
Author's personal copy

Future Generation Computer Systems 28 (2012) 1350–1362

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A coordinator for scaling elastic applications across multiple clouds

Rodrigo N. Calheiros ∗, Adel Nadjaran Toosi, Christian Vecchiola, Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 23 August 2011
Received in revised form
24 November 2011
Accepted 10 March 2012
Available online 21 March 2012

Keywords:

Cloud computing
Infrastructure as a service
Elastic applications
InterCloud

a b s t r a c t

Cloud computing allows customers to dynamically scale their applications, software platforms, and
hardware infrastructures according to negotiated Service Level Agreements (SLAs). However, resources
available in a single Cloud data center are limited, thus if a large demand for an elastic application is
observed in a given time, a Cloud provider will not be able to deliver uniform Quality of Service (QoS)
to handle such a demand and SLAs may be violated. One approach that can be taken to avoid such a
scenario is enabling further growing of the application by scaling it across multiple, independent Cloud
data centers, following market-based trading and negotiation of resources. This approach, as envisioned
in the InterCloud project, is realized by agents called Cloud Coordinators and allows for an increase
in performance, reliability, and scalability of elastic applications. In this paper, we propose both an
architecture for such Cloud Coordinator and an extensible design that allows its adoption in different
public and private Clouds. An evaluation of the Cloud Coordinator prototype running in a small-scale
scenario shows the effectiveness of the proposed approach and its impact on elastic applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing [1] revolutionized the way computational
resources are commercialized and delivered to customers. Built
on top of technologies such as virtualization and service-
oriented architectures, Cloud computing allows customers to
dynamically scale their applications, software platforms, and
hardware infrastructure, accordingly to agreed Service Level
Agreements (SLAs).

Cloud resources can be acquired in different abstraction levels.
Of special interest in this paper is the level known as Infrastructure
as a Service (IaaS), where customers lease hardware resources
(typically, but not restricted to, virtualized resources) in the
provider’s data center. These resources are directly accessed by the
customers, which install and configure the whole software stack
in order to meet their specific needs. From the customers point of
view, a ‘‘sufficiently’’ large number of resources are available, and
they are acquired and released according to the actual demand.
These capabilities make Cloud computing a viable alternative to
traditional provisioningmethodswhere capacity planning is based
on the peak demand, which is observed only in specific times and
thus leads to low efficiency in resources utilization.

Nevertheless, resources available in a single data center are
limited: even though data centers may contain thousands of

∗ Corresponding author. Tel.: +61 3 83441347.
E-mail address: rncalheiros@ieee.org (R.N. Calheiros).

physical machines able to host tens of thousands of virtual
machines each, a large demandmay put pressure in the data center
capacity, especially in the case of private Clouds; thus, data center
resources will be oversubscribed, resulting in differences in the
performance obtained from resources that should deliver similar
performance [2,3], or SLA violations. Moreover, in such a situation
elastic applications hosted in such a stressed data center may not
be able to scale up, and this may also result in SLA violations.

One approach that can be taken to counter the above situation is
enabling applications to scale across multiple, independent Cloud
data centers following market-based trading and negotiation of
resources between providers and brokers. This approach, proposed
in the InterCloud project [4], comprises Cloud data centers and
brokers that dynamically negotiate resources between themselves
in order to seamlessly meet elastic applications’ SLAs by scaling
applications across various data centers. InterCloud envisions
market-oriented policies for provisioning of virtual machines
across multiple data centers that can be adopted solely or together
with ad-hoc policies adopted by specific providers. Because data
centers geographically dispersed can be deployed for this purpose,
it helps increasing application reliability; dispersed providers also
allow application users to be served by resources that are closer to
them, reducing communication latency and increasing application
performance; finally, because more sources of resources are
available, applications are able to support more users, improving
application scalability.

Key components of InterCloud are the Cloud Coordinator, which
represents providers in the marketplace, and the Cloud Exchange,
which acts as a discovery system and offers a publication system.

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.03.010

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1351

In this paper, we focus on the architecture and design of the
Cloud Coordinator. Our previous works focused on aspects such as
market making [5], negotiation protocols [6], and decision on the
moment to buy and sell resources and the price for them [7]. This
work is built on top of these findings, and demonstrates how these
aspects can be leveraged in the InterCloud scenario.

The Cloud Coordinator allows providers1 to trade resources in
response to changes in elastic application’s demands or to user
requests. In this sense, it acts as a trading agent [8]. However, the
Cloud Coordinator also carries out other tasks: its backend contains
a virtual machine management integration layer that allows
utilization of available virtual machine management technologies,
and its frontend is composed of a web service that communicates
with other Cloud Coordinators and a Market Engine that evaluates
offers and resources. Because Cloud Coordinator has information
about the local infrastructure and the corresponding utilization
rate, as well as access to other Coordinators, this is the component
where policies for trading of resources must be implemented.

Contributions of this paper are threefold. First, it proposes
an architecture of the Cloud Coordinator. Second, it proposes an
extensible design that allows adoption of the Cloud Coordinator
in different public and private Clouds. Third, it presents a
prototype implementation of Cloud Coordinator running in a
small-scale scenario that demonstrates the feasibility of the
proposed architecture and its impact on elastic applications.

The rest of this paper is organized as follows. Section 2 discusses
related work in the context of Grid computing, federation, and
markets for computing resources. Section 3 presents a background
overview of the InterCloud project and its key components.
Section 4 presents the proposed architecture and design of the
Cloud Coordinator component of InterCloud. Section 5 contains an
evaluation of the Cloud Coordinator prototype running in a small-
scale InterCloud scenario. Finally, Section 6 concludes the paper
and presents future research directions.

2. Related work

Works that share the vision and goals of InterCloud are found in
the area of Grid computing, Grid and Cloud federation, andmarkets
for computational resources.

2.1. Grid computing

In Grid computing [9] systems, user-level applications are
managed by resource brokers, which are in charge of selecting and
allocating suitable resources for the application, and for scheduling
tasks that compose the application in the selected resources.
Allocation on such systems is typically handled in time slots,
and the broker defines the allocation time of resources based
on the application expected execution time. Because Grids are
used by virtual organizations with predefined agreements about
conditions for resource utilization, discovery of new resource
providers may be accomplished off-line: once a newmember joins
the virtual organization, brokers can be configured to query new
members’ resource managers.

Clouds, however, differ from Grid system in several aspects,
such as: (i) utilization of Cloud resources incur financial compen-
sation to the Cloud provider, and different providers impose differ-
ent policies for pricing their resources; (ii) resource allocations in
Clouds are not time-based, and explicit deallocation of resources
are necessary; and (iii) providers typically operate independently.
The latter aspect complicates discovery of new potential providers
of Cloud resources for the elastic application managed by the bro-

1 Throughout this paper, we use the term provider to refer to any type of data
centers that offer IaaS services.

ker. Therefore, in this paper we propose a different approach for
enabling elastic applications where resource discovery and acqui-
sition for elastic applications is performed by the data center host-
ing the application, rather than by the broker.

2.2. Grid and cloud federation

InterGrid [10] applied virtualization technology to allow
resource sharing among Grids. Resources where sought in remote
Gridswhenever an incoming allocation request could not be served
by local available resources. Grid and Cloud resources are typically
differently allocated. While a Grid federation is typically based
in cooperation and sharing of resources with time-constrained
allocations, Cloud allocations are typically not timely constrained
(customers explicitly request resources release) and are based
on financial compensation from customers to resource providers.
Therefore, solutions for federation aimed at Grid platforms cannot
be directly applied to Clouds, and thus cannot be directly applied
in the context of InterCloud.

Several platforms for Cloud federation were proposed recently,
with different motivations and incentives for parties joining the
federation. Reservoir [11] introduces a modular and extensible
Cloud architecture that supports business service management
and Cloud federation. Claudia [12] provides an abstract layer
enabling execution of services on top of a transparent federation of
Cloud providers. However, these approaches do not consider either
the mechanisms for formation of federation or specific discovery
system, thus the approach presented in this paper can be leveraged
by these systems to enhance their functionalities.

Open Cirrus [13] is a closed federation between universities and
research centers in order to aid research in design, provisioning,
andmanagement of services in scale of multi data centers. Because
Open Cirrus offers a closed federation, it is not possible for data
centers to join and leave the group, and market mechanisms are
not necessary.

Sky Computing [14] introduces a virtual site overlayed on
dynamically provisioned distributed resources of several data
centers and a closed federation model, where sharing of resources
are based on cooperation (like in Grids) and not on market
incentives as in InterCloud.

OPTIMIS [15] is a platform for Cloud service provisioning that
manages the whole lifecycle of the service – from construction
to execution – and also addresses issues such as risk and trust
management, energy efficiency, and legislation. However, OPTIMIS
does not addresses negotiation and a marketplace for discovery
and negotiation of resources, as does InterCloud. Therefore,
OPTIMIS and InterCloud complement each other, as each one
provides features not available in the other.

Other works focus on low-level aspects of federation, such
as security, networking, and image management [16,17]. These
works complement the efforts presented in this paper, which
encompasses higher-level aspects that are also necessary in
federations like discovery and publication of offers and requests
and policies for resource sharing.

Moreover, none of the previously discussed works share the
goals of the InterCloud project—namely improve performance,
reliability, and scalability of elastic applications by leveraging
resources from multiple Clouds.

2.3. Markets for computing resources

Works related to systems for market-making such as GridE-
con [18], SORMA [19], and Mandi [5], as well as the works by Song
et al. [20], Mihailescu and Teo [21], Gomes et al. [22], and Van-
mechelen et al. [23] concern mechanisms for creating markets,

Author's personal copy

1352 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

trading resources (e.g., auctions or fixed price), and also mecha-
nisms to motivate market maintenance, i.e., study and develop-
ment of techniques that motivate both resource providers and
resource consumers to join and stay in the market.

Other works focus on the customers interaction with Grid
and Cloud markets. In these works, policies are defined so that
execution of applications is optimized either in terms of execution
time or in terms of budget expenditure. Moreover, applications
may contain dependences related to the order of execution of
tasks. Typically, decision about execution ordering, allocation
of resources among one or multiple resource providers, and
scheduling of tasks on these resources are made by brokers. This
concept was further extended so that brokers do not represent
single users; instead, brokers represent a group of users of some
facility that needs to expand resource capacity by buying resources
from a Grid or Cloud. This is the case of works by Kim et al. [24],
Ostermann et al. [25], Assunção et al. [26], Tordsson et al. [27],
and Bossche et al. [28]. These works focus on policies for the
resource consumer, while this work focuses in the resource
providers.

Most of theworks discussed so far derived fromGrid computing
works. Therefore, motivation for users to join the market relates
to accelerating execution of high-performance or high-throughput
scientific applications. Recently,with the advent of Clouds, another
scenario for resource acquisition in markets is being researched.
Such a scenario comprises a SaaS provider that offers services to
users, and resources to offer such services are leased from IaaS
providers. This is the case of the works by Fitó et al. [29] and Lee
et al. [30]. These works differ from the works related to brokers by
having different parameters acting as constraints and goals (SLAs
and profit instead of budget and execution time). Nevertheless,
these works also focus on policies for selection of providers and
acquisition of resources, and not for resource provisioning in the
market.

Regarding market policies for resource providers, Goiri et al.
[31] presents a profit-driven policy for decisions related to
insourcing and outsourcing resources. However, such a policy
presents only general guidelines to decide when to perform the
actions. It neither considers how to select resource suppliers, nor
solves the problem of discovering such suppliers, as does ourwork.

3. InterCloud: an overview

Fig. 1 depicts the general organization of InterCloud, which
envisions a marketplace that enables brokers and providers
to improve performance, reliability, and scalability of elastic
applications by leveraging resources from multiple Clouds in
order to seamlessly meet applications’ SLAs by scaling them
across various data centers. InterCloud envisions market-oriented
policies for provisioning of virtual machines across multiple data
centers that can be adopted solely or together with ad hoc policies
enforced by providers.

Central to the model is the presence of the Cloud Exchange.
This component of InterCloud acts as amarket-maker by supplying
registry, negotiation, and founding services. Providers joining
InterCloud query the Cloud Exchange to discover other parties
to negotiate with. Negotiation for resources is handled directly
by the involved parties, and it is not mediated by the Cloud
Exchange. Alternatively, the Cloud Exchange can host auctions for
resources by leveraging the Mandi architecture [5]. The presence
of a market-maker component allows static pricing policies (as
currently adopted by most of the Cloud providers) to be replaced
by dynamic pricing policies, which can increase profit of providers
[31,23,22].

Resource offers and requests are described in terms of number
and characteristics of available virtual machines. Providers with

spare resources, or demand for resources, send the following
information to the Cloud Exchange (other parameters, such as I/O
performance, latency, reputation, and location may be adopted
over time,without significant changes in the general processes and
methods presented here):

• Number of available/required virtual machines;
• Amount of memory of these machines;
• Number of cores of each machine;
• Computational capacity of each core, in Amazon EC2Computing

Units [32] or other agreed metric for measuring CPU capacity;
• Price of each virtual machine (per hour).

Discovery of available offers and requests is made via specific
services offered by the Cloud Exchange.2 Parameters of the service
are characteristics of the required virtual machines, and the return
of the query is the addresses of Cloud Coordinators that have
requests/offers that match the corresponding offers/requests. A
summary of services offered by the Cloud Exchange, their input
parameters and corresponding actions is presented in Table 1.

Bid for resources and resource offers are published in the Cloud
Exchange with putResourceOffer and putResourceBid. Publishers
receive as result an id that is used for removing the offer/bid
when the asset is not available (via removeResourceOffer and
removeResourceBid services). If a publisher wants to remove all the
offers or resource bids it published, services removeAllOffers and
removeAllBids are used. Finally, the services getCurrentOffers and
getCurrentBids enable searches for offers and bids that satisfy the
given resources specification.

Providers access the Cloud Exchange and other parties via the
Cloud Coordinator. The Cloud Coordinator frontend implements
a service-oriented architecture to receive requests from other
parties and also contains a service client that can make requests
to other parties. The Cloud Coordinator backend implements
a virtual machine manager abstraction layer, therefore the
Cloud Coordinator is independent from the specific management
technology used in the data center.

Resources traded in the market are virtual machines. Parame-
ters such as number and capacity of cores and memory are used
to define prices of instances. No specific market mechanism is im-
posed by InterCloud. Therefore, each provider defines the price for
resource utilization and applies its own billing mechanisms.

Virtual machine images are assumed to have been created be-
forehand in the resource provider Cloud. Currently, it is required
because specificities on each Cloud data center infrastructure may
require some specific kernel modules and other low-level soft-
ware, which are bundled together with customer software in the
VM image. Even though there are efforts, such as the Open Vir-
tualization Format (OVF) [33], towards standardization of virtual
machines images, they are still not widely adopted. Therefore,
measures are necessary that enforce software compatibility in dif-
ferent providers, such as our assumption of a pre-created image.

This paper focus on the architecture and design of the Cloud
Coordinator as an agent for supporting elastic applications in the
Cloud, so that user’s brokers do not have to directly discover and
acquire resources from multiple data centers for the application.
However, the samemechanisms proposed for the Cloud Coordina-
tor can be implemented in the broker to allow it to directly interact
with multiple Cloud providers. Alternatively, similar mechanisms
can be implemented by independent providers willing to have a
more customized agent able to negotiate in the InterCloudmarket.

2 Even though current services offered by this component are directory
services, this component defines interfaces for auctioning services. Design and
implementation of the Cloud Exchange and its market features are out of scope of
this paper.

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1353

Fig. 1. InterCloud components and their roles in the architecture.

Table 1

Summary of services offered by the Cloud Exchange, their input parameters and resulting action.

Service name Parameters Action

putResourceOffer VMs, memory, cores, computing capacity, price Stores the offer and returns its corresponding id
putResourceBid VMs, memory, cores, computing capacity, price Stores the request and returns its corresponding id
getCurrentOffers VMs, memory, cores, computing capacity, price Returns addresses and offers of Cloud Coordinators that match the input request
getCurrentBids VMs, memory, cores, computing capacity, price Returns addresses and requests of Cloud Coordinators that match the input offer
removeResourceOffer Id of the offer Removes offer represented by id (if published by the caller Cloud Coordinator)
removeResourceBid Id of the request Removes request represented by id (if published by the caller Cloud Coordinator)
removeAllOffers – Removes all offers published by the caller Cloud Coordinator
removeAllBids – Removes all requests published by the caller Cloud Coordinator

4. Cloud Coordinator architecture and design

The Cloud Coordinator is the element that has to be present
on each data center that wants to interact with InterCloud parties.
The Cloud Coordinator is also used by users and brokers that want
to acquire resources via InterCloud and do not own resources to
negotiate in the market. In this case, the Cloud Coordinator can be
seen as a data center that has no available local resources, and thus
it always buys resources in the InterCloudmarketplace in response
to changes in the elastic application demand.

The Cloud Coordinator also offers services so that other parties
can negotiate resources/requests and also access services offered
by the Cloud Exchange and other Cloud Coordinators. It also
interfaceswith the rest of the data center components so resources
are bought and sold according to the data center demand. In this
sense, the Cloud Coordinator acts as a trading agent [8], even
though its capabilities are not restricted to those of a trading
agent. In fact, the Cloud Coordinator contains a trading agent, but
it also carries out tasks related to virtual machine management
and requests processing. The Cloud Coordinator architecture is
presented in Fig. 2 and its class diagram is depicted in Fig. 3. In
the rest of this section, we describe each of the Cloud Coordinator
components.

4.1. Cloud Coordinator Server Proxy

The Cloud Coordinator Server Proxy is the component that
implements communication with other coordinators. This is a
web service whose methods implement the Alternate Offers
protocol for resource negotiation [6] and also services for access to
resources sold or bought. Every time a service request fromanother
party is received, the Cloud Coordinator Server Proxy forwards it

Fig. 2. Cloud Coordinator components. Elements surrounded by dashed lines are
optional.

to the Negotiation Engine, which takes the proper action related
to the request. Table 2 presents a summary of services offered by
the Cloud Coordinator3 and that are processed by the Proxy, their
input parameters and corresponding actions.

4.2. Cloud Coordinator and Cloud Exchange Clients

The Cloud Coordinator Client and the Cloud Exchange Client
implement clients for accessing the corresponding remote servers

3 The exposed service name for parties interacting with the CloudCoordinator
Server Proxy is ‘‘CloudCoordinator’’. For the sake of simplicity, we refer to the
exposed service name rather than the name of the internal component, in the
discussion throughout this paper.

Author's personal copy

1354 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

Fig. 3. Cloud Coordinator class diagram containing its main supporting classes and their public methods. Method names in bold are methods offered in the form of web
services.

Table 2

Summary of services offered by the Cloud Coordinator, their input parameters and resulting action.

Service name Parameters Action

initiateOffer operation (buy or sell) VMs, memory, cores, computing capacity returns negotiation id
submitOffer negotiation id, offer

Web services implementation of actions related to the
Alternate Offers Protocol [6]

acceptOffer negotiation id, offer
counterOffer negotiation id, offer
rejectOffer negotiation id, offer
confirm offer negotiation id, offer

deliverAcquiredResources negotiation id Returns the list of addresses of VMs acquired in the
given negotiation

releaseAcquiredResources negotiation id Releases acquired resources

in InterCloud. To be able to publish offers and requests, and also to
be able tomake queries to the Cloud Exchange, the Cloud Exchange
Client has to be configured with the Cloud Exchange endpoint
address. This information is supplied via a configuration file read
at time of the Cloud Coordinator initialization.

Regarding Cloud Coordinator clients, they are created dynam-
ically every time a negotiation process starts. If the negotiation
process starts locally, the remote Cloud Coordinator address is ob-
tained from the response of the query sent to the Cloud Exchange. If
the negotiation process starts remotely, a Cloud Coordinator Client
is created in response to a initiateOffer request received by the re-
mote Cloud Coordinator. The new client endpoint is the endpoint
of the sender of the request.

In either case, Clients exist only for the duration of interaction
between coordinators: in case of failure in negotiation, client
endpoints are terminated when the negotiation finishes. If
negotiation succeeds, endpoints are kept for the time that one
party is using resources from the other, and they are terminated
when resources are released by the buyer. This avoids that
references to parties that left InterCloud are used inadvertently in
the system.

4.3. Negotiation Engine

The Negotiation Engine is the Cloud Coordinator component
that mediates interaction between Cloud Coordinators. It not only

processes requests received from remote Cloud Coordinators but
also processes and negotiates remote resources required by local
customers. Every time a customer request for resources arrives in
the local Cloud (via Gateway), this component updates availability
information. Policies for determining when providers should buy
or sell resources are discussed in our previous publication [7]. Here,
we focus on how to enable the process in practice with the help of
Cloud Coordinator.

The Negotiation Engine also processes requests from other
Coordinators (which are received via a Cloud Coordinator server
proxy), and proceeds with negotiation via Alternate Offers
protocol. In the beginning of the negotiation process, the
Coordinator providing resources reserves them until the end of the
negotiation, to avoid overallocation of resources among concurrent
negotiations.

Fig. 4 depicts the process of publishing and negotiation of
resources in InterCloud. Cloud Coordinators wanting to publish
a resource offer (Cloud Coordinator A in the figure) or a
resource request (Cloud Coordinator B in the figure) publish
the offer/request via their Cloud Exchange Clients. Optionally,
Cloud Coordinators query the Cloud Exchange about availability of
requests/offer that match their request. If such a match exists, the
list of matches and the Cloud Coordinator that published them is
returned.

Because resource availability of providers are highly dynamic, it
can change after publication of availability in the Cloud Exchange,

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1355

Fig. 4. Negotiation process in InterCloud. Cloud Coordinator A’s data center has available resources andwants to sell them. Cloud Coordinator B’s data center needs resources
and wants to buy them. In this figure, we assume a successful negotiation between parties.

and thus query information may be out of date. Therefore, price
information provided by the Cloud Exchange is used for deciding
the order in which providers are contacted. However, negotiation
runs between both Cloud Coordinators without necessarily relying
on the price given by the Cloud Exchange. Communication with
remote Cloud Coordinators is handled by Cloud Coordinator clients
that are dynamically created to interact with each InterCloud
member.

Negotiation between coordinators follows the Alternate Offers
protocol [6]. In this protocol, the initiator party contacts the other
party to give an offer to buy or sell resources. Receiver of the
message can accept the offer, reject it, or present a counter offer.
In the latter case, decision on which of the three actions is taken
is passed to the other party. The process continues until parties
agree with the offer or one of them rejects the offer and leaves
the negotiation. The logic that drives the negotiation process is
presented in Algorithm 1.

Based on the message received from the remote peer (i.e.,
accept, reject, or counter), the type of operation (buy or sell) and
the offer received previously, Negotiate Engine decides whether
offer is accepted, rejected, or countered. It is accepted when the
other party is willing to pay for a local resource a value that is equal
to or bigger than the current value set by the Market Engine. If the
other party is selling resources, offer is acceptedwhen the resource
price is equal to or smaller than the value given by the local Market
Engine.

If the condition for acceptance was not reached, but the other
party updated its offer towards the condition being accepted (e.g.,
the price for selling the resource has been reduced by the seller
since the last offer, but still does not match the maximum price
paid by the buyer), a counter message is sent with the required
value. Finally, if the party did not improve its offer, a ‘‘reject
offer’’ message is sent and the negotiation finishes. Once the
accept message is sent by some party, the rest of the protocol
(e.g., confirmation from the other party) is executed. The Alternate
Offers has been shown as being symmetric [6] in the sense that
both parties in the negotiation process are equally able to make
proposals, accept, and reject offers from other parties. This allows
Coordinators to abort negotiation when the other party is not

improving its offers, is delaying the negotiation process, is trying
to manipulate the process, or if the Coordinator loses interest in a
specific negotiation process (for example, if the negotiation price
becomes unattractive). Similarly, if for any reason the resources
being negotiated become unavailable, the negotiation process is
aborted by the seller.

Because communication between Cloud Coordinators is based
on web services that are synchronous, and because the negotia-
tion process requires asynchronous messages to be sent between
parties, the Negotiation Engine contains a pool of Asynchronous
Dispatcher threads that handle submission of asynchronous mes-
sages to remote Cloud Coordinators. Such asynchronous messages
are the messages defined in the Cloud Coordinator interface, ex-
cept the twomessages that have return values, namely initiateOffer
(which returns negotiate id) and deliverAcquiredResources (which
returns list of addresses of acquired resources). Sending of these
twomessages is performed synchronously through direct commu-
nication between the Negotiation Engine and the Cloud Coordina-
tor Client.

Currently, for a Cloud provider to be able to use resources from
another provider, it is required the availability, in the resource
seller side, of a virtual machine image compatible with the
resource seller’s environment, and configured with the resource
buyer’s software. Because current focus of the project is in the
market formation and negotiation, Virtual Machine creation and
transferring is not handled by InterCloud.

If the negotiation succeeds, resources are made available to the
buyer, who requests them via a specific service. When resources
are no longer required, a release service is invoked by the buyer.
This request is then forwarded to the VM manager, which takes
the relevant actions to release the resources and, if it is the case, to
republish their availability to the Cloud Exchange. Once resources
are requested by the buyer, their virtual machine instances are
deployed in the local data center and these VMs can be used by
the buyer’s consumers just like other resources are used.

The operation described so far details current negotiation
steps performed by the Cloud Coordinator, which is based in
the Alternate Offers protocol [6]. Other negotiation processes and
strategies, such as auctions [5], futures and spot markets [23],

Author's personal copy

1356 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

Algorithm 1: Decision-making process during resources
negotiation between Cloud Coordinators. Operation type is
defined by the party that sends themessage, whereas decision
ismade by the party that receives themessage. Therefore, BUY
means that the sender of message wants to buy resources and
SELL means that the sender wants to sell resources. Similarly,
offer type is also defined by the sender based in Alternate
Offers operations.

Data: offer: Alternate Offers message received from a remote
Cloud Coordinator.

Data: requiredResource: description of resource under
negotiation, defined in the initiateOffer message
received in the beginning of negotiation.

1 resourceValue←
MarketEngine.getValue(resourceSpecification);

2 if offer.type= SUBMIT then

3 if (offer.operation= BUY ∧ offer.value≥

resourceValue)∨(offer.operation= SELL ∧ offer.value≤

resourceValue) then

/* good offer: accept it. */
4 send ACCEPT;
5 end

6 else

/* not very good offer: try to
negotiate. */

7 send COUNTER(resourceValue);
8 end

9 end

10 else if offer.type= COUNTER then

11 if (offer.operation= BUY ∧ (offer.value < resourceValue ∧

offer.value > lastOffer)) ∨ (offer.operation= SELL ∧

(offer.value > resourceValue ∧ offer.value < lastOffer))

then

/* party upgraded its offer, but it is
still not good enough: try to
negotiate. */

12 send COUNTER(resourceValue);
13 end

14 else

/* party did not upgrade its offer:
reject. */

15 send REJECT;
16 clean(requiredResource);
17 end

18 end

19 else

/* party reject our counter: finish
process. */

20 clean(requiredResource);
21 end

and strategy-proof negotiation [21] can be supported by the Cloud
Coordinator if the negotiation Engine is extended with these extra
functionalities or if a new Negotiation Engine, supporting such
features, replaces the one described in this section.

4.4. Market Engine

Selling price of resources is determined by the Market Engine

component of the Cloud Coordinator. It is implemented as an
abstract class, so different pricing strategies can be easily added.
Currently, pricing is static and defined in a configuration file. We
also implemented a pricing mechanism similar to the one applied

Fig. 5. Gateway organization.

by Amazon EC2, where prices are based on the characteristics of
the VM, considering a finite number of available specifications.

However, the design of the component allows new strate-
gies, such as dynamic pricing based on resources availabil-
ity, to be added. This is desirable, because more complex
policies may contribute for increasing providers’ revenue. For
example, Toosi et al. [7] showed that pricing policies for fed-
erated Clouds based on local resources availability may in-
crease provider’s profit and resource utilization. By applying these
types of policies in InterCloud, it is expected that providers will
have financial motivation to make resources available in the
market.

4.5. Gateway

The Gateway is the component that intermediates the access
to the local physical infrastructure. If the Cloud Coordinator
works as a broker only, e.g., there is no local resources to be
managed, the Gateway is still responsible for receiving user
requests and triggering requests for resources in the market.
Gateway organization and class diagram are presented in Figs. 5
and 6 respectively.

Access to physical resources are abstracted by the VMManager

component. It exposes an interface related to VM management,
including mapping, creation, and destruction of VMs. It also
implements the operations that are not offered by the actual
VM manager, while it delegates to the latter the operation the
latter supports. This enables relevant management services to be
developed independently from the capabilities of available virtual
machine managers, and connectors translate the requests to the
specific manager interface. Current VM managers supported by
InterCloud are Eucalyptus [34], OpenNebula [35], Aneka [36], and
Amazon EC2.4

Besides access to physical resources, Gateway also receives
local customer requests and serves them. When a request arrives,
the Provisioner checks with the VMManager if the request can be
served locally. If so, the request is forwarded to the VMManager

andVMs are allocated accordingly to the request. If not, Provisioner
forwards the request to the Negotiation Engine and resources for
the request are sought in the InterCloud market, as previously
described.

Another component of the Gateway is the Persistence module,
which is responsible for keeping information about allowed types
of virtual machines that can be deployed in the infrastructure, as

4 In this case, resources are not actually available inside the data center, but they
are acquired from Amazon on demand.

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1357

Fig. 6. Gateway class diagram, containing its main supporting classes and their public methods.

well as keeping track of VM images from users. Finally, a Socket

Listener module allows sending and receiving of customer requests
and its response via sockets.

4.6. Resources trading process

In this section, we describe the process for resource trading
currently in place in the Cloud Coordinator. Such a process of
resource trading involves three main aspects: (i) when process for
resource selling starts; (ii)when process for resource buying starts;
and (iii) when resources are successfully acquired.

Regarding decision about selling resources to InterCloud
members, all the idle resources in the infrastructure are made
available to members. Providers update such information in the
Cloud Exchange every 30 min, unless availability has not changed
in the period.

Process for resource buying starts when the provider receives
a request that cannot be served by local resources. The policy
is implemented as part of the Negotiation Engine and makes
two assumptions: the first one is that customers do not accept
a partially served request. It means that the exact number of
resources has to be made available to a customer in response to
their request, or the request is rejected.

The second assumption is that a request has to be entirely
composed of resources from the same data center. This is because
IaaS providers typically charge customers by network traffic to and
from the data center, but they do not charge for internal traffic.
Therefore, customers may assume, when designing and deploying
their applications in the infrastructure, that traffic will be local and
therefore free of charge and with smaller latency.

Nevertheless, each request for resources for the same elastic
application is treated as an independent request, and thus it can
eventually be provisioned in a different location from the other
resources available for such an application. Thus, for example,
consider a request for 10 VMs for an elastic application A that was
provisioned by a provider P1 in its own data center. If later the
application has to be scaled up with more 5 VMs, a new request
for 5 VMs is sent to P1, and these 5 VMs may either be created in
P1’s data center or have to be created in another InterCloud data
center able to support all the five VMs.

When a request that cannot be entirely served in the provider’s
data center arrives, the allocation policy process takes place.
Initially, a request for compatible resources is sent to the
Cloud Exchange. Among all the available offers that match the
requirement, the chosen one is the cheapest one that meets user
VM requirements. However, if the unit cost per hour per VM
for using InterCloud machines is bigger than the unit cost paid
by the customer, the negotiation process is not held. As already
discussed, pricing information given by the Cloud Exchange is
used only for creating the availability list and order the preferred
resource suppliers, because availabilitymay have changed since its
last update. Negotiation runs between the two Cloud Coordinators
regardless of the price published by the Cloud Exchange. However,
if the price is above the maximum price the buyer would pay,
negotiation is canceled and the next provider is queried.

With the above policy, an IaaS provider surrenders its profit
from the specific customer request to avoid risking losing its
reputation or losing the customer to another provider. This policy
can be easily adapted to consider operational costs when deciding
whether InterCloud resources will be bought or not. In this case,
themaximum amount a provider pays for InterCloud resources are
the unit price per resource payed by the customer minus the cost
of handling the request for such a resource.

5. Performance evaluation

In this section,wepresent the evaluation of our CloudCoordina-
tor prototype. The section starts with the description of the small-
scale InterCloud infrastructure where the prototype was deployed
and executed. Then three experiments, showing respectively inter-
action between components, evaluation of mechanisms, and im-
pact on elastic applications, are presented.

5.1. Experimental setup

Fig. 7 depicts the physical infrastructure employed in the
experiments. This is composed of one Cloud Exchange and two
Cloud Coordinators. The Cloud Coordinators are in a local area
network in Melbourne, Australia. One of such Cloud Coordinators
(referred to as A in the rest of this section) manages a physical

Author's personal copy

1358 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

Fig. 7. Scenario used in the experiments.

infrastructure comprised of three Xeon Quad Core 2.00 GHZ
processors with 8 GB of RAM and two 160 GB SATA disks (mirrored
RAID 1) each.Management of virtualmachines on such resources is
carried out by Eucalyptus 1.6.2 that runs in one of the servers,while
the other two servers are nodes for hosting VMs. The second Cloud
Coordinator (referred to as B in the rest of this section) mediates
access to Amazon EC2 resources located in USA west coast. Virtual
resources in both data centers are offered and charged accordingly
to Amazon EC2 pricing policy.

For the sake of simplicity, we allow in these experiments only
three types of instances: Small (1 core, 1.7 GB of RAM and 1 EC2
Computing Unit, costing $0.095 per instance per hour), Large (2
cores with 2 EC2 Computing Units each, 7.5 GB of RAM, costing
$0.38 per instance per hour), and Extra Large (4 cores with 2 EC2
Computing Units each, 15 GB of RAM, costing $0.76 per instance
per hour). In Data Center B we permit only creation of up to 10
instances, regardless of their type. In Data Center A we allow as
many instances as supported by the cluster nodes (4 Small or 1
Large on each node). All the requests are generated in Provider A.

Web services (both Cloud Coordinators and Cloud Exchange)
are deployed in GlassFish v3 application servers. Both the Cloud
Exchange and the Cloud Coordinator B run in an Intel Core2 6600
(Dual Core, 2.4 GHz) with 2 GB of RAM and 70 GB of disk. The Cloud
Coordinator A runs in an Intel Core2 Duo E8400 (Dual Core, 3 GHz)
with 3 GB of RAM and 140 GB of disk.

5.2. Experiment 1: interaction with InterCloud components

The first experiment aims at demonstrating that our prototype
Cloud Coordinator interacts with the other InterCloud components
accordingly with the model described in the previous sections. To
show that, we show that Cloud Coordinators are able to submit
offers and requests to the Cloud Exchange.

When the Cloud Coordinator initializes, it sends to Exchange
information about available resources and their characteristics.
Therefore, to check if this information was actually published,
we send a getCurrentOffers request to the Cloud Exchange, via
Glassfish’s web server management interface. Such a request has
the form {vms = 1,memory = 1, power = 1.0, price = $100.0}.
With such a request for minimum amounts of each resource
and with a high maximum price, all the requests published in
the Exchange should be returned. The SOAP request sent to the
Cloud Exchange and the response of such a request are shown in
Fig. 8.

The Cloud Exchange response, which is presented in Table 3,
shows the offers published by eachCloudCoordinator: as expected,
both Cloud Coordinators published correct values of availability,

characteristics, and prices, as defined in the experiment set up.
It shows that Cloud Coordinators are able to correctly advertise
their available resources in the Cloud Exchange and provide their
endpoint addresses to potential resource buyers.

5.3. Experiment 2: discovery, negotiation, and provisioning

This experiment aims at demonstrating the discovery, nego-
tiation, and resource provisioning mechanisms of InterCloud in
action, with providers negotiating for resources to meet internal
demand or increase utilization of local resources. This experiment
uses the same set up from the previous experiment.

After the deployment of Cloud Coordinators and publication of
available resources in the Cloud Exchange (showed in the previous
experiment), user requests were submitted to Provider A. The first
user request sent to the provider demanded four Small instances. A
short time later, a second request, demanding five Small instances,
is sent to the same provider. The response users receive from such
requests is a list containing addresses of the required VMs.

To demonstrate how the allocation process is realized, Fig. 9(a)
contains the screenshot of the management interface of the
Eucalyptus cluster. The figure shows that the first request could
be served in the provider that received the request. Therefore,
by inspecting the Eucalyptus cluster management interface we
can see that four machines configured as Amazon’s Small
instances were allocated from the cluster. The second request,
however, could not be completely served in the local cluster
and thus resources for such request were acquired from other
CloudCoordinators. Maximum cost to be payed by such extra
resources was the same as the price paid by local resources, which
was $0.095.

Because, according to the Cloud Exchange response, there was
a provider able to serve such a demand (Provider B), negotiation
started between the two providers. Because no request was
submitted to Provider B, its full capacity was still available to
InterCloud members. Moreover, price payed by customers on
both providers are the same, so negotiation was successful. As
a result, five Small instances were created in Amazon EC2 in
response to the request of Provider A. Such instances can be seen in
Fig. 9(b).

Table 4 shows relevant operations executed during the
experiment and time taken for each of them to complete. This
information was obtained from execution logs generated by
each Cloud Coordinator. It shows that the Cloud Coordinator
initialization takes in average 6.8 s. This time is necessary to
start the web services engine and initialize the Gateway. Gateway

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1359

a

b

Fig. 8. SOAP (a) request and (b) response to a getCurrentOffers request to the Cloud Exchange, after deployment of both Cloud Coordinators and before execution of requests
from users. They were obtained from a screenshot of the administration console of Glassfish.

Table 3

Response from the Cloud Exchange about available resources. Endpoint addresses presented in the table
have been shortened in comparison to the actual return from the Cloud Exchange (shown in Fig. 8).
Power is given in EC2 Compute Units.

Endpoint Memory (MB) VMs Cores Power Price (U$)

http://128.250.34.212:8080... 1 740 1 10 1.0 0.095
http://128.250.29.189:8080... 1 740 1 8 1.0 0.095
http://128.250.34.212:8080... 7 680 2 10 2.0 0.38
http://128.250.29.189:8080... 7 680 2 2 2.0 0.38
http://128.250.34.212:8080... 15 360 4 10 2.0 0.76

a

b

Fig. 9. Management output of (a) Eucalyptus cluster and (b) Amazon EC2, showing the allocation of resources during the experiments.

Author's personal copy

1360 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

Table 4

Performance of relevant operations executed during experiments.

Operation Time (ms)

Initialization of Cloud Coordinators (average) 6 803
Deployment of VMs in the Eucalyptus cluster 4 999
Time between reception of first user request and return of response 8850
Deployment of VMs in Amazon EC2 16695
Time between reception of second user request and return of response 16816

initialization, on the other hand, requires initialization of theDerby
DB, VM Manager, and other components.

Deployment time is computed from the moment the deploy-
ment process of VMs starts until the addresses of the required VMs
are available to customers. It does not mean that VMs are ready to
be used after this time, because VMs can still be initializing. Nev-
ertheless, as their addresses are already known by this time, they
are returned to customers and the request is considered as served.
Deployment time in Amazon was bigger because it required com-
munication with the Amazon data center located in North Amer-
ica. This also makes the total response time of the second request,
which was served by Amazon resources, longer than the response
time of the first request, which was served by local resources.

These results show that the discovery, negotiation, and
provisioning processes proposed in the InterCloud mode, and
implemented in our prototype, are feasible and allows IaaS
providers to serve more requests than their local infrastructure
alone allows.

5.4. Experiment 3: impact of InterCloud on elastic applications

This experiment aims at evaluating the impact of InterCloud on
elastic applications. The elastic application used in the experiment
is a Bag-of-Tasks (BoT) version of the EMO (Evolutionary Multi-
objective Optimizer)multi-objective evolutionary optimizer based
on genetic algorithms [36]. The optimizationproblemsolved in this
experiments was DTLZ6 [37]. The corresponding BoT job consists
of 60 tasks, where each tasks resolves the problem using 400
generations and 150 individuals.

To allow EMO to run on elastic infrastructures, Aneka [38] has
been used as the client of a Cloud provider. Aneka provisions
resources to the application by acquiring resources from the In-
terCloud gateway it is connected to. Notice that dynamic provi-
sioning capabilities of Aneka could be used to allow acquisition of
resources of multiple sites; however, such an approach would re-
quire previous configuration of Aneka to support and locate such
providers. By accessing multiple providers via InterCloud, Aneka is
able to deliver resources to application without (i) knowledge of
specific providers location, (ii) implementing APIs to access such
providers; and (iii) undertaking negotiation for resources. There-
fore, thewhole process for provisioning is simplified in the applica-
tion side: instead of adding support for each provider in InterCloud,
Aneka just communicates with a local InterCloud gateway to re-
quest resources.

Integration between Aneka and InterCloud was achieved by
configuring a InterCloud Resource Pool in Aneka. Such a resource
pool transforms one Aneka’s request for n resources in n requests
for one resource that are sent to InterCloud. Such request
transformation is possible because the test application is BoT, thus
it is not necessary that all the tasks run in the same provider. If a
single request for n resources were sent to InterCloud, only a single
provider able to deliver the n VMs would be used.

The scenario on which the experiment run is similar to the
scenario presented in Fig. 7, except that the Cloud Coordinator
A has been replaced by a coordinator that mediates access to
Amazon EC2 resources located on USA east coast. Likewise the

restriction imposed to the Cloud Coordinator B in US west coast,
the new Cloud Coordinator A can allocate a maximum of 10 VMs.
Virtual machines run Ubuntu 10.10 and contain Mono version
2, which is required by Aneka worker nodes that execute the
application. Aneka master runs in a machine with Windows
operating systems and its requests for resources are forwarded to
the Cloud Coordinator A.

To explore application elasticity, different execution time
targets were set in Aneka for the application. These targets are
used as guidelines for Aneka’s scheduler and resource provisioner
to calculate the required number of VMs. This calculation ignores
time for VM creation and data transferring, and thus the actual
execution time tends to be higher than the target if external
resources (resources that are not directly managed by Aneka)
are used. Considering that in our experiment there is no internal
resources to run the application, a different number of machines
are requested byAneka to the Cloud Coordinator on each execution
of the application in order to meet the target.

Following the policies described in previous sections, resources
are preferentially supplied by the provider receiving the request,
and when local resources are not enough, resources from Cloud
Coordinator B are requested via Cloud Exchange. For the cases
where InterCloud resources were required, we give also the
minimum execution time that can be achievedwithout these extra
resources, which is the execution time obtained when all the
resources from Provider A were used. This allowed us to evaluate
the impact of InterCloud in the application execution time. Table 5
presents the results of application execution considering different
application targets.

Besides the speed up in the application execution time and the
capacity of meeting shorter deadlines with the use of InterCloud
resources, the experiment also shows the qualitative benefit of
allowing the application to seamlessly access resources from
different providers, because from the point of view of the
application all the resources were supplied by the same provider.
Therefore, the burden of discovering providers able to serve the
request and negotiating for such resources are removed from the
application level, allowing user-level software to focus on the user
application.

6. Conclusions and future directions

The goal of InterCloud is enabling seamless meet of elastic
applications’ SLAs by scaling them across various data centers,
improving applications’ performance, reliability, and scalability.

In this paper, we presented the architecture, design, and
evaluation of the Cloud Coordinator element from the InterCloud
architecture. The Cloud Coordinator represents data centers and
brokers in the InterCloud marketplace, and it is responsible for
publishing offers and requests for resources, discovering potential
providers of resources, and negotiating resources when it is
necessary. In its backend, it interacts with the virtual machine
manager from the local infrastructure, so it can be advised
about the need for extra resources and supply them to the
provider. A prototype was developed and deployed in a small-
scale InterCloud scenario. Evaluation of the prototype showed

Author's personal copy

R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362 1361

Table 5

Results of the execution of the test elastic application in InterCloud. The ‘‘Target’’ column, an application parameter,
describes the target runtime of the application excluding delays caused by VM initialization and network transfers. This
value is supplied by the Aneka user togetherwith an estimation of application runtime. Testswithout InterCloud consider
utilization of resources available in Provider A only.

Target (min) Utilized VMs Execution time

Provider A Provider B Without InterCloud With InterCloud

45 7 0 50 min 15 s
35 9 0 43 min 32 s

25 10 1
36 min 10 s

34 min 10 s
15 10 7 24 min 03 s

the effectiveness of the proposed approach for the envisioned
scenario.

As part of future work, we plan to develop policies for
decision on buying and selling resources, as well as policies for
dynamic pricing for resources. Moreover, aspects such as advanced
reservation and co-allocation will be considered. We will also
work into prediction of demand, so that resources can be acquired
short before they are necessary, in order to improve application
performance by hiding overhead of virtual machine creation and
initialization.

Acknowledgments

Authors wish to thank Dileban Karunamoorthy and Suraj
Pandey for their support in the experiments and Sivaram
Yoganathan for his insightful comments and proofreading of the
paper.

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing
as the 5th utility, Future Generation Computer Systems 25 (6) (2009)
599–616.

[2] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
A performance analysis of EC2 cloud computing services for scientific
computing, in: Proceedings of the 1st International Conference on Cloud
Computing, CloudComp’09, Springer, Munich, Germany, 2009, pp. 115–131.

[3] J. Dejun, G. Pierre, C.-H. Chi, Resource provisioning of web applications in
heterogeneous clouds, in: Proceedings of the 2nd USENIX Conference onWeb
Application Development, WebApps’11, USENIX, Portland, USA, 2011.

[4] R. Buyya, R. Ranjan, R.N. Calheiros, InterCloud: utility-oriented federation
of cloud computing environments for scaling of application services,
in: Proceedings of the 10th International Conference on Algorithms and
Architectures for Parallel Processing, ICA3PP’10, Springer, Busan, South Korea,
2010, pp. 13–31.

[5] S.K. Garg, C. Vecchiola, R. Buyya, Mandi: a market exchange for trading
utility and cloud computing services, The Journal of Supercomputing (2011)
http://dx.doi.org/10.1007/s11227-011-0568-6.

[6] S. Venugopal, X. Chu, R. Buyya, A negotiationmechanism for advance resource
reservations using the alternate offers protocol, in: Proceedings of the 16th
International Workshop on Quality of Service, IWQoS’08, IEEE Computer
Society, Enschede, Netherlands, 2008, pp. 40–49.

[7] A.N. Toosi, R.N. Calheiros, R.K. Thulasiram, R. Buyya, Resource provisioning
policies to increase IaaS provider’s profit in a federated cloud environment,
in: Proceedings of the 13th IEEE International Conference on High Perfor-
mance Computing and Communications, HPCC’11, IEEE Computer Society,
Banff, Canada, 2011.

[8] K.M. Sim, Agent-based cloud commerce, in: Proceedings of the IEEE Interna-
tional Conference on Industrial Engineering and Engineering Management,
IEEM, IEEE, Hong Kong, 2009, pp. 717–721.

[9] I. Foster, C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing
Infrastructure, second ed., Morgan Kaufmann, 2003.

[10] A. di Costanzo, M.D. de Assunção, R. Buyya, Harnessing cloud technologies for
a virtualized distributed computing infrastructure, IEEE Internet Computing
13 (5) (2009) 24–33.

[11] B. Rochwerger, et al., Reservoir—when one cloud is not enough, Computer 44
(3) (2011) 44–51.

[12] L. Rodero-Merino, L.M. Vaquero, V. Gil, F. Galán, J. Fontán, R.S. Montero,
I.M. Llorente, From infrastructure delivery to service management in clouds,
Future Generation Computer Systems 26 (8) (2010) 1226–1240.

[13] A.I. Avetisyan, et al., Open Cirrus: a global cloud computing testbed, Computer
43 (4) (2010) 35–43.

[14] K. Keahey, M. Tsugawa, A. Matsunaga, J.A.B. Fortes, Sky computing, IEEE
Internet Computing 13 (5) (2009) 43–51.

[15] A.J. Ferrer, et al., Optimis: a holistic approach to cloud service provisioning,
Future Generation Computer Systems 28 (1) (2012) 66–77.

[16] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, M. Morrow, Blueprint for
the InterCloud—protocols and formats for cloud computing interoperability,
in: Proceedings of the 4th International Conference on Internet and Web
Applications and Services, ICIW’09, IARIA, Venice, Italy, 2009, pp. 328–336.

[17] A. Celesti, F. Tusa, M. Villari, A. Puliafito, How to enhance cloud architectures
to enable cross-federation, in: Proceedings of the 3rd International Conference
on Cloud Computing, CLOUD’10, IEEE Computer Society, Miami, USA, 2010,
pp. 337–345.

[18] J. Altmann, C. Courcoubetis, M. Risch, A marketplace and its market
mechanism for trading commoditized computing resources, Annals of
Telecommunications 65 (11) (2010) 653–667.

[19] M. Macías, O. Rana, G. Smith, J. Guitart, J. Torres, Maximizing rev-
enue in grid markets using an economically enhanced resource manager,
Concurrency and Computation: Practice and Experience 22 (14) (2010)
1990–2011.

[20] B. Song, M.M. Hassan, E.-N. Huh, A novel cloud market infrastructure for
trading service, in: Proceedings of the 9th International Conference on
ComputationalScience and its Applications, ICCSA’09, IEEE Computer Society,
Suwon, South Korea, 2009, pp. 44–50.

[21] M. Mihailescu, Y.M. Teo, Strategy-proof dynamic resource pricing of multi-
ple resource types on federated clouds, in: Proceedings of the 10th Inter-
national Conference on Algorithms and Architectures for Parallel Processing,
ICA3PP’10, Springer, Busan, South Korea, 2010, pp. 337–350.

[22] E.R. Gomes, Q.B. Vo, R. Kowalczyk, Pure exchangemarkets for resource sharing
in federated clouds, Concurrency and Computation: Practice and Experience
(2010) http://dx.doi.org/10.1002/cpe.1659.

[23] K. Vanmechelen, W. Depoorter, J. Broeckhove, Combining futures and spot
markets: a hybrid market approach to economic grid resource management,
Journal of Grid Computing 9 (1) (2011) 81–94.

[24] H. Kim, Y. el Khamra, S. Jha, M. Parashar, Exploring application and
infrastructure adaptation on hybrid grid-cloudinfrastructure, in: Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC’10, ACM, Chicago, USA, 2010, pp. 402–412.

[25] S. Ostermann, R. Prodan, T. Fahringer, Extending grids with cloud resource
management for scientific computing, in: Proceedings of the 10th IEEE/ACM
International Conference on Grid Computing, GRID’09, IEEE Computer Society,
Banff, Canada, 2009, pp. 42–49.

[26] M.D. de Assunção, A. di Costanzo, R. Buyya, Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters, in: Proceedings of the
18th International Symposium on High Performance Distributed Computing,
HPDC’09, ACM, Munich, Germany, 2009, pp. 141–150.

[27] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, I.M. Llorente, Cloud
brokering mechanisms for optimized placement of virtual machines across
multiple providers, Future Generation Computer Systems 28 (2) (2012)
358–367.

[28] R.V. den Bossche, K. Vanmechelen, J. Broeckhove, Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads, in: Proceedings of the
3rd International Conference on Cloud Computing, CLOUD’10, IEEE Computer
Society, Miami, USA, 2010, pp. 228–235.

[29] J.O. Fitó, Í. Goiri, J. Guitart, SLA-driven elastic cloud hosting provider,
in: Proceedings of the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP’10, IEEE Computer Society,
Pisa, Italy, 2010, pp. 111–118.

[30] Y.C. Lee, C. Wang, A.Y. Zomaya, B.B. Zhou, Profit-driven service request
scheduling in clouds, in: Proceedings of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGrid’10, IEEE Computer
Society, Melbourne, Australia, 2010, pp. 15–24.

[31] Í. Goiri, J. Guitart, J. Torres, Characterizing cloud federation for enhancing
providers’ profit, in: Proceedings of the 3rd International Conference on
Cloud Computing, CLOUD’10, IEEE Computer Society, Miami, USA, 2010,
pp. 123–130.

[32] J. Varia, Best practices in architecting cloud applications in the AWS cloud,
in: R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Principles and
Paradigms, Wiley Press, New Jersey, USA, 2011, pp. 459–490. (Chapter 18).

[33] DMTF, Open virtualization format specification version 1.1.0, DMTF Standard,
2010. URL: http://www.dmtf.org/standards/ovf.

Author's personal copy

1362 R.N. Calheiros et al. / Future Generation Computer Systems 28 (2012) 1350–1362

[34] D. Nurmi, et al., The Eucalyptus open-source cloud computing system,
in: Proceedings of the 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGrid’09, IEEE Computer Society, Shanghai, China,
2009, pp. 124–131.

[35] B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Computing 13 (5)
(2009) 14–22.

[36] C. Vecchiola, X. Chu, R. Buyya, Aneka: a software platform for.NET-based cloud
computing, in:W.Gentzsch, L. Grandinetti, G. Joubert (Eds.), High Performance
and Large Scale Scientific Computing, IOS Press, Amsterdam, Netherlands,
2009.

[37] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for
evolutionary multiobjective optimization, in: A. Abraham, L. Jain, R. Goldberg
(Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and
Applications, Springer, London, UK, 2005.

[38] C. Vecchiola, M. Kirley, R. Buyya, Multi-objective problem solving with off-
spring on enterprise clouds, in: Proceedings of the 10th International Con-
ference on High-Performance Computing in Asia-Pacific Region, HPCAsia’09,
NCHC, Kaohsiung, Taiwan, 2009, pp. 132–139.

Rodrigo N. Calheiros is a Research Fellow in the Cloud
Computing and Distributed Systems Laboratory (CLOUDS
Lab) in the Dept. of Computing and Information Systems,
University ofMelbourne, Australia. He completed his Ph.D.
degree in Computer Science in 2010 at PUCRS, Brazil,
and his M.Sc. degree in 2006 at the same University.
His research interests include Cloud Computing and
simulation and emulation of distributed systems, with
emphasis in Grids and Clouds.

Adel Nadjaran Toosi is a Ph.D. student at the Cloud
Computing andDistributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems, The
University of Melbourne, Australia. He received his B.Sc.
degree in 2003 and his M.Sc. degree in 2006 both
in Computer Software Engineering from the Ferdowsi
University of Mashhad, Iran. His research interests include
Distributed System, Cloud Computing, Cloud Federation
and InterCloud. Currently, he is working on economic
aspects of the InterCloud project, a framework for
federated Cloud Computing.

Christian Vecchiola is a Research Fellow at the Cloud
Computing and Distributed Systems Laboratory (CLOUDS
Lab) in theDepartment of Computing and Information Sys-
tems, at The University of Melbourne, Australia. His pri-
mary research interests include Grid/Cloud Computing,
Distributed Evolutionary Computation, and Software En-
gineering. Since he joined the CLOUDS Lab he focused his
research activities and development efforts on two major
topics:middleware support for Cloud/Grid Computing and
distributed support for evolutionary algorithms.

Christian completed his Ph.D. in 2007 at the University
of Genova, Italy with a thesis on providing support for evolvable Software Systems
by using Agent Oriented Software Engineering. During the Ph.D. he worked under
the supervision of Prof. Antonio Boccalatte in the Department of Communication
Computer and System Sciences and has have been actively involved in the design
and the development of the AgentService that is a software framework for develop-
ing distributed systems based on Agent Technology. Dr. Vecchiola also investigated
the advantages of providing support for agent based development at a program-
ming language level by extending the object oriented language with abstractions
for representing the key elements of the agent computing model.

Rajkumar Buyya is a Professor of Computer Science and
Software Engineering andDirector of the CloudComputing
and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company of
the University, commercializing its innovations in Cloud
Computing. He has authored 350 publications and four
text books. He also edited several books including ‘‘Cloud
Computing: Principles and Paradigms’’ recently published
by Wiley Press, USA. He is one of the highly cited authors
in computer science and software engineering worldwide

(h-index= 53, g-index= 114, 15000+ citations).
Software technologies for Grid and Cloud computing developed under

Dr. Buyya’s leadership have gained rapid acceptance and are in use at several
academic institutions and commercial enterprises in 40 countries around theworld.
Dr. Buyya has led the establishment and development of key community activities,
including serving as foundation Chair of the IEEE Technical Committee on Scalable
Computing and five IEEE/ACM conferences. These contributions and international
research leadership of Dr. Buyya are recognized through the award of ‘‘2009 IEEE
Medal for Excellence in Scalable Computing’’ from the IEEE Computer Society, USA.
Manjrasofts Aneka Cloud technology developed under his leadership has received
‘‘2010 Asia Pacific Frost & Sullivan New Product Innovation Award’’.

