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Abstract
The enforcement of the Movement Control Order to curtail the spread of COVID-19 has affected home energy consump-
tion, especially HVAC systems. Occupancy detection and estimation have been recognized as key contributors to improving 
building energy efficiency. Several solutions have been proposed for the past decade to improve the precision performance 
of occupancy detection and estimation in the building. Environmental sensing is one of the practical solutions to detect and 
estimate occupants in the building during uncertain behavior. However, the literature reveals that the performance of envi-
ronmental sensing is relatively poor due to the poor quality of the training dataset used in the model. This study proposed a 
smart sensing framework that combined camera-based and environmental sensing approaches using supervised learning to 
gather standard and robust datasets related to indoor occupancy that can be used for cross-validation of different machine 
learning algorithms in formal research. The proposed solution is tested in the living room with a prototype system integrated 
with various sensors using a random forest regressor, although other techniques could be easily integrated within the proposed 
framework. The primary implication of this study is to predict the room occupation through the use of sensors providing 
inputs into a model to lower energy consumption. The results indicate that the proposed solution can obtain data, process, and 
predict occupant presence and number with 99.3% accuracy. Additionally, to demonstrate the impact of occupant number in 
energy saving, one room with two zones is modeled each zone with air condition with different thermostat controller. The first 
zone uses IoFClime and the second zone uses modified IoFClime using a design-builder. The simulation is conducted using 
EnergyPlus software with the random simulation of 10 occupants and local climate data under three scenarios. The Fanger 
model’s thermal comfort analysis shows that up to 50% and 25% energy can be saved under the first and third scenarios.

Keywords  Occupancy detection and estimation · Environmental sensing · Indoor comfort · A training dataset

Introduction

The adoption of the Movement Control Order (MCO) dur-
ing the COVID-19 pandemic has impacted global residen-
tial energy consumption patterns. A statistical study con-
ducted on residential electric appliance utilization online 
indicates occupants’ poor integration in appliance control. 

Consequently, the hourly usage of residential appliances 
increased significantly during the MCO period and after the 
MCO from March to June 2020, especially an air conditioner 
that doubled during MCO and increased by 5 hours after 
the first MCO (F. Shahzad et al. 2020a, b; K. Shahzad et al. 
2020a, b; Shahzad et al. 2021; Shakoor et al. 2020) (see 
Fig. 1), while utilization of the majority of the appliances 
considered decreased significantly after the MCO period 
(Fareed et al. 2020; Iqbal et al. 2020). This indicates that the 
pandemic opens on to a surge in the continued use of the air 
conditioner despite a partial resumption of office activities.

Integration of occupancy information in HVAC system 
control must be optimized to fully exercise energy consump-
tion control on the HVAC system to eliminate energy waste 
(Aliero et al. 2021). Recently, researchers have applied direct 
sensing technologies such as cameras, wearables, and envi-
ronmental sensing alongside machine learning techniques to 
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enable occupancy-based control on existing and new HVAC 
system infrastructure to reduce energy consumption waste 
(Ahmad et al. 2021) . Many of the camera-based (Abade 
et al. 2018; Cao et al. 2018; Ahmad et al. 2021) and wear-
able (Castro et al. 2017) solutions so far proposed can obtain 
training datasets without user interaction with solid perfor-
mance. Although direct sensing methods have proven reli-
able performance for occupancy estimation problems, they 
still present serious issues, including privacy challenges, 
complex processing, expensive hardware, and installation 
feasibility (Cao et al. 2018). Environmental sensing is con-
sidered as a viable alternative to overcome the issues and 
limitations of direct sensing by measuring the effects of 
occupant presence in the building, such as changes in tem-
perature, humidity, CO2 concentration, among others.

Despite many existing occupancy estimation solu-
tions in environmental sensing methods, there is still a 
lack of attention paid to generating a publicly accessible 
robust dataset that can be easily used to compare differ-
ent machine learning algorithms. The existing solutions 
(Brennan et al. 2015; Schwee et al. 2019; Szczurek et al. 
2017) have made their datasets publicly accessible. Still, 
most of the datasets are poorly documented with occupant 
ground truth such as occupant number range, which is con-
sidered key attributes to estimate the building occupation. 
This study proposed a novel multi-wireless device data 
model that incorporates environmental sensing to obtain 
indoor condition data and camera sensing to obtain occu-
pant’s numbers for training purposes. The primary objec-
tives of this research are to collect quality datasets that can 

be used to compare different machine learning algorithms 
for occupancy estimation problems to reduce air condition 
unnecessary energy consumption. The key contributions 
in this study include:

	 i.	 collection and quality verification of indoor environ-
mental conditions and occupant datasets

	 ii.	 evaluating machine learning algorithm on the pro-
posed framework in living room

	 iii.	 modeling single room with two zones to monitor and 
improve air condition energy efficiency

To achieve this task, only a random forest regressor 
algorithm is used to verify dataset quality during data 
collection and occupancy detection and estimation tasks, 
although different machine learning algorithms could be 
integrated easily into the proposed approach. The perfor-
mance evaluation measures show a high F-score value 
and minimum mean square error compared to the existing 
single environmental sensing baseline design (Candanedo 
and Feldheim 2016). Furthermore, air condition energy 
usage was monitored for 24 hours using a programmable 
thermostat, which reveals the excess usage of air condition 
by an average of 5 hours. To improve the current state, a 
one-room with two zones is modeled using DesignBuilder. 
The first zone depicts the HVAC programmable thermo-
stat (Meana-Llorián et  al. 2017). While in the second 
zone, occupants number variables are added in addition 
to variables proposed in (Meana-Llorián et al. 2017) to 
illustrate the random nature of the building occupants in 
a typical living room. The results analysis shows that the 
occupancy-based adaptive control can optimize energy 
usage by an average of 50% if the occupant participates in 
a demand response program and 25% without significantly 
compromising the comfort level (keeping the room tem-
perature within the range of 19–21 °C).

It is essential to note that this study primarily focuses 
on estimating occupancy in enclosed rooms based on 
indoor environmental factors. The outdoor environmental 
factors are beyond the scope of this study. In addition, 
because temporal dependency in the data is not consid-
ered, the indoor environment is regarded as static. Fur-
thermore, while the proposed solution design considered 
integrating into other building management services (such 
as intrusion detection, emergency system, and energy man-
agement), the actual integration with such systems is also 
beyond the scope of this study.

The rest of the study is organized as follows. “Litera-
ture review” section presents the related work on indoor 
occupancy detection and estimation. “Proposed frame-
work” section presents the proposed framework. “Model 
training and testing” section provides results on occupancy 
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detection and estimation experiment. Subsequently, 
“Occupancy and air condition usage monitoring” section 
provides results on energy-saving potential simulations. 
“Conclusion” section presents research conclusions and 
future work.

Literature review

Integration of occupancy detection and estimation applica-
tion in a control system is essential to support demand con-
trol ventilation. The integration has been achieved through 
various forms, including occupancy detection, occupancy 
estimation, occupancy recognition, and occupancy activ-
ity monitoring (Ahmad et al. 2021). Table 1 summarizes 
the existing studies on occupancy-based demand control 
ventilation.

The environmental sensing approach predicts room occu-
pation by measuring indoor conditions. The sensor modality 
can be modified in many indoor sensing applications, includ-
ing multi-sensing technology to observe concentrations of 
volatile organic compounds in the air. Cameras (infrared 
and optical cameras) are used alongside machine learning 
to carefully analyze and capture image frames for occupancy 
detection and estimation in commercial and residential 
buildings. The fusion modalities are considered to differ-
entiate human occupancy and other object emitting thermal 
heat in the environment and support night vision prediction. 
The camera-based approach can accurately handle binary 
and multi-class occupancy predictions, up to 96% and 26% 
energy-saving potential.

Wearables and acoustic approaches use a product of 
tasks completed by other systems, which can track the 
occupancy location. ML model can obtain signal intensity 

from statically positioned beacons in a target space to obtain 
a fine-grained occupant location and achieve the location 
accuracy of five meters. Activation of specific sensors with 
established positions has previously been used in passive 
infrared and acoustic sensors to obtain occupancy and loca-
tion details using a heterogeneous sensing network. In these 
studies, a multimodal data fusion and deep learning method 
were employed to estimate occupancy.

Proposed framework

Dataset quality is a key factor for most real-time applica-
tions to drive effective modeling. A collaborative intelli-
gence between environmental sensing and camera can sup-
port a collection of high-quality datasets. Datasets used are 
collected in residential building settings in a living room 
in a house consisting of five different rooms located at the 
Taman Teratai, Johor, Malaysia, with a tropical climate year-
round with average temperatures starting from 25 to 30 °C 
throughout the year. The living room is being designed 
for occupant’s gatherings activities such as resting, eatery, 
watching TV, and other social gatherings. The indoor con-
dition data is collected using sensors installed in the area 
of interest (see Table 2) to monitor indoor environmental 
conditions such as temperature, light illuminance, relative 
humidity, and CO2 concentration.

A high-level overview of the overall framework proposed 
in Fig. 2, consisting of the room occupancy measurement 
(camera and environmental sensing approaches), quality 
assessment of candidate record, recorded training dataset, 
and random forest model, performs prediction and sends the 
output value to the fuzzy system. These outputs are used to 
drive or generate the appropriate setpoint temperature for 

Table 1   Occupancy-based demand control ventilation

Occupancy input Technology Study Limitations

Occupancy detection Environmental sensing (Brennan et al. 2015; Dogan et al. 2020; 
Hänninen et al. 2017; Sarwar et al. 2021)

Poor quality training dataset, prone to exter-
nal noise

Occupancy estimation Environmental sensing (Chen and Zhou 2020; Fareed et al. 2020; 
Gruber et al. 2014; Shahzad et al. 2021)

Occupancy count/estimation Camera (Aryal and Becerik-Gerber, 2019; Cao 
et al. 2018; Waqar Saeed et al. 2021; 
Wei-long Ding et al. 2021a) 

Processing power, poor coverage of the 
scene, occupancy overlapping, and privacy 
challenges

Occupancy identity Acoustic (Huang 2018; Kim et al. 2020; Salamone 
et al. 2017; Wang et al. 2021; Wei-long 
Ding et al. 2021b; Wu and Wang 2019; 
Zhang et al. 2020)

Poor quality training, background noise, and 
difficulty in modeling

Occupancy activity Wearable (Barut et al. 2020; Castro et al. 2017) Device installation, limited device installa-
tion capacity, privacy concern

Passive infrared (Han et al. 2011; Sheikh Khan et al. 2021) High false alarm, does not provide additional 
occupancy information, and poor quality 
of training dataset
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the HVAC system using a fuzzy inference engine depending 
on the occupant’s choice or behavior. Each variable in the 
dataset record stream (carbon dioxide, temperature, humid-
ity, light intensity, humidity ratio, and occupant) essentially 
contains feature correlated to the occupant. Each time the sen-
sors measure the readings of the occupant surrounding, the 
corresponding occupant number is capture by a camera and 
recorded in a dataset sheet. But the quality of these record 
streams can be influence by a specific event, such as a door 
open during entrance or exit from the building. Each time such 
an event happens, it takes time for the record stream to rebuild 
the actual level that tallies with the occupants in the building.

The study adopted Candanedo and Feldheim (2016) for envi-
ronmental sensing and Cao et al. (2018) for the camera. To ensure 
the quality dataset is recorded, 30-min interval is set between the 
previously registered record stream and candidate record.

Let donate dataset stream captured by sensors at a point in 
time to be record(t) with a list of features f1 … fn = record(t) . 
Therefore, f1(record(t))… fn(record(t)) is related to the 
occupant’s presence in the building at a point in time t  , 
where fi(t) ∈

(
f̌i f̂i

)
 . Let donate occupant number with label 

l(t) captured by the camera corresponding with the dataset 
stream obtained by environmental sensors. Therefore, the 

complete dataset stream record collected for training at a 
time can be donated as r(t) = (record(t)), l(t) . At this point, 
dataset stream with no corresponding label l(t) assigned is 
known as candidate record and a dataset stream with the cor-
responding label l(t) assigned is known as a recorded record. 
Let a dataset of recorded records represent p . The objective 
is to verify the quality of record before been record in p to 
avoid a poor p by ensuring sensors data stream match corre-
sponding occupant label l(t) that was assigned by the camera 
using the rule-based classifier. In this study, a decision trees’ 
algorithm proposed in (Chen and Zhou 2020) is deployed 
to simplify and optimize the analysis of the (if-then) rules.

Data collection and processing

The dataset collection starts on April 1st, 2021, to April 
28th, 2021, using continuous readings. The only dataset with 
full-day readings and more than three streams’ columns in 
a raw is considered. Additionally, records are swapped to 
avoid revealing occupancy schedules when datasets are pub-
lished, as reported in Schwee et al. (2019) that CO2 concen-
tration can be deanonymized for susceptible privacy attacks. 
For odd days (Sunday, Tuesday, and Thursday), the two 

Table 2   The various sensor data sources

Sensor Description Uncertainty Unit Data record

Temperature Measure indoor temperature 1 °C Degree Celsius 60-s interval
Relative humidity Measure indoor relative humidity ±5% Percentage 60-s interval
CO2 Measure indoor CO2 concentration level 300–1000 ppm: ±120 ppm Parts per million (ppm) 60-s interval
Light Measure illuminance indoor light levels 10–2000 lux range Lux 60-s interval

Fig. 2   Proposed occupancy 
detection and estimation frame-
work
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consecutive rows’ streams are randomly swapped, while for 
the even days (Saturday, Monday, and Wednesday), the first 
two rows’ streams are swapped sequentially. Even though 
it is not considered in a recent study (Schwee et al. 2019), 
the study decided to introduce and compute the humidity 
ratio from the original dataset stream to improve occupancy 
estimation accuracy.

Although the graphical representation for assessing nor-
mality requires a great deal of expertise to prevent incorrect 
interpretations, the data for graphic interpretation is usu-
ally presented in histograms or Y and X vectors. Accord-
ing to Gregorutti et al. (2016), suppose Y  is the variable 
that depends on the regression matrix of variables X . If 
X
(
x1, x2, x3,… xn

)
 are jointly normal, then Y  is said to be 

conditionally on X and � = f (X) is normally distributed vec-
tor. Therefore Y  and � can be expressed as:

(1)
Y|X ∼ N

(
� = f (X), �2

)
� = f (X) = (�0 + �1 ∗ x1 + �2 ∗ x2 +… �n ∗ xn)

The graphical presentation of the normality distribution 
of the sample dataset is conducted using the Q-Q plot (see 
Figs. 3 and 4).

The analysis indicates that the dataset points do not 
fully follow standard distribution consist of slight variance, 
requiring data analysis at this stage to achieve a Gaussian 
distribution. After manual inspection of the unfitted points, 
it was concluded that the skew is not caused by inaccurate 
sensor readings or recordings but is spontaneously created 
and is not inherently a concern and cannot affect the model 
prediction results. The distributions of unfitted points appear 
in all variables, with more extreme values in the CO2 and 
occupancy variables. According to several experiments, 
about 1 in 340 observations in a regular distribution would 
be at least three standard deviations apart from the mean 
(Zittis 2017). However, in smaller datasets, random chance 
can contain extreme values. In other words, producing odd 
values naturally is routine, and there is nothing wrong with 
these data points. Thus, even though they are rare, they are 
a natural part of the data distribution.

Fig. 3   Temperature, humidity, and light dataset normality check
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This study uses Pearson’s product-moment coefficient 
(PPMC) metric for generating a correlation coefficient 
value. PPMC measures the strength of dependency between 
the variables x and y when given a set of paired (x,y) val-
ues between −1 and +1 (Candanedo and Feldheim 2016). 
Fig. 5 present the computed PPMC values using six vari-
able parameters with values vary from −1 to 1. 1 indicating 
a heavy positive correlation label shaded with white back-
ground color, followed by 0.9 shaded with red background 
color and so forth to 0.00 and −0.00 shaded with a green 
background color indicating a weak correlation between the 
variables. Predictors that are not correlated with predicting 
variables at all variables or with weak correlation values 
are most likely candidates to remove from the model using 
variable permutation importance measure known as feature 
selection. Furthermore, it is recommended that if two vari-
ables are highly correlated, only one of them should be con-
sidered to simplified models, and simpler models are easier 
to understand.

Fig. 4   Occupancy, CO2, and humidity ratio dataset normality check
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Variable feature selection

Feature engineering is essential in developing ML models, 
which requires removing features with weak correlation 
before deploying the dataset sample into the model for eval-
uation. A variable importance measure metric in Gregorutti 
et al. (2016) is considered to remove uncorrelated variables 
parameters. The theory in Gregorutti et al. (2016) suggest 
for predicting variable Y and predictors X = (X1,… ,Xp) be 
a vector of random variables. The rule f̂  in regression setting 
for predicting variable Y is a function that can be measure 
using the values in ℝ . The prediction error of f̂  can be 
defined by R

(
f̂
)
=
[(

f̂ (X) − Y2

)]
 and object is to calculate 

the conditional expectation f (x) = �[Y|X = x] . Similarly, let 
Dn =

{(
X1, Y1

)
,…

(
Xn, Yn

)}
 be a set of learning of \ replica-

tions of (X, Y) where Xi =
(
Xi1, ..,Xip

)
 . Since the true pre-

diction error of f̂  is unknown in practice, observation of a 
test dataset ( D) is considered for prediction, and therefore, 
D can finally be presented as:

Permutation variable importance is a model inspection 
technique in Breiman (2001) that has shown proficiency in 
non-linear estimators like our model and therefore adopted 
in this study. The technique considered predictors XiXj as 
the critical predicting Y  from (see equation 2). If the link 
between the feature XiXj and Y  is broken, the increase in 
prediction error score may be observed. The score value in 
the model reflects how much the model is dependent on the 
feature. This methodology has the advantage of being model 
agnostic, allowing it to be measured several times with vari-
ous function permutations. To demonstrate this model, Brei-
man (2001) randomly permute the observations of the XiXj.

Formalizing the statistical permutation value calculation 
is as follows: define a group of out-of-bag samples {
D

t

n
= Dn�D

t

n
, t = 1,… , ntree

}
 . Let 

{
D

tj

n
, t = 1,… , ntree

}
 

represent permuted out-of-bag samples by randomized per-
mutations of the j-th variable’s values in each out-of-bag 
subset. The variable Xj ’s statistical permutation value is 
defined as:

This quantity is the statistical equivalent of the permuta-
tion importance measure Î

(
Xj

)
 recently formalized by Zhu 

et al. (2015). Let 
(
Xj

)
=
(
X1,… ,X

�

j
,… ,Xp

)
 be the random 

vector such that X′

j
 is an independent replicate of Xj that is 

also independent of Y  and all other predictors, and the per-
mutation significance measure is provided by:

(2)D ∶ R̂
(
f̂ ,D

)
=

1

D

∑
i∶
(
Xi,Yi∈D

) Yi − f̂
(
Yi − f̂

(
Xi

))2

(3)Î
(
Xj

)
=

1

ntree

∑ntree

t=1

[
R̂
(
f̂ t,D

tj

n

)
− R̂

(
f̂ t,D

t

n

)]

In the expression of Î
(
Xj

)
 , the permutation values of Xj 

mimics the identical and independent duplicate of the dis-
tribution of 

(
Xj

)
 in I

(
Xj

)
 . Thus, equation 4 can compute the 

correlation index value of predicting variable and independ-
ent variable as presented in Table 3.

The predictor’s correlation index in relation to predicting 
variable is computed and displayed in Table 3 to visualize 
weak correlation values. As presented in Table 3, the vari-
able predictor Date demonstrates a weak correlation index 
and is removed from the original dataset. The remainder of 
the variables can feed the model to train the machine learn-
ing model and measure its accuracy against the test dataset.

(4)I
(
Xj

)
= �

[(
Y − f

(
X(j)

))2]
− �

[
(Y − f(X))2

]

Table 3   Predicting variable versus independent variable correlation 
index

Variables Cor-
relation 
index

Occupancy + Date 0.03
Occupancy + Temperature 0.86
Occupancy + Humidity 0.90
Occupancy + Light 0.76
Occupancy + CO2 0.99
Occupancy + Humidity Ratio 0.95
Occupancy + Occupancy 1

Raw dataset

(100%)

Training 
dataset (70%)

Random shuffling and split into 70:30

Test dataset 
(30%)

Fig. 6   Ratio of training and test dataset
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Model training and testing

Typically, datasets are split inform of the train and test 
ratio during the model training when ML algorithms are 
employed to make predictions on data to measure their pre-
diction performance. The technique is straightforward and 
quick for assessing model prediction performance on vari-
ous ML methods and choosing among the optimal methods 
that fit the model prediction problem. The technique entails 
shuffling and splitting the original dataset into training and 
testing in a ratio, such as 70:30 see (Fig. 6). The first portion, 
known as the training dataset, is used to match the model. 
The second portion, known as the test dataset, is used as 
input to variables’ dataset to feed the model to test prediction 
and measure the prediction outcomes.

Candidate model

Random forest (RF) model is chosen for inquiry to further 
measure its performance for both binary classification (occu-
pancy detection) and regression prediction problems (occu-
pancy estimation). This model is not very complex; its exist-
ing implementation and recent developments have shown 
solid performance in many areas. The implementations in 
this work use the scikit-learn Python library, and details 
about default algorithm settings can be found in the library 
documentation ("The Python Standard Library" 2021).

RF is a collection of various decision trees that are 
applied sequentially from a root (parent) node to a terminal 
(or child) node to predict the behavior described by trained 
data (Rodriguez-Galiano et al. 2014). This technique pro-
vides several conditional rules as easy as comparing a sen-
sor reading to a threshold to match data samples by related 
traits. Each decision tree employs bootstrap sampling, also 
known as bagging (Breiman 1996), which essentially used 
two-thirds of the training samples for prediction and the 
remainder for evaluation of prediction accuracy for both 
deep or very deep trees. This implies each tree in RF is work-
ing against the same target but is given separate portions of 
the training data to learn from. The outcomes from all the 
trees are added together to generate the results. These rules 
influence how the models handle bias and uncertainty in 
their forecasts. The binary classifier uses CO2 as predicting 
variable to tell whether a room is occupied or vacant. The 
performance evaluation for RF binary classier is presented 
in Table 4. The number of decision trees that the model can 
use to match the data is generated from classification and 
recursive splitting from the dataset during analysis.

The evaluation is carried out to test and verify the per-
formance of the model against new data. This is essential 
in many cases, especially on the control system where the 
model’s performance can exhibit different behavior on the 
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new dataset. Therefore, the scoring bin in Table 4 holds 
the dataset record split into a training and a testing data-
set. The binary classifier prediction performance on ranges 
from 58.3 to 99.6% accuracy, 73.6 to 99.7% F1 score, 58.3 
to 99.9% precision, and 97.8 to 100% recall.

Occupancy detection using binary classification can-
not provide enough information about room occupancies 
which is essential to optimize energy proportional to the 
number of occupants in the building. For this reason, the 
proposed RF model performs dataset recursive splitting 
and regression to estimate room occupancies using five 
indoor conditions. Fig. 7 represents the model perfor-
mance analysis using different performance measures.

Typically, the single metric alone cannot provide enough 
information for model performance. Therefore, other mem-
bers of metrics are considered including:

Ultimately, it is essential to have an overall metric to 
trade-off the precision and the recall performance by meas-
uring a single grade value score. Thus, it makes sense to 
merge the precision and recall metrics (see equation 5). 
The overall F-score performance for RF is excellent, 
achieving up to 99.3% (see Fig. 7).

Mean absolute error (MAE) refers to the magnitude of 
the difference between the model prediction observation 
and the actual value of that observation which is calculated 
for the whole group, and therefore, the error between the 

(5)F-Score = 2 ×
(
Precision × Recall

Precision + Recall

)

actual value and the predicted value is 0.0193 (see Fig. 7). 
Mathematically MAE can be presented as:

Root mean square error (RMSE) demonstrates how 
far projections differ from observed true values. Whether 
during testing or cross-validation, the residual difference 
between prediction and ground truth for each data point  
is referred to as RMSE. The RMSE in RF model is 0.071 
(see Fig. 7). Mathematically RMSE can be presented as:

Relative squared error (RSE) is used to evaluate model 
efficiency by comparing it to that of a basic predictor. The 
RSE in RF performance is 0.0052 (see Fig. 7). Mathemati-
cally RSE can be presented as:

Relative absolute error (RAE) is expressed as a ratio 
when a mean error (residual see equation 9) is opposed 
to errors produced by a negligible or naive model. The 
model RAE is 0.022 (see Fig. 7). Mathematically RAE 
can be presented as:

Coefficient of determination (CD), also referred to 
as R2, clarifies how much a model will perform when 
replicating observed results. It provides information on 
the probability of possible events occurring within the 
expected outcomes. The R2 value produced by RF model 
is 99.4% (see Fig. 7). Mathematically CD can be presented 
as:

Average log loss (ALL) uses to evaluate the model pre-
diction efficiency based on the likelihood of a record being 
categorized in a particular class and then assign the data 
point as one of two classes (1 or 0) depending on whether 
the probability exceeded a threshold value. The proposed RF 
model achieved R2 score of 0.027 (see Fig. 7). Mathemati-
cally ALL can be presented as:

(6)MAE =

�∑n

i=1
abs(yi − �(xi))

n

�

(7)RMSE =

�∑n

i=1
∥ y(i) − ŷ(i)∥2

N

(8)Ei =

⎛⎜⎜⎜⎝

�∑n

j=1
Pij − Tj

�2

∑n

j=1

�
Tj − T

�2

⎞⎟⎟⎟⎠
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Fig. 7   Occupancy estimation model performance evaluation
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where:

Occupancy and air condition usage 
monitoring

The main objective of binary control is to ensure air condi-
tion is turned off when the room is vacant to avoid unnec-
essary energy consumption. Figure 8 plots the information 
obtained during the room condition monitoring campaign. 
Notice in Fig. 8 from 12:00 to 5:00 AM, the living room is 
vacant, air condition is off, and room temperature is high. 
Because of the challenge to obtain the aggregated energy 
consumption data in a time series as there are many mix-
tures of energy consumption from various appliances and 
built-in facilities, a watt analyzer is attached to a power 
outlet to monitor the waveform of air condition power con-
sumption in a time series.

Notice from 6:00 AM occupancy keeps on rising from 
1 to 5 and drops at 8:00 AM. From 11:00 AM to 1:00 
PM, 6:00 to 8:00 PM, and 11:00 PM, the room is vacant, 
but the programmable controller predicts that the room is 
occupied during this time. This is because the controller 

(11)logloss =
1

n

∑n

i=1
loglossi

loglossi = −
�
yilnpi +

�
1 − yi

��
ln
�
1 − pi

�
logloss = −

1

n

∑n

i=1

�
yilnpi +

�
1 − yi

��
ln
�
1 − pi

�

works based on the occupancy schedule assumption, which 
is modified due to MCO policy. Besides MCO policy, fur-
ther investigation reveals that indoor CO2 is used as an 
indicator of the room being occupied. Thus, when no occu-
pants leave the building, it takes a long time for CO2 to 
disappear, which also contributes to the poor performance 
of the controller. This results in excess energy consump-
tion for an average of 6 h a day. The total excess energy 
consumption depends on room temperature and rate of air 
condition operation.

Furthermore, notice the rise of a waveform of air condi-
tion operation from 1:00 to 7:00 PM. This is because, dur-
ing this period, the outdoor temperature is high, affecting 
the function of an air conditioner to maintain the desired 
occupant comfort. However, despite the increase in air 
condition operation, discomfort can be observed during 
this period.

Occupancy estimation‑based air condition control

DesignBuilder is used to model two separate zones, each 
attached with a modified HVAC system of 10 kW, using 
RTP tariff to demonstrate the effectiveness of occupancy 
estimation on air condition control. The first zone uses 
the controller proposed IoFClime in Meana-Llorián et al. 
(2017), and the second zone uses the proposed controller. 
The final model is sent to EnergyPlus together with local 
weather. The controller’s goal is to adjust the setpoint tem-
perature to attain the desired comfort based on the predicted 

Fig. 8   24-h data on indoor 
occupants, temperature, and air 
condition operation
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number of occupants in the building. Desired temperature, 
energy consumption, and comfort satisfaction achieved are 
used as evaluation indices to evaluate the performance of the 
proposed model under the following three scenarios:

(a)	 The occupants are worried about the energy consump-
tion cost and are knee to participate in the demand 
response programs. So, the controller adjusts the set-
point temperature remarkably, especially during very 
hot and extreme temperatures, to attain the desired 
comfort as possible.

(b)	 The occupants worried about the thermal comfort satis-
faction. Thus, the controller slightly adjusts the setpoint 
temperature.

(c)	 The occupants balance thermal comfort satisfaction and 
energy consumption cost. Accordingly, the controller 
reacts moderately to trade-off energy consumption with 
thermal comfort; the setpoint changes are not as remark-
able as in scenario 1 and slightly as in scenario 3.

Setpoint temperature control

It is important to note that 19 °C is considered the 
desired setpoint with ten constant occupants through-
out the experiments. Fig. 9 represents the time series 
room temperature in Johor Bahru, Malaysia, with air-
conditioning turned off. Notice in Fig. 9, from 8:00 to 
9:00 AM, the temperature is considered hot, from 10:00 
to 11:00 AM and 3:00 to 5:00 PM are considered very 
hot, and 12:00–2:00 PM is considered extremely hot. The 
controller’s objective is to adjust the setpoint according 

to the number of occupants and temperature conditions to 
achieve the desired comfort without risking the occupants 
leaning.

Notice in Fig. 10, both controllers keep the indoor tem-
perature within the range of 24 °C. This is because the 
occupant’s choice is to save energy and avoid the aggres-
sive air condition operation. However, notice in Fig. 11 
and Fig. 12, the proposed controller was able to adjust 
setpoint temperature to make indoor temperature closer 
to the desired comfort. Except during extremely hot tem-
peratures, the controller finds it challenging to maintain. 
Notice the performance of the proposed controller is bet-
ter than IoFClime in stabilizing the room temperature 
and waveform frequency is lower than IoFClime. The 
proposed controller is designed with a feedback loop that 
updates the controller about the room temperature condi-
tion. Whenever the room temperature goes closer to the 
desired comfort, the speed of the air conditioner is reduced 
by adjusting the setpoint temperature, unlike the IoFClime 
that used deadband setpoint control.

Comfort analysis

The interpretation of thermal comfort analysis focused 
only on a proposed controller. The scenarios considered 
and the result is presented in Fig. 13. Nineteen degrees 
Celsius is chosen as desired indoor comfort for the ten 
occupancies. Every 30 min, the occupancy feedback 
on comfort feeling is analyzed in the zone, passed to 
the controller through a feedback loop, and expected to 
react based on the information received. Notice in the 

Fig. 9   Ambient temperature 
condition in Johor, Malaysia
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first scenar io,  the thermal comfor t  perception is 
as follows: 10% report feeling normal, 35% report 
feeling warm, 40% report feeling hot, and 15% report 
feeling very hot throughout the ventilation activities. 
In the second scenario, 88% report feeling normal, 
and 12% report warm comfort throughout the cooling 
activities. In the third scenario, 78% report average 
comfort while 22% report warm comfort through the 
cooling activities.

Energy consumption

In scenarios 2 and 3, the electricity tariff variation has no 
greater influence on energy consumption as occupancy gives 
thermal comfort preferences over energy usage. The air con-
ditioner must maintain zone temperature relatively closer 
to the initialized setpoint (desired temperature). During the 
peak hour, compressor is turned on and stays on until the 
zone temperature drops to the closer level as the desired 

Fig. 10   Scenario 1

8:00 AM
9:00 AM

10:00 AM

11:00 AM

12:00 PM
1:00 PM

2:00 PM
3:00 PM

4:00 PM
5:00 PM

5

10

15

20

25

30 Proposed Approach
IoFClime
IoFClime Waveform
Proposed Waveform
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temperature is set on the thermostat. The compressor turns 
off after the desired temperature is reached, and the zone 
temperature rises again. A cycle of the air conditioner is 
determined by the compressor turning on and off.

An air conditioner’s cycle time is when it takes to oper-
ate to keep the zone at the desired temperature. As demon-
strated in Fig. 11 and Fig. 12, the compressor works sig-
nificantly for longer periods to lower the zone temperature, 
increasing the cycle time. The existing approach’s energy 
consumption is 18.6328 kW, 32.4284 kW, and 25.6724 
kW, while the proposed approach consumed 12.7467 kW, 
33.4933 kW, and 19.96 kW in three settings, as indicated 
in Fig. 14. The energy consumed in scenarios 1 and 3 for 
the existing controller is much greater than the proposed 

approach’s energy consumed. Since our approach uses 
a feedback loop, it provides continuous operation (long 
cycles); hence, it consumes less energy by 50% in the first 
scenario and 25 % in the third scenario than the existing 
IoFClime technique.

Conclusion

Indoor occupancy information and modeling have been con-
sidered as key contributors for building energy efficiency, 
and research highlights the requirements for further investi-
gation in this application area. Particularly occupancy pre-
diction status in the buildings can save an average of 50% 

Fig. 12   Scenario 1
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unnecessary energy consumption, thereby reducing the 
demand for building energy generation and consumption.

Research on various technologies has been researched, 
including cameras, wearables, and passive infrared sensors, 
to modify or replace existing building infrastructure to opti-
mize building energy usage. These efforts can be classified 
into direct approaches based on technologies such as cam-
eras and wearables that solely rely on direct contact with 
occupants to report the presence. On the other hand, the indi-
rect or environmental sensing approach inferred occupants’ 
status by measuring the effects of occupant presence in the 
building. These include changes in temperature, humidity, 
CO2 concentration, among others. Even though the direct 
approach has proven a solid performance for counting the 
occupancy, environmental sensing is considered to be a 
viable alternative to overcome the weakness of the direct 
approach that presents serious issues, such as privacy, 
complex processing, expensive hardware, and installation 
feasibility.

Despite many solutions in environmental sensing to 
overcome the problem of occupancy detection and estima-
tion, much attention has not been paid to publicly acces-
sible robust datasets that enable the comparison of different 
algorithms to be easily compared. The proposed framework 
that uses collaborative intelligence obtained a high-quality 
dataset, and RF model is trained to count occupant numbers 
in the building. The proposed solution is tested in the living 
room with a prototype system, and the model’s prediction 
results obtained achieved a performance accuracy of 99.3%.

Three different thermostat settings on air condition were 
used to control the indoor comfort using a two-zone ven-
tilation system to keep indoor comfort consistent with the 
number of occupants. The simulation is conducted using 
EnergyPlus software with local climate data. The Fanger 
model’s thermal comfort analysis demonstrates poor comfort 
performance in the first scenario, satisfactory performance 
in the third scenario, and remarkable performance in the 
second scenario. Furthermore, it demonstrates up to 50% 
of energy can be saved in the first scenario (if the occupant 
is willing to compromise his comfort) and 25% in the third 
scenario (if the occupant wishes to balance energy consump-
tion with thermal comfort).
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