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Abstract—The rapid evolution of cloud-native technologies
has facilitated seamless application deployment and execution
across the entire edge-to-cloud continuum. This continuum of-
fers a myriad of benefits, including reduced latency, optimized
bandwidth utilization, enhanced data privacy, improved relia-
bility, scalability, and flexibility. However, realizing a coherent
edge-to-cloud continuum poses challenges especially in resource
management, due to the heterogeneous and dynamic nature
of computing resources such as resource scheduling and load
balancing. This paper focuses on the Container-as-a-Service
model enabling independent execution of functions/microservices
anywhere on the continuum. We propose an architectural design
for constructing a practical edge-to-cloud infrastructure and
conduct comprehensive performance evaluations using a real
edge-to-cloud testbed. Through an empirical study, we aim
to identify key factors impacting application performance and
resource management within the continuum, with a specific focus
on AI-based IoT applications. Our experiments explore various
design patterns including load balancing techniques, scheduling
algorithms, invocation methods, gateway and data source loca-
tion, and factors such as bandwidth and delay, providing practical
insights for practitioners and researchers alike.

Index Terms—continuum, edge, cloud, kubernetes, perfor-
mance, load balancing, edge-to-cloud

I. INTRODUCTION

The rapid advancement of cloud native technologies, in-

cluding containerization [1], microservices [2], declarative

infrastructure-as-code [3], and Function-as-a-Service [4], has

paved the way for seamless deployment and execution of

applications across the entire spectrum of the edge-to-cloud

continuum or simply compute continuum [5]. This new vision

entails the seamless movement of software components across

different levels of computational hierarchy, representing the

next stage of integration between IoT and cloud technolo-

gies [6]. It offers numerous benefits, such as reduced latency,

bandwidth optimization, enhanced data privacy, improved re-
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liability and resilience, enhanced scalability and flexibility,

among many others.

The realization of a coherent edge-to-cloud continuum for

efficient application deployment, however, presents several

challenges, with resource management emerging as a piv-

otal concern. With the diverse array of computing resources

spanning from edge to cloud, encompassing devices like

smartphones, IoT sensors, edge servers, and cloud data centers,

as well as networks such as cellular, wireless, and wired

connections, it becomes imperative to minimize operational

complexities, streamline infrastructure management, and sim-

plify the deployment of distributed applications within this

continuum of computing. In other words, to fully unlock the

potential offered by the continuum and harness the complete

capabilities of this distributed architecture, we require effec-

tive and efficient management and orchestration of resources

throughout the continuum. This paper aims to identify the

key factors that impact the performance of applications when

various resource management techniques are employed in

a heterogeneous and dynamic continuum environment. We

specifically focus on the serverless model because the stateless

property of functions enables independent execution anywhere

on the continuum, optimizing for seamless scalability, which

is important for the efficient deployment of applications on

the continuum.

We specifically focus on Artificial Intelligence (AI)-based

Internet of Things (IoT) applications, commonly referred to as

smart applications. Typical examples of applications within the

compute continuum are video analytics and image processing.

A system overview and a typical data pipeline of an AI-

based IoT application deployed in a serverless model across

the cloud-to-edge continuum are illustrated in Fig. 1. An IoT

device, such as a camera or a robot, generates data in response

to an event. This data often requires processing, such as a

computer vision task like object detection. The device for-

wards its requests to the load balancer, which then distributes
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Fig. 1. Overall system overview and data pipeline.

them across heterogeneous computing layers, ranging from

edge to fog and cloud. In our example, the load balancer at a

gateway forwards the request to a compute node where one of

the relevant function’s replicas is deployed. The function then

performs AI inference and returns the response to the IoT

device/end-user for subsequent actuation/decision-making.

Several architectural decisions can potentially influence the

performance of this pipeline. The IoT device can either send

the generated data along with the request to the load balancer

or first store the data in an object storage, attaching a reference

to the object in the request sent to the load balancer. The im-

pact of these design patterns, particularly in terms of overhead

and practicality for data-intensive AI-based IoT applications,

is unknown. The gateway itself must be deployed on one of the

computing layers, forwarding the received request to one of

the replicas of the functions hosted on a computing node. The

optimal placement of the gateway also remains a question.

Additionally, the algorithm that the load balancer should

employ for load balancing logic is uncertain. The options for

this algorithm can vary and can include various algorithms

such as round-robin, random, or least connection being widely

used in practice. The distinctive bandwidth between the load

balancer and the computing layers is likely to significantly

influence the load balancer’s performance. Conversely, the

function replicas are distributed across the computing layers

based on the policies of a function scheduler. The policy can

lead to significantly varied placements of the replicas, yet there

remains limited understanding of the performance implications

of these scheduling policies within this context.

This paper aims to address these questions through an

empirical study. In this context, our goal is not to propose

a new approach or method to address compute continuum

challenges. Rather, our focus is on examining the key factors

that impact the performance of smart applications deployed

within a practical compute continuum. We utilize widely

adopted tools and techniques, aiming to offer insights into

best practices and identify areas for further research. Thus,

we make the following key contributions:

• We propose an architectural design to construct a practi-

cal edge-to-cloud infrastructure that spans over resources

ranging from small devices, such as single-board com-

puters, at the edge to powerful virtual machines in the

cloud. This design utilizes off-the-shelf and commonly

used tools like Kubernetes, Tailscale, ZeroTier, HAProxy,

and others.

• We empirically conduct comprehensive performance

evaluation experiments using a standard YOLOv3 ob-

ject detection1 service deployed on a real edge-to-cloud

testbed. We explore the impact of various design pat-

terns and factors, reporting major findings and providing

practical insights useful for practitioners and researchers.

Specifically, we explore the effects of the location of

centralized components, such as the gateway and data

source location.

• We also evaluate various load balancing techniques, in-

cluding Round Robin, Least Connection, Weighted Round

Robin, Random, and a sequencing algorithm [7]. The

research also delves into different function scheduling

algorithms, such as Kubernetes’ default and throughput-

aware. The impact of various function invocation meth-

ods, such as call-by-value and call-by-reference, is also

examined. Furthermore, we scrutinize the influence of

major constraints, such as delay and bandwidth on the

overall performance.

II. PROPOSED SYSTEM ARCHITECTURE

Various architectural proposals have emerged within the

realm of the compute continuum, reflecting the diverse per-

spectives held by various companies and researchers regarding

its implementation [8]–[10]. This paper introduces a generic

architecture specifically tailored for the compute continuum as

shown in Figure 2. Our proposed architecture seamlessly in-

tegrates distributed computing resources spanning a spectrum

of devices, including IoT devices, edge and fog servers, cloud

servers, and other resources existing within the continuum

at the infrastructure layer. Central to our architecture is a

management and orchestration (MANO) layer tasked with

composing the compute continuum for the deployment of ap-

plications. Positioned at the top layer, we find the application

layer, comprising software components with their data flow

designed according to the serverless programming model.

Our focus is on the MANO layer. A central orchestrator

oversees the management of containers, incorporating a sched-

uler for placement and an auto-scaler for dynamic scaling.

Additionally, the orchestrator hosts a gateway equipped with a

load balancer, responsible for optimizing resource utilization

and requests distribution. We advocate for the utilization of

two overlay networks to address both data and control aspects,

thereby ensuring robust connectivity among diverse system

components. Furthermore, our architecture features a storage

system facilitating the storage of data sources and states for

functions anywhere within the continuum.

We also use containerized environments to deploy our AI-

based IoT applications in a serverless manner in our proposed

architecture. Given that we focus on container orchestrations

and tools such as Kubernetes which provides a flexible plat-

form for deploying, managing, and scaling serverless applica-

tions, we refrain from leveraging specific serverless frame-

1https://pjreddie.com/darknet/yolo/
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works like Knative, OpenFaaS or OpenWhisk. In addition,

certain features of serverless such as Function-as-a-Service

(FaaS), Pay-as-You-Go Pricing and Event-Driven Execution,

are not crucial to our investigation. Therefore, we find it

sufficient to limit our scope to Containers-as-a-Service (CaaS)

management. Thus, throughout the remainder of the paper, we

intentionally omit explicit references to serverless and its FaaS

model, and instead focus on CaaS, even though the discussion

remains applicable to both serverless and FaaS.

A. Orchestrator

We propose containerization as the key component for the

efficient deployment of applications in the continuum due to its

portability, resource efficiency, isolation, and flexibility bene-

fits. Effectively integrating and managing containers at scale

across diverse resources within the continuum necessitates the

implementation of container orchestration technologies. We

advocate for the utilization of orchestration platforms like

Kubernetes to simplify container management processes in

our proposed architecture. The platform establishes a cluster

across computing resources for running applications and coor-

dinates microservices and functions deployments seamlessly.

It provides various functionalities, with notable scheduling

and autoscaling services. The orchestrator is also responsible

for hosting a gateway that sits between the IoT devices and

the backend services and containers. The gateway receives

requests from the edge and IoT devices and forwards them to

the available functions/containers. It can be placed anywhere

along the edge-to-cloud continuum.

B. Overlay Networks

To establish connectivity among all nodes in our cluster, we

propose two distinct peer-to-peer meshed overlay networks.

The initial overlay network is configured for control, while

the second overlay network is responsible for transferring

application data such as HTTP or MQTT packets from edge

devices to the containers and among the containers. Separating

the control and data planes in our proposed architecture is

essential for enhancing scalability, performance, and security.

The control plane transfers management messages for the

orchestrator, while the data plane efficiently forwards user and

application data. This ensures that control and management

data packets are delivered to their destinations regardless of

the traffic conditions of the data network. In other words, this

design allows for optimized network operations while avoiding

operation disruptions due to congestion or disconnection in

the data plane. Additionally, with two separate networks,

the available bandwidth on each network can be separately

controlled. This enables more in-depth studies to be carried

out on the effect of bandwidth limitations.

C. Storage

In the compute continuum, managing storage efficiently

is crucial for the seamless operation of stateless functions.

The storage platform should offer features like object storage,

enabling developers to store and manage data effectively

while abstracting away underlying infrastructure complexities.

Additionally, it would allow developers to trigger functions in

response to storage events or access stored data directly from

their serverless applications. Moreover, function states, which

encapsulate the context and execution state of serverless func-

tions, can also be stored and managed within these distributed

storage systems.

III. SYSTEM IMPLEMENTATION AND TESTBED

To implement our proposed architecture for the compute

continuum and prepare a testbed for evaluation, we assemble

a setup as outlined below.

A. Infrastructure

We include various types of nodes from different layers of

the continuum, as follows:

• EdgeARM: Bare-metal Raspberry Pi 4 Model B 4GB

located at the local edge network in the laboratory.

• EdgeVM: Virtual Machines (VM) on the edge network,

running Ubuntu 20.04 LTS and hosted on a local machine

using Proxmox Virtual Environment.2

• Fog: VMs hosted on a nearby cloud infrastructure at the

university (Nectar Cloud3), running Ubuntu 20.04 LTS.

• Cloud: VMs in the cloud, running Ubuntu 22.04 LTS,

hosted on Amazon Web Services (AWS) in the US East

(N. Virginia) region.

We use varying numbers of each node type in our testbed

cluster based on the amount of required resources for the

purposes of conducting this research. Table I shows further

details of the each of the node types within the testbed.

B. Compute Continuum MANO

Orchestrator: We use Docker as the container runtime in

our setup. A single Kubernetes cluster is built over the nodes in

the infrastructure layer using K3s4, a lightweight distribution

2https://proxmox.com
3https://ardc.edu.au/services/ardc-nectar-research-cloud/
4https://k3s.io/



TABLE I
TYPES OF NODES WITHIN THE TESTBED

Node Type EdgeARM EdgeVM Fog Cloud

Location Edge Edge Fog Cloud

Is VM? No Yes Yes Yes

CPU Model
Broadcom

Cortex A72

Intel

Core i5-4590

AMD

EPYC 7002

Intel Xeon

E5-2686 v4

CPU Arch. ARM64 x86 x86 x86

CPU Cores 4 CPUs 2 vCPUs 2 vCPUs 2 vCPUs

CPU Freq 1.5 GHz 3.3 GHz 2.3 GHz 2.3 GHz

Memory 4 GB 4 GB 4 GB 4 GB

of Kubernetes. We use K3s as it is highly suitable for IoT and

edge computing, and can be easily installed on low-resourced

devices such as Raspberry Pi 4 Model B.

The control plane node of the cluster is responsible for

orchestrating all containers across the entire cluster, and it

can be located anywhere in the continuum. In our setup, we

position the K3s control plane at the fog. We note that control

plane location has minimal or no impact on the performance

and outcomes of our experiments as load is only generated

once all worker pods are ready. Therefore, we will not evaluate

the impact of the control plane location in Section IV.

Worker nodes are those that execute function pods/replicas

and process the workload/requests submitted by clients (IoT

devices or end users). A worker node runs scheduled pods for

the function under test, and may host multiple of such pods.

We utilize HAProxy Kubernetes Ingress Controller as our

preferred gateway and load balancer mechanism due to its

flexibility in creating custom load-balancing strategies and

ease of setup within a Kubernetes cluster. Our proposed

architecture enables the HAProxy gateway to be deployed on

any node along the edge-to-cloud continuum.

All client requests are directed to the gateway, which, in

turn, routes them to a specific function or pod based on the

employed load balancing algorithm. In our setup, clients issu-

ing function requests are not deployed within the Kubernetes

cluster. We assume that these clients consist of IoT devices or

end users, always situated at the edge.

Object Storage: We require object storage systems to

maintain states or data, such as images, videos, logs, or any

other content utilized by our stateless functions. Given that the

application used for experimentation is an image processing

application which does not have any intermediate state and

only requires a data source, we opt to solely use a web

server to host and serve image files as the data source. The

significance of the location of image files or data source in

our experiments is discussed in Section III-C. We employ

lighttpd,5 a web server optimized for high-performance en-

vironments. The web server nodes operate independently and

are not integrated into the Kubernetes cluster, thus unable to

host any pods. Nevertheless, they remain connected to the

same overlay networks that link all actual nodes in the cluster.

Further details about our networking approach between nodes

are provided in the following.

5https://www.lighttpd.net/

Overlay Networks: The control overlay network is con-

figured through Tailscale,6 a VPN software leveraging Wire-

guard,7 for control messages. The second overlay network

utilizes ZeroTier for the data plane, employing its proprietary

protocol.8 The control plane transfers management and control

messages for K3s, while the data plane efficiently forwards

user data such as images or video frames for the application.

With two separate networks, the available bandwidth on

each network can be individually controlled. We employ the

Wondershaper9 tool on all worker and web server nodes to

impose maximum bandwidth speed limits on the ZeroTier

overlay network for testing purposes. Internally, Wondershaper

utilizes the Linux tc (traffic control)10 utility to configure the

Linux kernel’s packet scheduler, thereby restricting network

bandwidth for the chosen network interface. It is important to

note that we do not restrict network bandwidth on the device

generating load/requests, nor on gateway nodes, to measure

the maximum possible throughput within the system under

the specified limits.

Table II displays the latencies (in milliseconds) among

various types of nodes for the Tailscale and ZeroTier overlay

networks. The latency remains consistently comparable across

both overlay networks, as they utilize the same underlying

physical network infrastructure.

TABLE II
AVERAGE ROUND-TRIP LATENCY BETWEEN EDGE, FOG AND CLOUD

NODES IN MILLISECONDS FOR THE (TailScale, ZeroTier) OVERLAY

NETWORKS MEASURED USING THE ping UTILITY

EdgeARM EdgeVM Fog Cloud

EdgeARM (1.5, 2.0) (2.2, 2.2) (33.9, 33.1) (245.4, 253.3)

EdgeVM (1.3, 1.1) (1.8, 1.6) (30.0, 32.5) (255.6, 248.7)

Fog (31.2, 35.0) (33.6, 33.1) (1.1, 1.8) (209.0, 208.9)

Cloud (247.9, 246.0) (237.8, 238.5) (208.8, 210.2) (1.3, 1.7)

C. The Benchmark Application

In recent years, there has been a growing trend of deploying

AI and ML models directly on edge devices [11] [12]. Real-

time video analytics at the edge is one of the killer applications

for the edge-to-cloud continuum [13] and has frequently been

used as a benchmark application for performance analysis of

resource management techniques at the edge [14].

In this paper, we leverage the You Only Look Once v3

(YOLOv3) object detection model [15] [16] as the main appli-

cation for our performance analysis. YOLOv3 possesses several

compelling features that make it an excellent choice for our

research objectives. It is known to be both bandwidth-intensive

and compute-intensive, resembling the nature of a diverse array

of applications that are well-suited for computation in the

edge-to-cloud continuum. The YOLOv3 object detection model

can first be pre-trained on a computationally powerful server,

and then be seamlessly deployed on various resources across

the continuum. We specifically use the YOLOv3-tiny model

6https://tailscale.com/
7https://www.wireguard.com/
8https://www.zerotier.com/
9https://github.com/magnific0/wondershaper
10https://man7.org/linux/man-pages/man8/tc.8.html



TABLE III
AVERAGE CPU TIME TAKEN FOR ONE FUNCTION INVOCATION AS

REPORTED BY OUR YOLOv3 FUNCTION

Node Type Average CPU Time Per Invocation (ms)

EdgeARM 4798.560

EdgeVM 891.916

Fog 585.281

Cloud 500.636

that was trained on the Common Objects in Context (COCO)

dataset11 which, in exchange for lower accuracy/confidence,

performs satisfactorily enough on our EdgeARM nodes (i.e.

Raspberry Pi 4 Model B 4GB), which are the least powerful

nodes in our testbed cluster.

We implement YOLOv3 object detection as a Python web

service application. This is done by utilising OpenCV in

Python, in which we import the YOLOv3-tiny model. This

allows YOLOv3 to be invocable as a function call. We then

use Flask,12 a lightweight Python web framework, to expose a

HTTP endpoint where clients can invoke the YOLOv3 object

detection as a web service by sending HTTP requests contain-

ing either 1) an image payload or 2) an image URL. We further

discuss these two methods of invoking our YOLOv3 function

in Section III-C1. Upon completion of object detection, our

YOLOv3 function then returns an HTTP response that contains

the detection results, as well as response headers containing

various metrics and information, such as Function invocation

start time, Image fetch/load time (I/O time), actual image

processing time (CPU time), total elapsed time (sum of I/O

time and CPU time), Hostname and IP address of function

worker. The resulting Python application is then containerized

as a multi-platform (x86 and ARM64) Docker image and we

deploy the same image seamlessly and consistently across

all worker nodes in the testbed cluster as a Kubernetes

deployment.

Throughout our experiments, we utilize a sample image [17]

for processing with YOLOv3. The image is compressed to

approximately 243.5KB in size and contains 10 car objects.

YOLOv3 infers that there are 13 cars in the image with

an average confidence of 0.7524. Under zero load across

the cluster, the average CPU time taken for each function

invocation/request (excluding all latencies incurred by any I/O

such as network transfers) is shown in Table III.

1) Application Function Invocation: We utilize two distinct

design patterns (models) for passing arguments to YOLO

functions that resemble the traditional programming language

paradigms known as “Call-by-Reference” and “Call-by-Value”.

In the Call-by-Value model, the image itself serves as the

payload of the HTTP request sent to the function. For example,

a network camera periodically captures an image and sends it

directly via HTTP request to the gateway for object detection

and processing. Conversely, in the Call-by-Reference model,

the request does not directly carry the image; rather, it includes

the URL pointing to the image source. Subsequently, the

function utilizes this URL to retrieve the image for process-

11https://cocodataset.org/
12https://flask.palletsprojects.com/

ing. For example, multiple co-located network cameras, each

equipped with an adjacent motion sensor, constantly record

their surroundings. When motion is detected by a sensor, it

can send a request with the event timestamp and the associated

data source URL. The function/worker pod can then fetch the

recording or image directly from the URL. Figure 3 illustrates

the pipeline of request invocation and processing using our

containerised YOLOv3 function for these two models.

Throughout our experiments, we consistently employed

synchronous request handling, irrespective of the call model.

Unlike systems with a central job queue where the next job is

picked up by an available worker, our HAProxy load balancer

dynamically allocates each incoming HTTP request to an

available worker in real-time. Hence, each worker can be seen

as an independent parallel queue. We discuss load balancing

methods in further detail in Section IV-A2.

YOLOv3 
Service

Client

HTTP Request:

Image as the Payload

(via Tailscale overlay network)

HTTP Response:
JSON Object with the list of detected obejcts

(via Tailscale overlay network)

YOLOv3 

Service
Client

HTTP Request:
URL to the Data Source as the Payload

(via Tailscale overlay network)

HTTP Response:
JSON Object with the list of detected obejcts

(via Tailscale overlay network)

Data 
Source

Fetch Image
(via ZeroTier overlay network)

a) Call-by-Value

b) Call-by-Reference

Fig. 3. Invocation pipeline for YOLOv3 function.

The benefit of incorporating both design patterns of invok-

ing the YOLOv3 function is twofold. Firstly, it provides us with

the flexibility to examine the influence of data source location

on load balancing algorithms. Secondly, it encompasses a

broader range of application design patterns.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Before discussing our experiments, we provide some con-

sideration to horizontal scaling, load balancing, and function

scheduling policies.

1) Horizontal scaling considerations: To ensure more pre-

dictable horizontal scaling behaviour across a heterogeneous

cluster, we set each pod instance to be allocated exactly

300 millicores of CPU and exactly 350MiB of memory. As

shown previously in Table III, despite equal CPU and Memory

allocation across pods, the performance of pods varies based

on the performance of the physical CPU on their respective

nodes. Given that all our worker nodes have 4GB of Memory,

a maximum of 6 pods is deployed at any given time on a given

worker node, reserving half of the Memory of the host for the

operating system and other applications.

To mitigate potential interference and randomness caused

by autoscaling mechanisms, we choose to disable autoscaling

in Kubernetes. Instead, we implement a linear increase in the



number of function pods within the system, aligning it with

the number of threads concurrently generating requests at the

load generator. This approach assumes that the number of pods

in the system always equals the number of concurrent threads

at the load generator. By disabling autoscaling and manually

adjusting the pod count based on the generated load, we

achieve a more controlled understanding of the load balancing

effects on system performance.

2) Load balancing considerations: We use five widely

used load balancing algorithms to distribute requests to the

function/pods in the cluster:

Random: It is a load balancing technique that distributes

incoming requests uniformly random across a set of resources.

Round Robin: In round-robin load balancing, the requests

are sequentially allocated to each available worker pod in

a circular or round-robin fashion, ensuring each worker pod

receives an equal number of requests over time.

Least Connections: To account for the heterogeneous per-

formance of resources, the least connection load balancing

algorithm is used to distribute incoming requests based on

the current number of active connections each worker pod is

handling. The goal is to proportionally distribute the workload

among worker pods by directing new requests to the worker

pod with the fewest active connections at any given time.

Weighted Round Robin: Worker pods are assigned weight

or priority values based on their capacity or performance met-

rics, like throughput. These weights determine the proportion

of requests directed to each pod: higher weights mean more

traffic, while lower weights mean less.

Billiard Sequencing Algorithm: Minimizing load balanc-

ing overhead for latency-sensitive applications, we explore

using billiard sequences [18] to efficiently dispatch requests

among function workers in the cluster. We implement deter-

ministic billiard sequencing, which takes into account both the

profiled worker performance and the prior dispatch sequence

similar to [7]. The use of billiard sequences typically results in

reduced queuing time for function requests compared to other

deterministic load balancing algorithms like Round Robin and

Weighted Round Robin [7].

Out of the five load balancing algorithms discussed,

HAProxy supports the Random, Round Robin, Weighted

Round Robin and Least Connections out of the box. For the

Billiard algorithm, we create a custom HAProxy configuration

file which loads a Lua script that implements the Billiard

algorithm and sets other configurations and parameters in

HAProxy. For algorithms that require routing probabilities

such as Weighted Round Robin and Billiard, we calculate the

routing probabilities for each pod based on the performance

of each worker node with the following equation:

Pp = (Wn ÷Mn)÷max
∀n

(Wn) · 256,

where Pp is the routing probability for pod p, Wn represents

the weighting of the node calculated based on the number

of successful YOLOv3 function invocations a worker node

completes across all of its pods within a window of 60 seconds

(Table IV), and Mn is the maximum number of pod replicas.

TABLE IV
PODS’ RELATIVE PERFORMANCE ON EACH WORKER BASED ON PROFILING

Node Type
Max Pod

Count

Avg. of Successful

Invocations Per Node

Avg. of Successful

Invocations Per Pod

EdgeARM1 6 37.667 6.278

EdgeARM2 6 37.333 6.222

EdgeARM3 6 33.333 5.556

EdgeVM1 6 172.333 28.722

EdgeVM2 6 183.333 30.556

Fog1 6 271.333 45.222

Fog2 6 257.000 42.833

Cloud1 6 169.000 28.167

SUM 48 1161.332 193.555

The range weighting values that HAProxy accepts for each

target is between 0 - 256, inclusive.

3) Function Scheduling Policies: Since resources are het-

erogeneous in terms of computational power and latency,

placement policy will significantly affect the overall perfor-

mance of the system. To observe the performance of load

balancing algorithms, we consider two different placement

strategies for the function pods.

Default Kubernetes Scheduler Placement: The Kuber-

netes default pod placement policy, or scheduler, meticu-

lously evaluates numerous constraints and resource metrics

per node to optimize resource utilization across the cluster.

Although this placement policy generally results in balanced

pod placements across the cluster, it is not deterministic with

each experiment run. Therefore, for consistent results, we

simulate it deterministically using a predefined static ordering

to determine the node on which the next pod will be deployed.

To establish this ordering, we start with a benchmark

deployment of zero pods, gradually increasing the number of

replicas in the deployment by one per round. In each round,

the new replica’s node is added to the ordering, assigning

it a score equivalent to the current round number. For a

benchmark comprising n rounds, each node S may appear

in the resulting ordering between 0 and n times (0 ≤ x ≤ n).

In our benchmarks, each node appears exactly six times, as

all nodes have an equal amount of memory. We conduct the

benchmark five times in total, averaging the scores for each

node occurrence, Sx. These averaged values of Sx are then

sorted in ascending order. In our actual experiments, we deploy

three pods per iteration based on this sorted ordering. The

final pod scheduling order achieved through this method is

presented in Table V.

Throughput-aware Greedy Scheduling: In this Schedul-

ing, functions are strategically positioned on nodes based on

their throughput performance. The process starts by choos-

ing nodes with the highest throughput, assigning as many

pods/replicas as possible to each node using profiling data.

When a node reaches its capacity and can no longer ac-

commodate additional functions, the next node with the best

throughput is selected, and the process continues (Table V).

B. Workload Generation

Workload generation is performed using the Grafana k613

utility as it is able to log events and metrics at a highly granular

13https://k6.io/



level out of the box, and scripts for custom load generation

and logging behaviour can be easily written and run with it.

The experiment comprises multiple load generation itera-

tions. As previously mentioned, in each iteration, we increment

the total number of pods across the system by 3, up to a

maximum of 6 pods deployed on any particular node, accord-

ing to the current scheduling policy at any given time. This

incremental addition of 3 new pods per iteration aims to reduce

the overall number of iterations required per experiment. Note

that, the number of concurrent threads at the load generator

equals the number of pods in the system. Once all pods

are ready, the load starts to be generated for a window of

30 seconds. After this window ends, no new requests will

be generated, but any requests that are still in-flight will be

allowed to complete.

TABLE V
DETERMINISTIC POD PLACEMENT SEQUENCE FOR DEFAULT

KUBERNETES AND THROUGHPUT-AWARE PLACEMENT POLICIES

Iter # of Pods
Kubernetes Throughput-aware

Pod 1 Pod 2 Pod 3 Pod 1 Pod 2 Pod 3

1 3 EdgeARM1 EdgeARM3 EdgeARM2 Fog1 Fog1 Fog1

2 6 EdgeVM1 Cloud #1 Fog #1 Fog1 Fog1 Fog1

3 9 EdgeVM2 Fog2 EdgeARM3 Fog2 Fog2 Fog2

4 12 EdgeARM2 EdgeARM1 Fog2 Fog2 Fog2 Fog2

5 15 Cloud1 Fog1 EdgeVM2 EdgeVM2 EdgeVM2 EdgeVM2

6 18 EdgeVM1 EdgeARM3 EdgeARM1 EdgeVM2 EdgeVM2 EdgeVM2

7 21 EdgeARM2 EdgeVM1 EdgeVM2 EdgeVM1 EdgeVM1 EdgeVM1

8 24 Fog2 Cloud1 Fog1 EdgeVM1 EdgeVM1 EdgeVM1

9 27 EdgeARM2 EdgeARM1 EdgeARM3 Cloud1 Cloud1 Cloud1

10 30 Fog1 Cloud1 EdgeVM1 Cloud1 Cloud1 Cloud1

11 33 EdgeVM2 Fog2 EdgeARM3 EdgeARM1 EdgeARM1 EdgeARM1

12 36 EdgeARM2 EdgeARM1 Fog1 EdgeARM1 EdgeARM1 EdgeARM1

13 39 EdgeVM2 Value 4 EdgeVM1 EdgeARM2 EdgeARM2 EdgeARM2

14 42 Fog2 EdgeARM2 EdgeARM3 EdgeARM2 EdgeARM2 EdgeARM2

15 45 EdgeARM1 EdgeVM2 EdgeVM1 EdgeARM3 EdgeARM3 EdgeARM3

16 48 Fog1 Fog2 Cloud1 EdgeARM3 EdgeARM3 EdgeARM3

C. Experimental Results

In this section, we report major findings and experimental

results evaluating the impact of various factors. We specifically

explore the effects of load balancing algorithms, call methods,

location of data source, available bandwidth, and gateway

location. The metrics we focus on are throughput and its

inverse correlation, response time. We define performance

in terms of maximizing the average throughput, and the

cumulative probability distribution (CDF) of the response time.

Each experiment is repeated 5 times, and the average and

standard error are reported in the results.

1) Effects of Load Balancing: In this section, we evaluate

the impact of various load balancing algorithms (as discussed

in Section IV-A2) on the performance of the system. We

assume the gateway is positioned at the edge and employ

call-by-value as the default setting, sending the image as the

payload of the request. We report results for the algorithms

under Kubernetes’ default and throughput-aware placement

policies. No bandwidth restrictions are imposed, allowing for

the utilization of the maximum unrestricted Internet bandwidth

available at the edge for our testbed, which is ∼100 Mbps for

downloads and ∼17 Mbps for uploads.

Default Kubernetes placement policy: Figure 4(a) demon-

strates that the Least Connections algorithm outperforms all

other algorithms, while Round Robin performs the worst

due to pods being spread across heterogeneous nodes in the

cluster, resulting in a noticeable difference of around 3000-

4000 milliseconds slower response time compared to Random

at around 60% of served requests (Figure 5(a)). Additionally,

we observe that load balancing algorithms requiring routing

probabilities to be specified, such as Billiard and Weighted

Round Robin, initially perform comparably to Least Connec-

tions. However, their performance decreases as more worker

pods are introduced to the system, eventually reaching near-

equivalent performance levels as Round Robin and Random.

Throughput-aware placement policy: When the

throughput-aware placement policy is utilized, we find

in Figure 4(a) that the Least Connections algorithm still

performs the best throughout all iterations of the experiments.

Notably, when all worker pods are located at either the fog

and/or edge, we observe that the Round Robin algorithm ranks

second in performance after Least Connections. Interestingly,

the performance then sharply declines to become the worst

overall once worker pods located in the cloud are introduced

in the 9th and 10th iterations (27 and 30 active replicas,

respectively), although the average performance of cloud

worker pods are approximately similar to that of fog worker

pods (as per Table IV).

This is due to the fact that worker pods at the cloud node

take on average approximately 750 milliseconds (∼250ms

latency, ∼500ms CPU time) per function invocation com-

pared to worker pods on the EdgeVM nodes which take

approximately 892 milliseconds (∼2ms latency, ∼890ms CPU

time), and those at the fog nodes which take approximately

615 milliseconds (∼30ms latency, ∼585ms CPU time). This

shows that latency plays a non-neglible part in the drop in

performance in the 9th and 10th iterations, where algorithms

that send a higher proportion of requests to cloud worker

pods experience a higher drop in performance. Response times

across the board are better with throughput-aware placement

policy compared to default Kubernetes placement policy as it

avoids sending requests to slower nodes as much as possible

throughout the entire lifetime of the experiments.

Key Insights: In heterogeneous environments such as com-

pute continuum where worker pods are distributed across

diverse nodes in the cluster, the Least Connections load balanc-

ing algorithm demonstrates best performance. By dynamically

directing traffic to nodes with the fewest active connections,

it effectively optimizes resource utilization and minimizes

response times. When worker pods are more homogeneous,

Round Robin remains a good alternative algorithm to use.

Otherwise, Billiard and Weighted Round Robin are viable

alternatives, but only when the degree of heterogeneity of

worker pods across the cluster is relatively low.

2) Effects of Call Method: In this section, we keep the ex-

periment settings as in the previous section. However, we now

switch the call method from call-by-value to call-by-reference.

Unless otherwise specified, from this section onwards, we

report results solely for the Least Connections algorithm as

it outperforms all other load balancing algorithms.
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Fig. 4. Average throughput of load balancing algorithms, including Random
(Rand), Round Robin (RR), Least Connection (LC), Billiard, Weighted Round
Robin (WRR) with a) Kubernetes and b) Throughput-aware policies, both
using call-by-value method, and gateway and payload at the edge.
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Fig. 5. Response time CDF of load balancing algorithms, including Random
(Rand), Round Robin (RR), Least Connection (LC), Billiard, Weighted Round
Robin (WRR) with a) Kubernetes and b) Throughput-aware policies, both
using call-by-value method, and gateway and payload at the edge.

Although call-by-reference has its advantages as described

in Section III-C1, it incurs additional latency due to the need

to make additional network requests to fetch the payload. This

increases the proportion of I/O wait time spent by each worker

pod, and network/bandwidth congestion at the data source.

Default Kubernetes placement policy: As Figure 6(a)

shows, after changing the call method to call-by-reference,

when the data source still remains at the edge, the performance

remains relatively similar to that of pass-by-value, with slight

differences attributed to additional network requests. However,

when the data source (payload) is moved to the fog and cloud,

the impact becomes more significant. In the next section, we

delve into this impact with greater detail.

Throughput-aware placement policy: When the

throughput-aware placement policy is used, as shown in

Figure 6(b), we witness a similar observation, with a slight

increase in variability of the performance.

Key Insights: The utilization of both call-by-value and call-

by-reference methods results in relatively similar performance

when the data source and the trigger point for the requests

remain at the same location. However, if there is a larger

distance between the two, the performance drops substantially

as network delay plays a significant role. Although the use of

call-by-reference addresses some key limitations of call-by-

value, such as overloading the gateway by large requests, the

additional network calls incurred add extra delay when using

call-by-reference. Call-by-reference remains a viable option

when call-by-value is infeasible. Note that regardless of the

call method, a throughput-aware placement policy provides

better overall response time compared to the Kubernetes de-

fault policy by placing pods on nodes with higher throughput
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Fig. 6. Average Throughput of the Least Connection load balancing algo-
rithm for call-by-value (Value) and call-by-reference (Ref) methods with a)
Kubernetes and b) Throughput-aware policies, and gateway and payload (data
source) at the Edge, Fog, and Cloud.
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Fig. 7. Response time CDF of the Least Connection load balancing algo-
rithm for call-by-value (Value) and call-by-reference (Ref) methods with a)
Kubernetes and b) Throughput-aware policies, and gateway and payload (Data
Source) at the Edge, Fog, and Cloud.

during the earlier stages, as shown in Figure 7.

3) Effects of Data Source Location: We now investigate

the impact of the data source location towards the overall

performance. Here, different amounts of latency can be added

to the response time due to the location of the data source. We

focus on the call-by-reference method because it permits the

movement of the data source. For the call-by-value method,

the payload data is always on the same device generating

the load and is sent with the request, thus eliminating any

networking latency in fetching the payload data, and only disk

I/O is involved.

Default Kubernetes placement policy: In Figure 6(a),

we observe that while the payload resides in the Fog, the

performance is slightly better compared to the Cloud. Though

the performance gap is evident, it is not as significant as the

difference in delay. While cloud latency is at approximately 8

times higher than that of the fog, the disparity in throughput

never exceeds two orders of magnitude. This is due to there

being a total of 5 nodes at the edge, compared to 2 at the

fog and only 1 at the cloud. In addition, due to the limited

download bandwidth at the edge, contention among the pods

for fetching the remote data exacerbates the situation, resulting

in a decrease in overall throughput.

Throughput-aware placement policy: Overall, similar ob-

servations apply to the Throughput-aware placement policy

in Figure 6(b). More substantial amount of variability in

performance can be seen, which in the fog payload scenario

starts occurring after more non-fog pods are introduced, and

starts in the cloud payload scenario after more edge pods are

added to the system.

Key Insights: Bandwidth plays a larger role compared to



latency in affecting performance, especially for data-intensive

applications such as image processing. The co-location of as

many infrastructure components and as much data as possible

in the same segment of the continuum (in this case, at the

edge) will generally result in better performance outcomes

due to better local link speeds between them (intra-segment),

compared to inter-segment link speeds between the edge and

fog, fog and cloud, and edge and cloud.

4) Effects of Bandwidth Restrictions: In the previous sec-

tion, we discovered that available bandwidth can significantly

impact performance, even more than the additional delay

introduced by the location of the data source for each request.

Therefore, to gauge the impact of available bandwidth more

precisely, we replicate the experiments using a setup similar

to the previous section, but with imposed bandwidth lim-

its. Bandwidth limits are consistently applied simultaneously

across all worker nodes and the web server node. Note that the

available bandwidth capacity contributes to the overall latency

(network wait time) when fetching a payload over the network.

Additional delays occur due to contention when any link in

the network between two devices becomes saturated.

Default Kubernetes placement policy: In Figure 8(a), it

is evident that as the bandwidth limit tightens, the system’s

performance noticeably reduces. This is due to the reduction

in data transfer rate caused by lower bandwidth, particularly

impacting the transmission of larger data objects (images)

from the source to the pod.

Throughput-aware placement policy: A similar trend

can be observed for the Throughput-aware placement policy.

However, the performance advantage that Throughput-aware

policy has over Kubernetes placement policy at the earlier

iterations is negated when available bandwidth is sufficiently

low.

Key Insights: Bandwidth is shown to be the most critical

factor influencing system performance. Specifically, since the

edge segment of the network may have lower bandwidth

compared to the rest of the continuum, bandwidth capacity

must be regarded as the most influential factor affecting system

performance.

5) Effects of Gateway Location: In this section, we now

explore the effects of gateway location. As a gateway serves as

the central ingestion point of all requests, its performance can

be affected by the location in the continuum, and can become

a potential bottleneck in the network. The nature and size of

requests also plays an important role, e.g., call-by-reference

or call-by-value. If requests are sent through call-by-reference

method, the gateway is not involved in the path the payload

takes between the data source and the worker pod.

Default Kubernetes placement policy: As shown in Fig-

ures 10(a) and 11(a), the location of the gateway can sig-

nificantly affect the overall system performance in terms of

throughput, due to the additional delay introduced by remote

layers such as fog and cloud. However, as expected, the

impact is more pronounced in the case of call-by-value, as

it necessitates the entire payload to traverse to the gateway

before reaching the designated pods.
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Fig. 8. Average Throughput of the Least Connection load balancing algorithm
for various bandwidth limits with a) Kubernetes and b) Throughput-aware
policies, call-by-reference method, and payload and gateway at the edge.
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Fig. 9. Response time CDF of the Least Connection load balancing algorithm
for various bandwidth limits with a) Kubernetes and b) Throughput-aware
policies, call-by-reference method, and payload and gateway at the edge.

Throughput-aware placement policy: As shown in Fig-

ure 11(b), when pods are scheduled according to the

Throughput-aware placement policy, the call-by-reference

method demonstrates lower sensitivity to the gateway’s loca-

tion. However, in contrast to the Kubernetes placement policy,

when the gateway is located in the fog compared to when

it is located at the edge, the average throughput remains

significantly close when the number of replicas ranges from 3

to 12, as shown in Figure 10(b). This is because the gateway

and pods are all located in the fog. The system maintains a

slightly higher throughput of 7.5 requests per second from

12 to 24 active replicas. The reason is that the Throughput-

aware placement policy schedules pods at the EdgeVM and fog

nodes during these iterations. This level persists until pods are

introduced at the cloud node at 27 active replicas, causing the

overall throughput to drop to around 4 requests per second for

the rest of the experiment.

Key Insights: The location of the gateway can significantly

affect the performance of the systems, especially for requests

carrying a large payload. The closer the gateway is to the trig-

ger points of the requests, the better the overall performance.

V. RELATED WORK

A. Resource Management in Edge-Cloud Continuum

A notable contribution is found in the work by authors [19],

which introduces KaiS, a scheduling framework intricately

integrated with bespoke learning algorithms designed for Ku-

bernetes (k8s)-based edge-cloud systems. By dynamically ac-

quiring knowledge of scheduling policies for request dispatch

and service orchestration, KaiS aims to augment the long-

term system throughput rate. Another significant scholarly

work [20] introduces Apollo, an innovative framework for
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Fig. 10. Average Throughput of the Least Connection load balancing
algorithm for various gateway locations for call-by-value method, with a)
Kubernetes and b) Throughput-aware policies, and payload at the edge.

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
# replicas/threads

0

5

10

15

20

Av
g 

Th
ro

ug
hp

ut
 (

re
q/

s) Edge Gateway
Fog Gateway
Cloud Gateway

(a)

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
# replicas/threads

0

5

10

15

20

Av
g 

Th
ro

ug
hp

ut
 (

re
q/

s) Edge Gateway
Fog Gateway
Cloud Gateway

(b)

Fig. 11. Average Throughput of the Least Connection load balancing
algorithm for various gateway locations for call-by-reference method, with
a) Kubernetes and b) Throughput-aware policies, and payload at the edge.

the distribution of serverless function compositions across the

cloud-edge continuum.

Taking a different perspective, a study by authors [21]

presents Nautilus, a runtime system meticulously crafted to

deploy microservice-based user-facing services effectively in

the cloud-edge continuum. Nautilus ensures Quality of Service

(QoS) while minimizing computational resource requirements,

incorporating components such as a communication-aware

microservice mapper and a contention-aware resource man-

ager. Additionally, a scholarly contribution [22] introduces

MiCADO-Edge, an extension of the MiCADO cloud orches-

tration framework tailored specifically to edge and fog nodes.

Furthermore, [23] encompasses proposals for dynamic or-

chestration architectures spanning the Cloud-Edge continuum.

These architectures prioritize application QoS by providing

schedulers with input parameters commonly utilized in con-

temporary scheduling algorithms. Addressing cost-effective

scheduling, [24] eliminates the necessity for manual placement

of edge services in the cloud-to-edge computing continuum.

Lastly, [25] outlines the extension of the Knative platform

for scheduling complex serverless applications in the Cloud-

to-Edge continuum. The objective is to overcome Knative’s

static scheduling limitations by imbuing the scheduler with

awareness of runtime communication intensity, resource usage,

and cluster network conditions.

B. Performance Evaluation on Serverless Edge Applcations

Palade et al. [26] evaluate four open-source serverless

frameworks (Kubeless, Apache Open-Whisk, OpenFaaS, and

Knative) within the context of an edge computing environ-

ment. Javed et al. [27] examine the performance of serverless

platforms, including OpenFaaS, AWS Greengrass, and Apache

OpenWhisk, on single-board computers at the network edge.

Comparative analysis with public cloud offerings like AWS

Lambda and Azure Functions is conducted. Moereover, con-

ducting a thorough examination, [28] assesses the performance

of a serverless edge computing system using well-known open-

source frameworks (Kubeless, OpenFaaS, Fission, and funcX).

Yet, these studies are different from our work as they only

consider the edge and evaluate only the serverless frameworks.

Bac et al. [29] introduce an architectural framework for

deploying machine learning workloads as serverless functions

in edge environments. This work differs from ours as they

introduce a new framework.

Focused on processing environments with edge resources,

Cilic et al. [30] scrutinize current executions, considering QoS

parameters and orchestration platforms. The study assesses

prevalent edge orchestration platforms for their workflow in

incorporating remote devices, emphasizing the adaptability

of scheduling algorithms to enhance targeted QoS attributes.

This study does not consider edge-cloud computing and only

evaluate the orchestration without investigating different load

balancing methodologies.

Similar to our work, which introduces a structured approach,

the study in [31] assesses serverless platforms in hybrid edge-

cloud infrastructures. The methodology involves establishing

a Kubernetes cluster on diverse devices, with a focus on

evaluating OpenFaaS, OpenWhisk, and Lean OpenWhisk. This

exploration provides insights into the performance and adapt-

ability of these platforms in hybrid environments. However,

they do not evaluate performance as comprehensively as our

work does, owing to other aspects such as scheduling, load

balancing, data source locations, etc.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel architectural design for a

practical edge-to-cloud infrastructure, utilizing common tools

like Kubernetes, Tailscale, ZeroTier, HAProxy, and others.

Through comprehensive emperical performance evaluations on

a real testbed, we examined various design patterns and factors

affecting the performance of AI-based IoT application in the

compute continuum. Results showed that that in heterogeneous

environments, the Least Connections load balancing algorithm

optimally directs traffic to nodes with fewer active connec-

tions, enhancing resource utilization and minimizing response

times. The choice between call-by-value and call-by-reference

methods depends on the proximity of data sources and request

trigger points. Bandwidth emerged as a critical factor, with

co-locating components at the edge proving beneficial due to

faster local link speeds. The gateway’s proximity to request

trigger points significantly impacts system performance, espe-

cially for large payloads.

In future, we will focus on design and development of

scheduling mechanisms that can autonomously adjust system

configurations based on real-time changes in workload, net-

work conditions, and resource availability. We also investigate

approaches to enhance energy efficiency and sustainability of

edge-to-cloud infrastructures.
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