionedCores;
18: else
19: totalCoresRequired← provisionedCores− 1
20: end if
21: else
22: totalCoresRequired← d totalExecutionTime

tasksPerCore×avgTaskRuntimeOnPublice;
23: end if
24: extraResources← d totalCoresRequired−provisionedCores

numberofCoresPerResource e;

The Data-aware algorithm checks if the currently available resources are
sufficient for the completion of the application tasks within the given deadline
based on estimation of the average runtime of tasks on the private resources
(avgTaskRuntime). Note that avgTaskRuntime includes the data transfer
time in the calculation as we assume that the data transfer time within the
private cloud is insignificant compared to the task execution time. Therefore,
we do not consider a separate variable to capture that in the algorithm. The
algorithm first updates timeRemaining based on the left time to the deadline.
Then it computes the number of tasks that can be completed on the private
resources within the left time to the deadline (Line 4). Then, it calculates
the number of remaining tasks (Line 8). Here (x)+ means max(0, x). These
remaining tasks must be scheduled on the dynamic resources. Since the exe-
cution of tasks on resources from the public cloud requires transferring data
from the local storage to the allocated VMs, the algorithm first calculates the

12

total transfer time for the tasks that should be executed on the public cloud
resources (Line 9). In Line 10, the actual remaining time which can be effec-
tively used for the execution of the tasks on dynamic resources is computed
by subtracting the total transfer time and the start-up time of resources from
the remaining time to the deadline. Note that avgTaskRuntimeOnPublic in
Line 11, contrary to avgTaskRuntime, is only calculated based on the actual
time tasks are being executed on the public cloud resources and does not
include any associated data transfer time, i.e., it is the time period from
when the task starts execution on the compute node (after all input data
is available) up to the moment its execution is over. In line 13, the total
time required to execute all remaining task on a single public CPU core is
calculated and stored in the totalExecutionTime variable.

By dividing the actual time remaining by the average runtime of tasks
on public cloud resources, the number of tasks each CPU core on the public
resources can execute is calculated. If the number of tasks can be executed
on each core in the public resources is at least one, then the total num-
ber of required cores can be estimated by dividing totalExecutionTime by
the result of tasks per core multiplied by the average runtime of the task
(Line 22). Otherwise, there is not enough time for allocating new resources
and the algorithm sets the number of required CPU cores to that of the al-
ready provisioned cores in the pool (Line 17). If this is a shrinking mode,
the task allocated cores will be nominated for release (Line 19). Line 24,
calculates extra resources that must be added to or removed from the pool
by the ratio of extra required cores to the number of cores per resource.

5. Realization of Data-aware Provisioning Algorithm in Aneka

To support execution of applications in hybrid clouds, it is important
for Aneka to have access to public cloud resources. The Aneka resource
provisioning service currently supports provisioning for providers such as
Amazon EC2, GoGrid, and Microsoft Azure. Microsoft Azure has undergone
a significant transformation in recent years and as a result, there are two
different sets of APIs for resource management and deployment in Azure:
Azure Resource Manager (ARM) and Classic. Aneka originally supported
the Classic deployment model in which each resource (e.g., storage disk, VM,
Public IP address, etc.) existed independently and there was no way to group
related resources together. In 2014, Azure introduced ARM, which added the
concept of a resource group as a container for resources that share a common

13

lifecycle. As part of implementing Data-aware provisioning algorithm, we
added an Azure-specific resource pool based on ARM APIs into Aneka which
handles provisioning requests for Azure.

Since in the hybrid cloud environment, computational nodes are scat-
tered throughout multiple networks (i.e., private and public cloud networks),
public IP addresses are required to make the communication between nodes
possible. Providing public IP addresses for all nodes, in particular for private
resources in the organizational infrastructure, is not always feasible. There-
fore, we used Azure Virtual Private Network (VPN) to solve this issue. We
configured a Point-to-Site (P2S) Virtual Network in Azure which allows a
secure connection from an individual client computer to the virtual network.
Point-to-Site is a VPN connection over SSTP (Secure Socket Tunneling Pro-
tocol) and does not require a VPN device or a public-facing IP address to
work. Figure 4 shows a sample Azure Point-to-Site virtual network configu-
ration.

VPN Client
172.16.201.3

VPN Client
172.16.201.2

VPN Client
172.16.201.1

ANEKA-VNET
Australia Southeast
Address Space: 192.168.1.0/24
192.168.1.1
192.168.1.2
192.168.1.3

P2S SSTP
Tunnel

P2S SSTP
Tunnel

P2S SSTP
Tunnel

V
PN

 Clien
t A

d
d

ress Po
o

l:
17

2.16
.20

1.0/24

VPN
Gateway

Figure 4: A sample Azure Point-to-Site virtual network.

Aneka provides interfaces for installation of Aneka containers on static
resources (i.e., private cloud resources) via its Aneka Management Studio.
However, in dynamic resource provisioning when machines are added on-
demand by instantiating VMs, the installation must be done automatically
without any human intervention. Therefore, we create virtual machine im-
ages on Azure for Aneka Workers with an initial configuration for containers.
To complete the installation process, instantiated VMs are further configured
using PowerShell scripts to set the Master container IP and Port, configure
IP addresses in configuration files and to start the container service.

14

Finally, to support execution of data-intensive applications in hybrid
cloud environments, we incorporate the Data-aware algorithm in Aneka.
Aneka offers abstract interfaces that can be used to implement new resource
provisioning algorithms. Our algorithm is implemented as a new scheduling
algorithm by implementing the ISchedulingAlgorithm interface. The algo-
rithm invokes the provisioning service to add extra resources to the pool of
available resources based on the QoS requirement of the application.

6. Performance Evaluation

6.1. Hybrid Cloud Setup

The experimental testbed used to evaluate the performance of the pro-
posed resource provisioning and scheduling algorithms is a hybrid cloud en-
vironment constituting of two desktop machines (one master and one slave)
residing at The University of Melbourne and dynamic resources provi-
sioned from Microsoft Azure. A schematic view of the hybrid cloud in
which the experiments are carried out is depicted in Figure 5 and the con-
figurations of machines used in the experiment are shown in Table 1.

A
zu

re
 R

eso
urce P

o
o

l Aneka Worker

Private CloudPublic Cloud

Data

Walkability Index

Aneka Master

Figure 5: Hybrid cloud testbed.

Public cloud resources are dynamically provisioned from Microsoft Azure
cloud when local resources are not able to meet application deadlines. Public
cloud resources are deployed on Azure Australia Southeast region using
Standard DS1 VM instances with the configuration shown in Table 1. The
initial estimated start-up time of Azure VMs used by the proposed algorithm

15

Table 1: Configuration of machines used in the experiments.

Machine Type CPU Cores Memory OS

Master Intel Core i7-4790 3.60 GHz 8 16GB Windows 7
Worker Intel Core i7-2600 3.40 GHz 8 8GB Windows 7
Azure Instances Standard DS1 2.4 GHz 1 3.5GB Windows Server 2012

is 250 seconds. However, this is updated by a new value each time a VM is
added to the resource pool.

The master and worker machines are connected through a high bandwidth
LAN connection that imposes a negligible data transfer time between the
local machines. On the other hand, the data transfer from the data repository
on the master node to dynamic resources on the cloud is performed over the
Internet. Since, the Internet connection on the master is relatively high for
the intended experiments; we used NetLimiter1 Version 4 to limit both the
up-link and down-link bandwidth of the master node to 2MB/sec.

6.2. Walkability Application and Dataset

The data-intensive application used for the experiments is a Bag-of-Tasks
for measuring a walkability index [7]. A walkability index is used to assess
how walkable a given neighborhood is based on factors such as road con-
nectivity, gross dwelling density and the land use mix in the area. The
information can be used for better understanding the growing urban chal-
lenges such as obesity and increasing dependence on cars. The walkability
index application is part of the AURIN project which supports nationwide
urban and built environment research across Australia [10].

In our experiments, we use the walkability application to provide walka-
bility indexes for 220 different neighborhoods in the city of Melbourne. The
walkability application suits the purpose of our experiments since it is data-
intensive and it can be broken into independent tasks, each computing a
walkability index for a neighborhood. The test application contains 55 tasks,
each calculating walkability indexes for four different neighborhoods The in-
put data for each task contains geospatial datasets for road networks provided
by the Public Sector Mapping Agent (PSMA) Australia2 and points repre-
senting the center of each neighborhood. The size of input data for each task

1NetLimiter, https://www.netlimiter.com/download.
2PSMA, https://www.psma.com.au/

16

is 130MB including the Java executable JAR file. The input dataset must
be transferred to the computing machine from the Aneka data repository
residing in the master node. The output is the computed walkability score
for each neighborhood and its size for each task is negligible. Figure 6 dis-
plays a sample snapshot of output data for several neighborhoods visualized
on the map according to the computed walkability indexes. Each area is
colored based on the walkability score with blue marked area noted as the
most walkable and red representing the least walkable.

Figure 6: A snapshot of visualized Walkability indexes computed for a set of neighborhoods
around Melbourne.

6.3. Experimental Results

In order to evaluate the performance of the proposed data-aware algo-
rithm, we first submit the walkability application to Aneka for execution
without setting a deadline for the application. Later, we repeat the execu-
tion with different deadlines, showing how the proposed algorithm behaves.
All experiments are repeated for the Default [6] and Enhanced [4] algorithms
for the sake of comparison. By running the preliminary experiment, we are
able to estimate the expected execution time of the application, which al-
lows us to impose a deadline triggering the resource provisioning in other

17

experiments. We identified that the execution time of the application with-
out setting a deadline which only uses private (local) resources takes 45.4
minutes. Therefore, we considered test scenarios with four different deadline
values of 35, 40, 45 and 50 mins. Note that the deadline value of 35 mins is
the tightest deadline we trial in our experiments since all algorithms failed
to meet the deadline within 30 mins.

Figure 7 and Table 2 show the results of the application execution un-
der different deadlines in two different forms. As shown by Figure 7(a), the
proposed data-aware algorithm meets the deadline in all scenarios. However,
the Default and Enhanced algorithms miss the deadline under tight deadline
constraints (Bars marked by “x”), i.e., both algorithms violate the deadline
constraint when the deadline is set to 35 minutes whilst the Default algo-
rithm misses the deadline when it is set to 40 minutes. The key reason is that
these algorithms rely on only a single variable for measuring average runtime
of tasks (the value includes the data transfer time) to allocate dynamic re-
sources that is significantly different in our scenario for private and public
cloud resources. This difference is due to the dissimilarity of the data transfer
time for the tasks executed on the private and public cloud resources which
in is dependent on the difference in the available bandwidth for each case.
We conclude that our new algorithm is able to meet strict application dead-
lines by taking into account the start-up time of the VMs and data transfer
time, while the Default and Enhanced algorithms fail to do the same as they
underestimate the overall runtime by neglecting significantly different intra
and inter data transfer time in the hybrid cloud setting.

The experimental results also show that Data-aware algorithm instanti-
ates a lower number of VMs in comparison to the two other algorithms when
deemed necessary (e.g., at deadline values of 40, 45, and 50 minutes). This
can be justified by the fact that the Data-aware algorithm takes into account
the data transfer time and is less affected by the fluctuation of the average
runtime of tasks. The fluctuation of the average task runtime leads to more
hasty decisions by the Default and Enhanced algorithms to terminate VMs
that may subsequently need to be instantiated again shortly after the termi-
nation. It is noted that the only case that the Data-aware algorithm instan-
tiates a higher number of VMs than other algorithms is when the deadline is
35 minutes (i.e., 19 VMs compared to 10 and 11 for Default and Enhanced,
respectively) however as noted both other competing algorithms fail to meet
the deadline in this case.

As shown by Figure 7(a) and (c) and Table 2, the proposed Data-aware

18

algorithm not only guarantees the deadline but also optimizes the (monetary)
cost spent on allocation of public cloud resources from Azure. Since Azure
VMs are billed on a per-minute basis, we report the total number of minutes
that dynamically added resources are kept running in the resource pool by
each algorithm as an indication of cost. Compared to Data-aware, the Default
and Enhanced algorithms run dynamically provisioned VM resources for a
higher number of minutes in all cases where they meet the deadline. This
happens because of both the higher expenditure on total start-up time of
VMs due to more frequent instantiation and termination of VMs and the
over-provisioning of resources due to late or wrong decisions regarding the
addition of dynamic resources.

As stated before, the estimated execution time of the application under no
deadline constraints is roughly 45 minutes. Therefore, we expect that none of
the algorithms provision any dynamic resources when the deadline is set to a
value higher than 45 minutes. However, all algorithms witness some degree of
over-provisioning when the deadline is set to 50 minutes or even 45 minutes.
The reason behind this is the primary estimate provided for the tasks runtime
which is higher than the actual average runtime in our case can lead to wrong
initial decisions made by algorithms and adding dynamic resources to the
pool of resources. In the Aneka platform, whenever a resource is allocated
to a task the mapping is irreversible unless a task or resource failure occurs.
As a result, all algorithms use dynamically added VMs for the execution
of at least one task. As can be seen in both Figure 7 and Table 2, the
Data-aware algorithm incurs a lower amount of over-provisioning compared
to other algorithms in case of over-estimation of task runtime in the initial
setup of the scheduling algorithms.

Our conclusion is that providing the Aneka scheduler with more accu-
rate initial estimates of the runtime of tasks helps to minimize these over-
provisioning issues. Moreover, considering the start-up of VMs that are par-
ticular to different infrastructures together with the size of the transferred
data and network bandwidth are necessary in providing an efficient schedul-
ing in the Aneka platform and this is particularly acute for data-intensive
applications. In line with this, our experimental results show that our pro-
posed algorithm is able to meet strict application deadlines with minimal
budget expenditure by taking into account such factors.

19

50454035

50

40

30

20

10

0

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
in

s)

Data-aware

Default

Enhanced

Deadline (mins)

X

X
X

(a)

50454035

20

15

10

5

0

N
u

m
b

e
r

o
f

la
u

n
c
h

e
d

 A
z
u

re
 V

M
s

Data-aware

Default

Enhanced

Deadline (mins)

(b)

50454035

500

400

300

200

100

0

T
o

ta
l
ru

n
n

in
g

 t
im

e
 o

f
V

M
s

(m
in

s)

Data-aware

Default

Enhanced

Deadline (mins)

(c)

Figure 7: (a) Execution time (b) Number of launched Azure VMs and (c) Total run-
ning time of VMs for Default, Enhanced, and Data-aware algorithms considering different
application deadlines. The X symbol shows a violated deadline.

20

Table 2: Experimental results for Default, Enhanced, and Data-aware algorithms consid-
ering different application deadlines.

Execution Time (mins) Launched Azure VMs (#) Total running time of VMs (mins)

Deadline(mins) Default Enhanced Data-aware Default Enhanced Data-aware Default Enhanced Data-aware

35 44 42 35 10 11 19 182 133 513
40 40 37 38 8 10 7 105 146 135
45 40 44 44 8 10 3 86 104 61
50 41 42 43 7 7 1 82 104 32
+∞ 45 45 45 0 0 0 0 0 0

7. Related Work

Resource provisioning is one of the most challenging problems in the cloud
environment [11]. Resources must be allocated dynamically according to the
Quality of Service (QoS) requirements and workload changes of the appli-
cation. Autonomic systems provide solution to this problem by offering the
environment in which dynamic resource provisioning for applications can be
performed without human intervention [12]. To achieve the goal of auto-
nomic systems, the Monitor-Analyze-Plan-Execute (MAPE) reference model
proposed by IBM is of the most popular architectures. Ghobaei-Arani et
al. [13] proposed a generic resource provisioning framework for cloud appli-
cations based on the MAPE architecture. In contrast to our approach, they
focus on a single cloud application and do not investigate the impact of net-
work latency, bandwidth constraints, and location of data on the dynamic
resource provisioning.

The idea of using public cloud resources to expand the capacity of lo-
cal infrastructure has been explored by many studies. Mateescu et al. [14]
propose an architecture that provides a platform for the execution of High-
Performance Computing (HPC) scientific applications. The cornerstone of
the proposed architecture is the Elastic Cluster which makes an expandable
hybrid cloud environment. Their approach differs from ours since we focus
specifically on data-intensive applications and take into account the impact
of data transfer times. Assunção et al. [15] analyze the trade-off between
performance and usage costs of different provisioning algorithms for use of
resources from the cloud to expand a cluster capacity. Similar to [14], they
neglect the impact of data transfer time. Javadi et al. [16] propose failure-
aware resource provisioning policies for hybrid cloud environments which
they evaluated using a model-based simulation as opposed to our real case
study performance evaluation. Xu and Zhao [3] propose a privacy-aware
hybrid cloud framework which supports a tagging mechanism for the loca-

21

tion of sensitive data. While they focus on compliance with the location
of sensitive data, we focus on the data locality and data transfer time to
compute the number of public cloud resources required by the application in
order to meet deadlines. Belgacem and Chopard [17] conduct an experimen-
tal study of running a large, tightly coupled, distributed application over a
hybrid cloud consisting of resources from Amazon EC2 clusters and an exist-
ing HPC infrastructure. They evaluated the overhead of using public cloud
resources for a tightly coupled, massively parallel MPIs application in which
tasks are communicating with each other without considering QoS related
factors such as deadlines. However, in this work, we look into the design
of dynamic resource provisioning algorithms meeting the deadline constraint
of the locally coupled Bag-of-Tasks applications. Mattess et al. [18] present
a provisioning algorithm for extending cluster capacity with Amazon EC2
Spot Instances. In contrast to our work, they focus on compute-intensive
applications without considering network related costs and delays. Yuan et
al. [19] propose a profit maximization model for private cloud providers by
utilizing the temporal variation of prices in hybrid cloud. While similar to
many others, they assume the time and cost related to data and network are
negligible. The majority of these works focus largely on theoretical aspects
and evaluate their method through simulation, while we focus on practical
aspects and execute our case study on a real hybrid cloud environment using
the Aneka platform with a real application.

Scheduling and resource provisioning techniques in a hybrid cloud for
data-intensive applications where the data transfer time is comparable to
computational time, adds new levels of complexities requiring addressing the
impact of network latency, bandwidth constraints, as well as economic as-
pects such as costs and prices. A thorough survey on resource scheduling
and provisioning in cloud environments has been conducted by Singh and
Chana [20]. Bossche et al. [5] proposed scheduling algorithms to deal with
cost optimization problem for deadline-constrained applications while taking
into account data constraints, data locality and inaccuracies in task runtime
estimates. Similar to our approach, their algorithm considers computational
and data transfer costs as well as network bandwidth constraints. However,
their work is a simulation-based study and does not consider the dynamic
nature of networks and fluctuations in the runtime of tasks. Kailasem et
al. [21] propose a Hadoop-based cloud bursting framework for data-intensive
workloads. They focus on checkpointing schemes to overlap data download
with processing and upload. They consider the performance optimization

22

of interactive jobs while we target Bag-of-Tasks jobs. They also ignore the
uncertainty of job execution runtimes. Similar to our work, Bicer et al. [22]
propose a resource allocation framework suitable for a hybrid cloud settings
to support time and cost sensitive execution of data-intensive applications.
Different from our work, their method is designed for Map-Reduce applica-
tions and is based on a feedback mechanism in which the compute nodes
regularly report their performance. Malawski [23] proposed a mixed integer
nonlinear programming model to tackle the problem of resource allocation on
multiple heterogeneous clouds taking into account the cost of instances and
data transfers. While we focus both on how many and when extra resources
must be added in a dynamic fashion, they try to provide a single decision
using a mixed integer non-linear programming model to tackle the resource
provisioning problem in hybrid cloud environments. In contrast to our work,
they have used simulation to evaluate their method.

Scheduling and resource provisioning in hybrid clouds has been researched
for other types of application as well. Examples include big data analyt-
ics [24], workflows applications [25], online commerce [26], mobile phone ap-
plications [27] and compute intensive applications [28].

8. Conclusions and Future Directions

Supplementing on-premises private infrastructure of organizations with
dynamically provisioned resources from public cloud providers introduces
the problem of cost-efficiently executing applications. This paper presents
a provisioning algorithm for scheduling deadline-constrained data-intensive
applications while taking into account aspects such as data transfer time,
the location of data, and the network bandwidth. This work builds upon
previously proposed provisioning algorithms for the Aneka platform for de-
veloping and deploying scalable applications on the cloud. In this work, we
propose a provisioning algorithm that computes the extra resources needed
to complete application tasks within deadlines by considering aspects such
as data locality, start-up time of public cloud resources, network bandwidth,
and data transfer time. We demonstrate that our proposed algorithm is
able to meet strict deadlines for a sample data-intensive application while
minimizing cost and the total number launched instances compared to other
existing algorithms. Contrary to other algorithms, the proposed algorithm
measures the average runtime of tasks on public cloud resources as a separate

23

variable and takes the data transfer time calculated based on the available
bandwidth into account.

In this paper, we focused on scheduling and resource provisioning of Bag-
of-Tasks applications with a set of trivially parallel tasks which can be ex-
ecuted independently of one another. However, there are other common
types of data-intensive applications with a non-trivial workflow structure
that includes precedence constraints and data dependencies between tasks.
A meaningful future work is to extend our proposed algorithm for workflows
with data dependencies. This is a complex problem and the major challenge
in the design of such algorithms in addition to consideration of data transfer
time and data locality is how to devise the task grouping and task assignment
techniques that minimize inter-cloud communications.

Another future work in line with this contribution consists of developing
provisioning policies that can support the integration of multiple clouds with
different pricing and network latency in Aneka. We also plan to look into
the scheduling of Bag-of-Tasks applications with tasks partly sharing input
data and other QoS parameters such as budget constraints.

Future directions of data-intensive application scheduling include new
algorithms for multi-cloud resource allocation, innovative provisioning al-
gorithms honoring user requirements such as privacy and the location of
sensitive data, energy efficient techniques for minimizing cost and carbon
footprint. This can be further extended to support resource allocation tech-
niques leveraging software-defined networks. This can also be explored in
the context of various other programming paradigms such as Map Reduce
model.

Acknowledgments

This work was partially supported by Australian Research Council (ARC)
Future Fellowship and the Australia-India Strategic Research Fund (AISRF).
We thank Microsoft for providing access to the Azure IaaS infrastructure. We
also thank William Voorsluys for his technical support for the execution of
the case study application.

References

[1] C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data, Information Sciences 275
(2014) 314 – 347. doi:10.1016/j.ins.2014.01.015.

24

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for deliver-
ing computing as the 5th utility, Future Generation Computer Systems
25 (6) (2009) 599 – 616. doi:10.1016/j.future.2008.12.001.

[3] X. Xu, X. Zhao, A framework for privacy-aware computing on hybrid
clouds with mixed-sensitivity data, in: Proceedings of the IEEE Interna-
tional Symposium on Big Data Security on Cloud, 2015, pp. 1344–1349.
doi:10.1109/HPCC-CSS-ICESS.2015.110.

[4] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The aneka
platform and qos-driven resource provisioning for elastic applications on
hybrid clouds, Future Generation Computer Systems 28 (6) (2012) 861
– 870. doi:10.1016/j.future.2011.07.005.

[5] R. V. den Bossche, K. Vanmechelen, J. Broeckhove, Online cost-
efficient scheduling of deadline-constrained workloads on hybrid clouds,
Future Generation Computer Systems 29 (4) (2013) 973 – 985.
doi:10.1016/j.future.2012.12.012.

[6] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-
driven provisioning of resources for scientific applications in hybrid
clouds with aneka, Future Generation Computer Systems 28 (1) (2012)
58 – 65. doi:10.1016/j.future.2011.05.008.

[7] R. O. Sinnott, W. Voorsluys, A scalable cloud-based system for data-
intensive spatial analysis, International Journal on Software Tools for
Technology Transfer 18 (6) (2016) 587–605. doi:10.1007/s10009-015-
0398-6.

[8] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, in: Proceedings of 2008 Grid Computing Environ-
ments Workshop, 2008, pp. 1–10. doi:10.1109/GCE.2008.4738445.

[9] F. A. da Silva, H. Senger, Scalability limits of bag-of-tasks applications
running on hierarchical platforms, Journal of Parallel and Distributed
Computing 71 (6) (2011) 788–801, Special Issue on Cloud Computing.
doi:10.1016/j.jpdc.2011.01.002.

[10] R. O. Sinnott, C. Bayliss, A. Bromage, G. Galang, G. Grazioli,
P. Greenwood, A. Macaulay, L. Morandini, G. Nogoorani, M. Nino-Ruiz,

25

M. Tomko, C. Pettit, M. Sarwar, R. Stimson, W. Voorsluys, I. Wid-
jaja, The australia urban research gateway, Concurrency and Computa-
tion: Practice and Experience 27 (2) (2015) 358–375, cPE-13-0325.R1.
doi:10.1002/cpe.3282.

[11] M. Amiri, L. Mohammad-Khanli, Survey on prediction models of appli-
cations for resources provisioning in cloud, Journal of Network and Com-
puter Applications 82 (2017) 93–113. doi:10.1016/j.jnca.2017.01.016.

[12] S. Singh, I. Chana, R. Buyya, STAR: SLA-aware autonomic man-
agement of cloud resources, IEEE Transactions on Cloud Computing-
doi:10.1109/TCC.2017.2648788.

[13] M. Ghobaei-Arani, S. Jabbehdari, M. A. Pourmina, An auto-
nomic resource provisioning approach for service-based cloud appli-
cations: A hybrid approach, Future Generation Computer Systems-
doi:10.1016/j.future.2017.02.022.

[14] G. Mateescu, W. Gentzsch, C. J. Ribbens, Hybrid computing–where
HPC meets grid and cloud computing, Future Generation Computer
Systems 27 (5) (2011) 440 – 453. doi:10.1016/j.future.2010.11.003.

[15] M. D. de Assunção, A. di Costanzo, R. Buyya, A cost-benefit analysis
of using cloud computing to extend the capacity of clusters, Cluster
Computing 13 (3) (2010) 335–347. doi:10.1007/s10586-010-0131-x.

[16] B. Javadi, J. Abawajy, R. Buyya, Failure-aware resource provisioning for
hybrid cloud infrastructure, Journal of Parallel and Distributed Com-
puting 72 (10) (2012) 1318 – 1331. doi:10.1016/j.jpdc.2012.06.012.

[17] M. B. Belgacem, B. Chopard, A hybrid hpc/cloud distributed infras-
tructure: Coupling EC2 cloud resources with HPC clusters to run large
tightly coupled multiscale applications, Future Generation Computer
Systems 42 (2015) 11 – 21. doi:10.1016/j.future.2014.08.003.

[18] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leas-
ing cloud infrastructure services from a spot market, in: Proceed-
ings of the 12th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC), 2010, pp. 180–188.
doi:10.1109/HPCC.2010.77.

26

[19] H. Yuan, J. Bi, W. Tan, B. H. Li, Temporal task scheduling with con-
strained service delay for profit maximization in hybrid clouds, IEEE
Transactions on Automation Science and Engineering 14 (1) (2017) 337–
348. doi:10.1109/TASE.2016.2526781.

[20] S. Singh, I. Chana, A survey on resource scheduling in cloud computing:
Issues and challenges, Journal of Grid Computing 14 (2) (2016) 217–264.
doi:10.1007/s10723-015-9359-2.

[21] S. Kailasam, P. Dhawalia, S. J. Balaji, G. Iyer, J. Dharanipragada,
Extending mapreduce across clouds with bstream, IEEE Transactions on
Cloud Computing 2 (3) (2014) 362–376. doi:10.1109/TCC.2014.2316810.

[22] T. Bicer, D. Chiu, G. Agrawal, Time and cost sensitive data-intensive
computing on hybrid clouds, in: Proceedings of 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid
2012), 2012, pp. 636–643. doi:10.1109/CCGrid.2012.95.

[23] M. Malawski, K. Figiela, J. Nabrzyski, Cost minimization for
computational applications on hybrid cloud infrastructures, Fu-
ture Generation Computer Systems 29 (7) (2013) 1786–1794.
doi:10.1016/j.future.2013.01.004.

[24] F. J. Clemente-Castell, B. Nicolae, K. Katrinis, M. M. Rafique, R. Mayo,
J. C. Fernndez, D. Loreti, Enabling big data analytics in the hybrid
cloud using iterative mapreduce, in: Proceedings of the 8th IEEE/ACM
International Conference on Utility and Cloud Computing (UCC), 2015,
pp. 290–299. doi:10.1109/UCC.2015.47.

[25] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Koodziej,
Resource-aware hybrid scheduling algorithm in heterogeneous dis-
tributed computing, Future Generation Computer Systems 51 (2015)
61–71. doi:10.1016/j.future.2014.11.019.

[26] G. Lackermair, Hybrid cloud architectures for the online commerce, Pro-
cedia Computer Science, World Conference on Information Technology
3 (2011) 550 – 555. doi:10.1016/j.procs.2010.12.091.

[27] H. Flores, S. N. Srirama, C. Paniagua, A generic middleware framework
for handling process intensive hybrid cloud services from mobiles, in:

27

Proceedings of the 9th International Conference on Advances in Mobile
Computing and Multimedia, MoMM ’11, ACM, New York, NY, USA,
2011, pp. 87–94. doi:10.1145/2095697.2095715.

[28] M. Brock, A. Goscinski, Execution of compute intensive applications
on hybrid clouds (case study with mpiblast), in: Proceedings of the
Sixth International Conference on Complex, Intelligent, and Software
Intensive Systems, 2012, pp. 995–1000. doi:10.1109/CISIS.2012.109.

28

