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ABSTRACT

The adoption of the Internet of Things (IoT) has proliferated across various domains, where everyday
objects like refrigerators and washing machines are now equipped with sensors and connected to the
internet. Undeniably, the security of such devices, which were not primarily designed for internet
connectivity, is of utmost importance but has been largely neglected. In this paper, we propose a
framework for real-time DDoS attack detection and mitigation in SDN-enabled smart home networks.
We capture network traffic during regular operations and during DDoS attacks. This captured traffic
is used to train several machine learning (ML) models, including Support Vector Machine (SVM),
Logistic Regression, Decision Trees, and K-Nearest Neighbors (KNN) algorithms. These trained
models are executed as SDN controller applications and subsequently employed for real-time attack
detection. While we utilize ML techniques to protect IoT devices, we propose the use of SNORT,
a signature-based detection technique, to secure the SDN controller itself. Real-world experiments
demonstrate that without SNORT, the SDN controller goes offline shortly after an attack, resulting in a
100% packet loss. Furthermore, we show that ML algorithms can efficiently classify traffic into benign
and attack traffic, with the Decision Tree algorithm outperforming others with an accuracy of 99%.

1. Introduction
In recent years, the proliferation of smart home technolo-

gies has significantly enhanced residential convenience and
efficiency. However, this advancement has also introduced
new vulnerabilities, particularly to Distributed Denial of Ser-
vice (DDoS) attacks. Current methodologies in network se-
curity, while effective to a degree, often struggle with the
real-time detection and mitigation of such attacks in increas-
ingly complex and interconnected home networks.

This paper addresses these critical challenges by propos-
ing a novel framework that leverages traditional Machine
Learning (ML) techniques, tailored specifically for the nu-
anced environment of smart home networks. Our approach
is designed to not only detect but also mitigate DDoS at-
tacks in real-time, bridging a crucial gap in current security
methodologies.

The relevance of our approach is underscored by its align-
ment with the latest trends in network security and IoT device
integration. By focusing on real-time processing and adapting
ML models to the specific context of smart home networks,
our methodology presents a timely and effective solution to
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an escalating security concern.
In a typical smart home, various sensors (such as tempera-

ture, humidity, and pressure sensors) and household items like
refrigerators, washingmachines, IP cameras, smart bulbs, and
alarm systems are connected to the internet. They commu-
nicate with remote applications and servers to collect, share,
and transmit data from the environment (Mahmoud et al.,
2015), aiming to simplify the homeowner’s life (Mahjabin
et al., 2017). However, due to the limited processing capabil-
ity and memory in these devices, they often lack embedded
security mechanisms, becoming vulnerable launchpads for at-
tacks against different systems. As reported by (Luigi, 2012),
a DDoS attack on smart TVs and Blu-ray DVDs can result
in these devices entering an endless reboot loop, rendering
them unusable for the homeowner.

Information and communication resources in a smart
home environment are crucial to homeowners; thus, the se-
curity of the smart home is paramount, yet it can be com-
promised by DDoS attacks. For instance, encrypting user
credentials in a smart refrigerator is impractical due to lim-
ited bandwidth, memory, and processing power required for
encryption and decryption tasks (ENISA, 2017). In 2016,
vulnerable IoT devices were exploited to carry out one of
the largest Distributed Denial of Service (DDoS) attacks us-
ing malware known as the Mirai IoT Botnet (Kolias et al.,
2017). The Mirai IoT botnet compromised over 150,000 IoT
devices, subsequently launching a DDoS attack against a
DNS provider, DYN (Antonakakis et al., 2017).

Software-defined network (SDN) architecture provides
logically centralized network control, programmable net-
works, and network abstraction (Flauzac et al., 2015). In
this paper, we propose a real-time DDoS attack detection and
mitigation framework in an SDN-enabled smart home net-
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work. The approach combines a Signature-based Intrusion
Detection System (IDS) and ML algorithms to detect such
attacks from malicious hosts within the smart home network
in real-time without interrupting network operation between
devices in the Smart home.

The SDN controller, central to the IoT testbed and our
experiments, controls the IoT devices and directs traffic be-
tween each device, and the proposed detection algorithms are
deployed on the SDN controller as an application. We use
the RYU SDN Controller, which is responsible for the entire
network’s operation in the smart home, to connect various
IoT devices. The network traffic between these devices is
captured while TCP SYN flood DDoS attacks are conducted
from several hosts in the network, targeting the SDN con-
troller and IoT devices. Hence, the controller is crucial to the
success of the proposed detection technique.

The SDN controller itself is susceptible to DDoS attacks
with devastating effects on the operation of the IoT testbed,
as shown in our experiments. To protect the SDN controller
from such attacks, we deploy SNORT IDS with rules in its
database to match the controller’s IP address and Port number.
SNORT IDS is suitable for detecting known attacks by using
a database of signatures from known attacks (Mahjabin et al.,
2017). However, it is not suitable for IoT network traffic
due to the heterogeneous characteristics of IoT devices and
the daunting task of creating rules for every IoT device in
the smart home network. Therefore, trained ML models are
deployed on the SDN controller to protect IoT devices from
DDoS attacks in the network in real-time. In summary, the
main contributions of this work are as follows:

1. We propose a real-time DDoS attack detection and mit-
igation approach, enabling legitimate IoT devices to
continue communicating in a smart home with mini-
mal network interruption. This approach is scalable as
it can be deployed on the SDN controller without incur-
ring extra deployment costs in large-scale networks.

2. Using dimension reduction techniques, we identify and
select an accurate set of features that maximize rele-
vance, reduce redundancy, and decrease the number
of features, thereby enhancing the overall detection
accuracy of the proposed framework.

3. We conduct an evaluation of the proposed system in a
real-world testbed and perform a comprehensive perfor-
mance comparison of the results using a DDoS attack
dataset available in the public domain alongside the
dataset captured from the IoT testbed. The results from
the evaluation and comparisons with standard datasets
indicate that the proposed technique is scalable and
improves detection accuracy while also minimizing
false positives.

The remainder of the paper is structured as follows. In
Section 2, We introduce the background of the study and
discuss different types of DDoS attacks, key considerations
for detecting and mitigating DDoS attacks, along with pri-
vacy and security considerations. Section 3 presents the
proposed frameworks, covering the SNORT IDS framework

and the Detection Architecture, which includes the different
components of the proposed real-time detection technique.
In Section 4, we identify the selected ML algorithms used
alongside the proposed framework for real-time detection,
Feature Extraction techniques, network topology, and finally
the attack scenarios. In Section 5, we conduct the perfor-
mance evaluation of the detection techniques with standard
datasets, compare the results, and discuss the outcomes of
the proposed framework. Next, we discuss the role of our
techniques in enhancing DDoS detection in SDN-enabled
smart homes and propose future research directions in Sec-
tion 6. Section 7 presents related works. Finally, Section 8
concludes the paper and highlights the open research areas
and concludes the work.

2. Background
In this section, we explore different types of attacks, essen-

tial factors for DDoS detection andmitigation in IoT networks,
and considerations for privacy and security.

2.1. Various Types of Attacks
2.1.1. UDP Flood Attack

A User Datagram Protocol (UDP) flood attack is a type
of DDoS attack that floods a victim device with random
UDP requests. The victim’s device continuously monitors
the listening port and responds with an unreachable desti-
nation message (ICMP) since no application utilizes those
random port numbers. Consequently, this process depletes
the victim’s resources, rendering it incapable of responding
to legitimate UDP packets (Imperva, 2011).

2.1.2. TCP Syn Attack
In TCP SYN attacks, a component of DDoS tactics, the at-

tacker leverages the TCP connection procedure. The attacker
initiates a SYN request to the server, prompting a SYN-ACK
response, but then fails to respond or redirects the response,
resulting in the server being left with open, incomplete con-
nections (Machaka et al., 2016). In other words, the attacker
can utilize vulnerable IoT devices to flood the victim with
SYN requests. The attacker then either fails to respond to
the SYN-ACK or redirects the response to a spoofed IP ad-
dress of another victim. This leaves the server with open
ports awaiting SYN-ACK responses, resulting in multiple
open connections without responses. As a consequence, the
server’s resources are depleted, causing it to deny responses
to legitimate SYN requests.

2.1.3. Reflective Attacks
Reflective attacks entail the spoofing of a victim’s IP

address. The attacker sends requests to a server, which unwit-
tingly directs its response to the spoofed IP address. Figure
1 depicts an example of a Reflective DDoS attack using IoT
devices. Other types of DDoS attacks include TCPreset,
UDPStorm, and Topology discovery poison attack (Khan
et al., 2017).

Reflective attacks, by nature, do not directly target IoT
devices. Instead, they exploit publicly accessible servers
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Figure 1: Reflective DDoS Attack using IoT Devices

to amplify and redirect traffic to the victim. In a typical
home network scenario, where IoT devices have private IP
addresses shielded by NAT, the reflective attack would pro-
ceed as follows:

1. Initial Compromise and Command and Control (CC):
The attacker first compromises one or more IoT devices
within the home network. This can be achieved through
various means such as exploiting default credentials,
unpatched vulnerabilities, or phishing attacks. Once
compromised, these devices can communicate with an
external Command and Control server, even in a NAT
environment, as outbound connections from private IP
addresses are allowed and managed by the router.

2. Exploitation of Public Servers: The attacker utilizes
the compromised IoT devices to send requests to pub-
lic servers (e.g., DNS, NTP) with spoofed source IP
addresses. These requests are crafted to elicit large re-
sponses. The source IP addresses used in the spoofing
are those of the intended victim, which could be an
external entity or another device within the same home
network.

3. Amplification and Reflection: Public servers, upon
receiving these requests, respond with significantly
larger payloads directed towards the victim’s IP ad-
dress. This amplification of traffic, combined with the
reflection (redirecting the response to an address dif-
ferent from the source), results in a substantial amount
of unsolicited traffic overwhelming the victim.

4. Impact on Smart Home Networks: In home networks,
where IoT devices are typically behind NAT, the router
plays a crucial role. The unsolicited traffic from the
public servers is directed towards the home router’s

public IP address. The router, depending on its config-
uration and the nature of the attack, may struggle to
manage this influx, leading to network congestion or
denial of service.

It is important to note that while NAT provides a layer
of protection by masking internal IP addresses, it does not
inherently prevent compromised internal devices from partic-
ipating in reflective attacks, nor does it fully shield the home
network from becoming the target of such attacks.

2.2. Key Considerations for DDoS Detection and
Mitigation Solutions

In the context of DDoS detection and mitigation, under-
standing essential factors is crucial for devising effective so-
lutions. The following items, defined in technical documents
such as the Internet Denial of Service Considerations (RFC
4732) (Group, 2006) and the US-CERT DDoS Quick Guide
(Security and Agency, 2020), are considered key factors:

1. Ability to detect and mitigate DDoS attacks from ex-
ternal sources and within the local network (internal
attacks) - It is vital to detect attacks from spoofed IP
addresses generated by malicious and compromised
hosts within the IoT environment, as well as attacks
generated from external domains. This will also pre-
vent compromised IoT devices from being used for
attacks against external domains.

2. Detection and Mitigation of multiple attacks - The pro-
posed solution should detect multiple types of DDoS
attacks, such as Volumetric and Network exhaustion
attacks.

3. Protecting and Supporting the SDN control plane from
DDoS attacks - The SDN control plane becomes a
single point of failure for network devices when over-
loaded, or when the link between the OpenFlow switch
and the SDN controller is exhausted due to an attack.
The proposed system should also prevent overloading
the switch’s TCAM memory by employing effective
mitigation techniques.

4. Online Validation - The proposed solution should de-
tect DDoS attacks in real-time without interrupting
network operation. Additionally, it should have the
ability to validate the solution using various experi-
ments, network topologies, and datasets.

2.3. Security and Privacy Considerations
We integrate specific measures within our proposed SDN-

based DDoS detection and mitigation framework to ensure
the privacy of users is maintained. Privacy, a primary con-
cern in home networks, is addressed through the following
mechanisms:

1. Data Handling and Processing: All data collection
and analysis processes within our framework are de-
signed to comply with privacy-preserving principles.
Only essential network traffic metadata, such as packet
headers, are used for analysis, avoiding the inspection
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of payload data that could contain personal or sensi-
tive information. We employ strict data minimization
techniques to ensure that only the data necessary for
detecting and mitigating DDoS attacks are processed,
thereby reducing the exposure of private information.

2. Local Processing and Decision Making: Key compo-
nents of our framework, particularly the ML models
for intrusion detection, operate predominantly within
the smart home network. By processing data locally,
we avoid external data transmission, thereby reduc-
ing the risk of privacy breaches. Decisions regarding
network security are made internally within the SDN
controller, which resides within the Home’s network,
further ensuring that sensitive data does not leave the
premises.

3. Proposed Framework
This section presents our proposed detection framework

designed to protect the SDN controller and IoT devices from
DDoS attacks. The framework includes a SNORT IDS and
trained ML IDS.

3.1. SNORT IDS Framework
SNORT (Roesch, 1999) is an open-source network intru-

sion detection system (IDS), that was chosen for its robust-
ness, flexibility, and well-established reputation in network
security. Its signature-based detection approach is highly
effective in identifying known attack patterns, making it a
reliable choice for protecting the SDN controller against com-
mon and well-documented threats. Moreover, SNORT’s ex-
tensive support for custom rules allows for tailored security
measures specific to the SDN environment. The decision to
use SNORT is also influenced by its widespread adoption in
both academic research and industry, which ensures a rich
set of resources and community support for its integration
and deployment in our framework.

The SDN controller can be targeted via the OpenFlow
port or the IP address used for communication with the Open-
Flow switch. Therefore, two SNORT rules are created to
detect such attacks aimed at the OpenFlow port and the SDN
controller’s IP address. However, using SNORT IDS to pro-
tect IoT devices is often impractical as it necessitates creat-
ing multiple rules tailored to each device’s characteristics in
the network. Moreover, updating rules for vulnerable IoT
devices becomes cumbersome with the emergence of new
attack forms. Figure 2 illustrates the SNORT detection frame-
work employed to safeguard the SDN controller from DDoS
attacks. The main components of the proposed SNORT IDS
detection framework are discussed below:

1. The smart home network comprises numerous IoT de-
vices linked to an OpenFlow switch, each serving a
distinct purpose. For instance, an IP camera transmits
streams of captured video, while other sensors gauge
humidity, temperature, and pressure. Both benign and
malicious network traffic can be generated within the
smart home network.

Figure 2: SNORT IDS Detection Framework

2. SNORT IDS, an open-source IDS, categorizes net-
work traffic based on predefined rules in the signature
database.

3. Rules are written in a single line, featuring the rule
header (source and destination IP addresses, protocols,
port numbers, and actions) and rule options (specify-
ing the packet portion to inspect and the defined rule
action).

4. The Unified2 File contains a packet alert generated
from a specific event, including the packet causing the
alert and its length in octets.

5. Barnyard2 interprets Snort unified2 binary output files
and conducts deep packet inspection.

6. MySQL Database stores interpreted events from Barn-
yard2, exporting them as CSV or Pcap files for further
analysis.

7. WebSnort serves as a web interface for packet analysis,
monitoring, and viewing SNORT alerts.

3.2. Detection Architecture
The main objective of the detection architecture is the

capability to effectively detect DDoS attacks, also, mitigate
such attacks in real-time while maintaining continuous net-
work operation of legitimate traffic. The proposed system
architecture consists primarily of three components, namely
Data Collection, Detection, and Mitigation components, as
shown in Figure 3. All components of the proposed system
are applications running on the RYU controller written in
Python programming language.

(1) Data Collection: TheData Collection component is tasked
with gathering network traffic within the topology. This
includes both benign and attack traffic, which is utilized
to train ML algorithms. The data is collected using the
Flow-based monitoring technique in the RYU Controller.
Flow entries in SDN switches, managed by the controller,
are used to track network traffic patterns. These entries
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Figure 3: Components of the System Architecture

provide valuable data that are used for detecting poten-
tial DDoS attack patterns. When a new flow is detected
by the switch, it forwards the flow details to the SDN
controller. The controller then analyzes this information
as part of the data collection process.

(2) Detection: The DDoS Detection component consists of
two elements: ML models, trained and exported from
TensorFlow, and a detection agent deployed on the SDN
controller. In the subsequent sections of the paper, we
delve into the specifics of various ML models that can
be integrated as part of the detection component.

(3) Mitigation: The DDoS Mitigation component leverages
the OpenFlow protocol’s programmability to respond
to detected attacks, either by rerouting or dropping traf-
fic from the attacking host. It is worth noting that as
the SDN ecosystem progresses with advancements like
P4 (Bosshart et al., 2014), our proposedmitigationmethod
can seamlessly be integrated into P4 environments. All
essential elements required for our method are readily
available in P4 environments, offering enhanced flexibil-
ity. Through P4, we can further customize and fine-tune
packet processing behaviors, including rerouting or drop-
ping traffic, crucial for effective DDoS attack mitigation.

3.3. Real-World Deployment Considerations
To provide a clearer understanding of the deployment

model for our proposed SDN-based DDoS detection and
mitigation framework in real-world scenarios, we detail the
placement and role of each component within a typical broad-
band connectivity architecture.

3.3.1. SDN Controller Deployment
In a real-world deployment, the SDN controller, which

is central to our framework, would ideally be situated within
the home where the IoT devices are situated. This placement
ensures robust connectivity and control over the network

infrastructure of the smart home which allows for efficient
management of network traffic and security policies.

3.3.2. Data Collection and Analysis
The data collection component, responsible for gathering

network traffic data for analysis, would be deployed at strate-
gic network nodes within the smart home, such as the smart
home main router or network switch, providing visibility to
the entire network traffic. Collecting data at these points
allows for a comprehensive view of the traffic patterns and
potential threats, ensuring effective monitoring and analysis.

3.3.3. Machine Learning Model Training and
Inference

For the training ofMLmodels, we propose utilizing cloud-
based services or dedicated servers within the smart home
infrastructure. These platforms offer the necessary compu-
tational resources for processing large datasets and training
complex models. In this paper, we utilized the Google Cloud
platform for model training.

Once trained, the inference instances of these models can
be deployed on the SDN controller. This integration allows
for real-time analysis and decision-making, enabling prompt
detection and mitigation of DDoS attacks at control plane of
the network.

It is important to note that our system operates exclusively
within the smart home infrastructure, ensuring data remains
within the premises, thus addressing privacy concerns. Al-
though training may take place on a cloud server or external
platform, our method solely extracts network traffic metadata
and packet headers, avoiding the use of sensitive or personal
packet payload data for training, thereby minimizing privacy
risks.

4. Selecting Suitable Classifier
In the development of our proposed DDoS detection

framework, we utilize four distinct supervisedML algorithms,
selected for their individual strengths in addressing the chal-
lenges of IoT network traffic analysis. Here, we elaborate
on the reasoning behind the selection of each model and its
effectiveness in our study.

1. Decision Trees: Utilized for their simplicity and effi-
ciency, Decision Trees are binary tree structures that
make predictions using both categorical and numeric
features, without the need for normalization. This char-
acteristic is particularly advantageous in handling di-
verse IoT data types. They are renowned for their rapid
training and prediction capabilities, making them suit-
able for real-time attack detection in IoT environments.

2. Logistic Regression: This model is popular for its scal-
ability to a large number of features and efficient dis-
tributed training. It functions by classifying numerical
feature vectors, making it adept at predicting the prob-
ability of network traffic being normal or an attack.
In our study, Logistic Regression demonstrated sig-
nificant efficacy in distinguishing between benign and
malicious traffic.
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3. Support Vector Machines (SVM): SVM is renowned
for its exceptional performance in high-dimensional
spaces, a common trait of network traffic data. While
trainingwith extensive datasets can be time-consuming,
SVM efficiently scores new data points. Our perfor-
mance evaluation in the later part of the paper shows
its accuracy in classifying network traffic within our
IoT network context.

4. K-Nearest Neighbors: Known for its straightforward
approach, KNN rapidly trains by storing all feature
vectors and their labels. During prediction, it identifies
themost common label among a test sample’s K nearest
neighbors. This method proved to be effective in our
framework, particularly due to its simplicity and the
relatively smaller size of the IoT datasets we analyzed.

It is worth mentioning that our detection method involves
a lightweight trained ML model that performs rapid infer-
ences for features extracted from network flows, making it
highly scalable. However, the training phase for constructing
an effective detection model is a resource-intensive and time-
consuming process, requiring powerful servers and extensive
data collection. In practical scenarios, such ML models can
be trained once using large datasets gathered from real smart
home environments and reused multiple times by deployment
across several smart home systems.

Given the limited size and quality of the dataset available
in our prototype smart home testbed, we made the deliberate
choice to exclude deep learning models from our approach.
Deep learning models typically excel in tasks requiring ex-
tensive data and intricate relationships, elements not readily
available in our case study. Therefore, we leave this avenue
as a potential area for future research.

4.1. Feature Selection (FS)
The network traffic captured by the Data Collection com-

ponent of the proposed detection architecture in our smart
home testbed undergoes Feature Selection (FS) analysis be-
fore training with the selectedML algorithms discussed in the
previous section. The datasets captured from the IoT testbed
comprise a total of 29 features, with 2,990,062 packets for
attack traffic and 2,668,936 packets for normal traffic. Vari-
ous techniques were employed to analyze the traffic features,
including those detailed below. Tables 1 and 2 present the
features before and after Feature Selection, respectively.

4.1.1. Principal Component Analysis (PCA)
This is a feature reduction technique where the dataset is

decomposed into principal components. The objective is to
transform a large dataset into a smaller one while preserving
asmuch of the original dataset’s information as possible. PCA
facilitates the visualization and analysis of high-dimensional
datasets in a lower-dimensional space, thereby reducing the
overall complexity of the detection algorithm.

To ensure that no single feature disproportionately influ-
ences the final components, we employed the Standard Scaler
class from TensorFlow to center the data by removing the

Table 1
Feature Description Before PCA

Feature Description Type

ip.length Total Length Numeric
frame.length Frame Length Numeric
ip.protocols Protocol String
ip.hdr_len Header Length Numeric
ip.flags.df Fragment Numeric
ip.flags.mf More Fragments Numeric
tcp.flags.res Reserved Numeric
tcp.flags.ns Nonce Numeric
tcp.flags.cwr Congestion Window Reduced Numeric
tcp.flags.ecn ECN-Echo Numeric
tcp.flags.ack Acknowledgment Numeric
tcp.flags.push Push Numeric
tcp.flags.reset Reset Numeric
tcp.flags.syn SYN Numeric
tcp.flags.fin Fin Numeric
tcp.windows_size Calculated window size Numeric
tcp.srcport Source Port Numeric
tcp.dstport Destination Port Numeric
tcp.length Segment Length Numeric
tcp.hdr.len Header Length Numeric
ip.ttl Time to live Numeric
tcp.ack Ack number Numeric
ip.frag.offset Fragment Offset Numeric
tcp.time.delta Time since first frame Time offset
class Traffic Category Binary

mean and scale it. This normalization procedure ensures that
all features contribute equally to the analysis.

4.1.2. Feature Selectors Class
This method employs three techniques to eliminate redun-

dant selected features from the datasets. The feature selector
class comprises the following methods:

1. Identify columns with missing fractions
2. Find feature with only one single unique value
3. Locate collinear features using a correlation coefficient

Missing and Single Unique Values: Zero value features
were identified in the captured dataset with missing values
above 70%, 80%, and 90% thresholds upon running the fea-
ture selector class for missing values. Furthermore, the sec-
ond method employed is straightforward and involves finding
any feature that has only a single unique value. This tech-
nique did not identify any features with a single unique value.
The results indicate that each column contains relevant infor-
mation using different threshold values.

Pearson Correlation: This method finds pairs of fea-
tures that are linearly related. The Pearson correlation ranges
between -1 and 1, with a value of 0 indicating no correlation
between the features. A value closer to 0 indicates a weak
correlation. A value of exactly 1 indicates a strong positive
correlation and a value closer to -1 implies a strong negative
correlation.

In the experiments, a correlation threshold of 90% was
selected. Utilizing this threshold for each pair of features, the
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Table 2
Feature Description after PCA

Feature Description Type

frame.length Frame Length Numeric
ip.protocols Protocol String
ip.hdr_len Header Length Numeric
ip.flags.mf More Fragments Numeric
tcp.flags.res Reserved Numeric
tcp.flags.cwr Congestion Window Reduced Numeric
tcp.flags.ecn ECN-Echo Numeric
tcp.flags.push Push Numeric
tcp.flags.reset Reset Numeric
tcp.flags.syn SYN Numeric
tcp.flags.fin Fin Numeric
tcp.windows_size Calculated window size Numeric
tcp.srcport Source Port Numeric
tcp.dstport Destination Port Numeric
ip.ttl Time to live Numeric
tcp.ack Ack number Numeric
ip.frag.offset Fragment Offset Numeric
tcp.time.delta Time since first frame Time offset
class Traffic Category Binary

Pearson correlation identifies features to be removed from
the dataset. Typically, the features identified for removal are
those that come last in the column order.

4.2. Network Topology
The smart home IoT testbed’s network topology, illus-

trated in Figure 4 features a RYU SDN controller linked to
a TP-Link switch that serves as a DHCP server for the con-
troller and the OpenFlow switches connected to the same
TP-link switch.

The Ryu controller was selected due to its compatibility
with the OpenFlow protocol, ease of use, and active develop-
ment community. Its open-source nature and the availability
of comprehensive documentation make it a suitable choice for
academic research, allowing for transparent and reproducible
results. Additionally, Ryu’s lightweight design and straight-
forward programming interface facilitate the integration of
custom applications like our DDoS detection and mitigation
modules. This flexibility, combined with its performance and
scalability, makes the Ryu controller an optimal choice for
our research purposes.

The RYU controller is installed on a server runningUbuntu
18.04.1 LTS, Intel i7 processor with 8GB of RAM. Two
Raspberry PIs are configured to serve as OpenFlow switches,
with IoT devices subsequently connected to these switches.
Among these devices is an IP camera equipped with a mo-
tion sensor, which captures movements and uploads image
streams using the FTP protocol to an FTP server hosted on
a network-connected device. Additionally, temperature, hu-
midity, and pressure sensors gather data from a living room
and transmit it via the MQTT protocol to a dashboard for
visualization, utilizing Freeboard (Freeboard, 2020).

Google Chromecast is connected to a SONY Smart TV,
while a Google HomeMini is linked to the same network. Ta-

Data plane

Southbound API

IoT Devices

Northbound API

Control plane

RYU
Controller

Application
plane

192.168.10.10 192.168.10.11

192.168.10.15

SDN App1 SDN App2 SDN App3 Proposed DDoS
Detection App

Figure 4: SDN-IoT Topology

ble 3 provides a list of devices within the smart home network.
A host connected to the OpenFlow switch executes multiple
TCP SYN DDoS attacks against the SDN controller on port
6633, the IoT sensors, and conducts another attack on the
IP Camera by uploading streams of captured images. These
DDoS attacks are conducted utilizing the Xerxes (Xerxes,
2020) and Hping3 (Hping3, 2020) tools.

TensorFlow is an open-source library developed byGoogle
for numerical computation and large-scale machine learning.
The captured network traffic is trained using TensorFlow on
a Tesla K80 GPU, which features 2496 CUDA cores and
12GB GDDR5 VRAM. The trained models are exported
from TensorFlow and utilized to assess the performance of
the proposed detection framework. Four supervised machine
learning algorithms were chosen to classify DDoS attack traf-
fic from regular traffic in the smart home network. These
classifiers were trained using a training set comprising 70%
of the dataset, including both benign and attack traffic, while
the remaining data served as a validation set. The experiment
was repeated ten times to ensure the training results derived
from the datasets are free from uncertainty.
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Table 3
List of IoT Devices

IoT Device Connection Type

Google Home Mini Wireless
Smart TV Wired
IP Camera Wired
Sensors (Temp. Humidity, Pressure) MQTT
Smart Plug Wireless
Google Chromecast Wireless

4.3. Attack Scenarios
As mentioned earlier, two different attack tools, Hping3

(Hping3, 2020) and Xerxes (Xerxes, 2020), are employed to
execute the attacks. Each tool adopts distinct approaches to
conduct DDoS attacks, offering various attack modes and
supporting different attack types. These tools are utilized
to execute actual DDoS attacks against a specified target.
To prevent overfitting with the machine learning algorithms,
we utilized both tools in different attack modes against the
targeted IoT devices. Subsequently, the network traffic was
captured for analysis using the selected machine learning
algorithms.

The Xerxes tool offers an automated method for executing
DDoS attacks, allowing for the launch of multiple attacks
against the same target or multiple targets simultaneously.
On the other hand, the Hping3 tool can send large volumes
of TCP SYN attack traffic while spoofing the source IP ad-
dresses, ensuring that the attack appears random to the target
and originates from multiple sources (Radware, 2021).

We conducted DDoS attacks in multiple scenarios during
the experiment. In Scenario I, the SDN controller was tar-
geted without configuring the SNORT IDS in the IoT testbed.
Multiple hosts were utilized to launch TCP SYN attacks
directed at the controller’s IP address and port number. Addi-
tionally, the attack tool employed generated TCP SYN attacks
from spoofed random IP addresses. The outcome of this at-
tack was a complete loss of network functionality, causing the
entire IoT testbed to go offline as the SDN controller served
as a single point of failure. Packet loss in this scenario was
observed to be 100%. This scenario was designed to illustrate
the devastating impact of the attack on the network controller
in the absence of any security mechanisms.

To avert the scenario depicted in Scenario I, we carried
out another attack on the SDN controller similar to that in
Scenario I. However, in Scenario II, the SNORT IDS was
configured to safeguard the controller from such attacks. Two
rules were established in the SNORT database to monitor the
controller’s IP address and port number. Any traffic matching
these rules initiated from an external network would trigger
the SNORT IDS to identify it as an attack, generating an alert
on the SNORT console, as illustrated in Figure 5.

In Scenario III, hosts within the smart home network
are employed to launch attacks against the IP camera and
sensors responsible for streaming images and collecting envi-
ronmental conditions data from the home. An attack script
automates the attacks during regular network operations; this

script dispatches multiple traffic streams to the designated
targets using randomly spoofed IP addresses. Referring to
the switch flow table depicted in Figure 6, an output action is
appended to each flow to mirror all network packets to port 5.
The network traffic in this scenario is captured during regular
network operation and post-attack. It is then converted to
a format suitable for using the Data collection component
described in Section 3.2. Finally, the captured network traffic
is utilized to train the selected ML algorithms.

5. Performance Evaluation
In this section, we evaluate the performance of our pro-

posed method, along with the evaluation of the selected ML
models, using both the smart home IoT testbed dataset and
other existing datasets. First, we analyze the performance of
ML models utilizing the IoT testbed. Then, we compare their
performance with other publicly available datasets. Finally,
we report the results of evaluating the signature-based IDS
performance to protect the SDN controller.

We utilize Google TensorFlow (TensorFlow, 2020) plat-
form to train MLmodels. For the smart home IoT testbed, the
captured network traffic is imported from the data captured
in the smart home IoT testbed. Additionally, we evaluate our
models using standard IoT DDoS attack datasets published by
the Canadian Institute for Cybersecurity (CIC) (Sharafaldin
et al., 2019) and the Cyber Range Lab of the Australian Center
for Cyber Security (ACSS) (Koroniotis et al., 2019).

5.1. Datasets
Before we delve into the evaluation of ML methods, we

provide the details of employed datasets. We employed our
own captured IoT testbed dataset derived from our smart
home IoT setup alongside two DDoS datasets furnished by
the Canadian Institute of Cybersecurity (Sharafaldin et al.,
2019) and the Cyber Range Lab of the Australian Center
for Cyber Security (ACSS) (Koroniotis et al., 2019). Both
of these public datasets have been extensively employed in
security research (Filho et al., 2019). Below, we present
detailed information about the datasets.

IoT testbed Dataset: This dataset is collected from the
OpenFlow switches of the testbed, ensuring the capture of
the total network traffic within the IoT testbed. This pro-
cess is conducted using the data collection component of
the proposed detection framework discussed in Section 3.2.
The captured network traffic is stored in PCAP format over
a 24-hour period while the network operates under regular
conditions and when scripts are employed to launch TCP
SYN DDoS attacks generated from randomly spoofed IP ad-
dresses, as explained earlier. Subsequently, the PCAP file is
converted to a CSV file format using the same data collection
component. This CSV file is utilized to train the ML models
in TensorFlow. The IoT testbed captured traffic comprises
a total of 29 features, with attack traffic totaling 2,990,062
packets and regular traffic 2,668,936 packets. However, after
conducting traffic feature extraction, the number of features
is reduced to 19, as shown in Table 2.
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Figure 5: TCP SYN and SDN Controller Attacks

Figure 6: Switch Flow Table

UNSW-NB15 Dataset: This dataset was created in the
Cyber Range Lab of the Australian Center for Cyber Security
(ACCS), capturing approximately 100 GB of raw network
traffic containing nine different attack types: Fuzzers, Re-
connaissance, Backdoors, DDoS, Exploits, Shellcode, and
Worms. A hybrid dataset was constructed, comprising both
real modern activities and synthetic contemporary network
attacks. The dataset comprises about two million records
stored in four CSV files. The network topology and a com-
plete description of the dataset are published in (Koroniotis
et al., 2019). This dataset has been utilized in numerous stud-
ies in the literature to evaluate the performance of various
proposed algorithms.

CICDDoS2019 Dataset: The CICDDoS2019 dataset
contains various recent types of DDoS attacks, encompass-
ing more than 1 million benign traffic instances and over 30
million instances of attack traffic. The dataset includes 26
different types of network attacks such as NTP, DNS, LDAP,
TCP SYN, and NetBIOS. Originally provided in PCAP for-
mat, the authors utilized the CICFlowMeter to extract features
from the PCAP files and convert them into CSV format. The
dataset was captured over a 24-hour period, resulting in a

storage size of 4.6 GB. Notably, the dataset utilized for the
training phase is entirely distinct from that used for the testing
phase. For comprehensive details, including network topol-
ogy and dataset analysis, refer to (Sharafaldin et al., 2019).

5.2. Performance of Machine Learning Models
Utilizing IoT Testbed Dataset

The first algorithm we analyze is the Decision Trees
model, which can solve regression and classification prob-
lems. Selecting the attribute to place as the root of the tree is
considered a complicated step. Selecting a random node will
result in low classification accuracy. To solve the selection
attribute, we used the Gini index criteria. The Gini index is a
cost function used to evaluate splits in datasets, calculated by
subtracting the sum of each class’s squared probabilities from
one, as denoted in Equation 1, where Pi is the probability of
network traffic classified to a particular class.

Gini = 1 −
c
∑

i=1
(Pi)2 (1)

The Gini index calculations are in two steps: first, the sub-
nodes are calculated using the equation above for regular
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traffic and attack traffic. Then, the split’s Gini index is also
calculated using the weighted score of each node’s particular
split. The Gini index degree ranges between 1 and 0, with 1
denoting randomly distributed traffic across the two classes
(attack and benign) and 0 representing all the network traffic
belonging to a particular class. A well-balanced distribution
of the network traffic into the two classes has a Gini index of
0.5. Another common problem with Decision trees is over-
fitting, which can result in a 100% accuracy on the training
data, eventually affecting the classification of any unseen data.
We counter this issue by using pruning, which continuously
removes the decision nodes until the overall accuracy is not
affected.

The Decision Tree algorithm performs exceptionally well
in Precision, Recall, and F1-Score, with a detection accuracy
of 98.93%. The algorithm achieves excellent results using
the full feature set from the dataset, with a slight increase in
detection accuracy after conducting the feature selection to
99.57%. These results can be attributed to the algorithm’s use
of Information Gain in selecting the best feature that splits
the data during the construction of the tree.

The second algorithm analyzed is K-Nearest Neighbors
(KNN), which is versatile in solving both classification and
regression predictive problems. The KNN algorithm de-
pends on the assumption that similar data points are always
in proximity to each other (Tahsien et al., 2020). We used the
Minkowski distance function given in Equation 2 to calculate
theK values, where x and y denote the distance between two
points, and q is an integer between x and y.

Minkowski =

( k
∑

i=1

(

|

|

|

xi − yi
|

|

|

)q
)1∕q

(2)

0

25

50

75

100

LG DT KNN SVM

Before FS After FS

Algorithms

Figure 7: Classification of Detection Accuracy

Feature Selection = FS

To select a K value for the dataset, the algorithm is run
several times with different values. Finally, the value that
reduces the percentage of error while accurately making pre-
dictions with unseen network traffic is chosen as the K value.

K-nearest neighbor closely follows Decision Trees as the
second-best performer in all metrics, achieving a detection
accuracy of 97.30% before feature selection and increasing

to 99.02% after reducing the number of features. This no-
table improvement far surpasses the performance of Logistic
Regression and Support Vector Machine models.

The next algorithm we use for DDoS attack detection
within our proposed framework is Logistic Regression. It
supports categorical dependent variables and uses the sig-
moid function to handle outliers, as shown in Equation 3,
where p is the probability estimate between 0 and 1, x is the
algorithm’s prediction, and e is the base of the natural loga-
rithm. The sigmoid function ensures that the final prediction
value is between 0 and 1, unlike in Linear Regression, which
can produce values beyond 1 or less than 0. Additionally,
the sigmoid function aids in making the final classification
between an attack and regular traffic. However, the inclusion
of independent variables can increase the amount of variance
in the logistic regression model, leading to overfitting.

p(x) = 1
1 + e−(�0+�1x)

(3)

Logistic Regression performs poorly with an initial detection
accuracy of 53.86% with 29 features. However, after carrying
out the principal component analysis (dimension reduction
technique) of the features, the detection accuracy improves
significantly to 81%.

The final algorithm used to identify new attacks from the
smart home network after training the captured network traffic
model is the Support Vector Machine (SVM). It requires low
computational power and is also employed for regression and
classification tasks. To distinguish between an attack and
benign traffic within the data points, the algorithm creates
a hyperplane (decision boundaries) between the two classes
(Tahsien et al., 2020). The primary objective is to identify a
hyperplane that maximizes the margin; support vectors (data
points closer to the hyperplane) are utilized to achieve this
goal. In this work, we employ the Hinge loss function to
maximize the margin between the hyperplane and the data
points. Additionally, the regularization parameter is used
to balance the maximized margin and the loss, as shown in
Equation 4.

lossfunction = � + C
N
∑

i=1
�i (4)

Support Vector Machine, before performing principal com-
ponent analysis, the algorithm performed rather poorly with
an accuracy of 58.55%; however, after dimensional reduction
of the features, the accuracy is improved to a detection rate
of 81.38%. The detailed comparison of results is shown in
Figure 7.

5.3. Datasets Comparison Results
The comprehensive evaluation comparison involving the

CICDDoS2019, UNSW-NB15, and IoT testbed datasets is
presented in Table 4. Employing identical model parameters
and feature selection techniques as those used on the IoT
testbed dataset, we extend our analysis to the CICDDoS2019
and UNSW-NB15 datasets to facilitate comparison across
larger-scale environments.
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Figure 8: Benign Network Traffic Figure 9: Attack Network Traffic

Beginning with the UNSW-NB15 dataset, the results
show similar performance trends to those observed with other
datasets. Notably, the Decision Tree algorithm emerges as the
top performer, achieving a detection accuracy of 98.2%, with
the K-Nearest Neighbor being the second best performer with
93.78%. The SVM and Logistic Regression algorithms ex-
hibit lower performance, with detection accuracies of 89.19%
and 89.36%, respectively.

The next dataset we evaluated with the detection model is
the CICDDoS2019 dataset. This dataset is used in almost ev-
ery literature for performance evaluation of various proposed
detection algorithms. As with the other datasets, the Deci-
sion Tree algorithm also performs exceptionally well with
this dataset. In terms of detection accuracy, the algorithm
achieves a 99.95% accuracy with the CICDDoS2019 dataset
compared to 99.57% for the captured dataset and 98.20% for
the UNSW-NB15 dataset. The next well-performing algo-
rithm is the K-Nearest Neighbor with 99.94% detection accu-
racy. With the UNSW-NB15 dataset, the detection accuracy
is 93.78%, while with our captured dataset, it reaches 99.02%.
Note that the training and testing stages took about one hour
and forty minutes with the CICDDoS2019 dataset, while it
took only five minutes with the UNSW-NB15 and approx-
imately two minutes with the dataset from our IoT testbed.
SVM and Logistic Regression again underperformed with the
CICDDoS2019 dataset, as observed with the UNSW-NB15
and the captured IoT dataset. The detection accuracy for
both SVM and Logistic Regression using the CICDDoS2019
dataset is 95.7% and 98.4%, respectively.

Considering the three datasets, based on the weighted
average of the evaluation metrics, it is observed that the De-
cision Tree algorithms have the highest detection accuracy,
Precision, Recall, and F1-Score as shown in Table 4. It
can be concluded that this is the most suitable algorithm for
this problem, while the Support Vector Machine model and
Logistic Regression are the least suitable for DDoS attack
detection using our proposed approach. These results are
also in agreement with the analysis of the CICDDoS2019
Dataset conducted by (Sharafaldin et al., 2019), with the ID3
algorithm - a variant of Decision Tree algorithm outperform-
ing the other algorithms used in the analysis such as Naive
Bayes and Logistic Regression, which is the worst performing
algorithm in their analysis.

5.4. Signature-based IDS Performance
Our performance evaluation shows that DDoS attacks

towards the SDN controller are timely detected and subse-
quently mitigated using the SNORT IDS and SDN Controller.
The detection is based on the defined rules in the SNORT IDS
database. Furthermore, alerts of detected attacks are captured
and logged in real-time into a separate database for further
analysis. The SNORT console shows the alerts of respective
incoming attacks on the SDN Controller IP address and port
number, as shown in Figure 5. Once the SNORT IDS de-
tects an attack, the RYU controller instructs the OpenFlow
switch to create a new flow rule to learn the MAC address
of the attacker(s) to avoid a subsequent Flood attack from
the learned MAC address. Then, the RYU controller installs
another flow rule in the switch to drop the packet entirely.
To prevent a Content Addressable Memory (CAM) table at-
tack - which is an attack where the switch learns and saves
thousands of spoofed random MAC addresses generated by
random sources in its memory, the switch or security end-
point employs a whitelist of legitimate MAC addresses that
are saved in the switch’s memory. With multiple or groups
of devices attacking the SDN controller, the rules defined in
the SNORT IDS database will detect such attacks.

A packet sniffer tool calledWireshark1 is used on SNORT
IDS port 5 to capture real-time traffic transfer rate during reg-
ular and attack network operation, as shown in Figures 8 and
9. During regular network traffic transfer, the average packets
sent per second between the IoT devices were well below
6000 packets per second. However, after conducting the at-
tack, the average packet rate received increased significantly,
close to 90,000 packets per second, as the SDN controller
became flooded with TCP SYN attack traffic. Also, com-
munication between the IoT devices during the attack was
severely affected, with an average round-trip time between
the IP Camera and the FTP server at 19.64 milliseconds,
resulting in 39% packet loss, while during regular network
operation, the average round-trip time for the same devices is
at 0.78 milliseconds. During the experiments, increasing the
rate of the DDoS attacks without the SNORT IDS configured
and detection rules enabled, the attack quickly exhausts the
SDN controller’s processing capability and effectively takes
the controller offline, resulting in a 100% packet loss.

1https://www.wireshark.org/
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Table 4
Evaluation with Standard Dataset

Dataset Algorithms Detection Accuracy Precision Recall F1-Score

UNSW-NB15

Logistic Regression
Decision Tree
K-Nearest Neighbour
Support Vector Machine

89.36
98.20
93.78
89.19

90
98
94
90

89
98
94
89

89
98
94
89

CICDDoS2019

Logistic Regression
Decision Tree
K-Nearest Neighbour
Support Vector Machine

98.4
99.95
99.94
95.7

100
100
100
100

100
100
100
100

100
100
100
100

Captured Dataset

Logistic Regression
Decision Tree
K-Nearest Neighbour
Support Vector Machine

81
99.57
99.02
81.38

83
100
99
84

81
100
99
81

81
100
99
81

Table 5
Table of Notations

Symbol Nomenclature

Pi Probability of a traffic classified into a class
x and y Distance between two points
q Integer between x and y
p(x) Probability estimate between 0 and 1
x Algorithm Prediction
e Base of natural log
� Change in slope after the hinge
� Hyperlane Margin
C Model Hyperparameter
�i Distance from the ith support-vector to the margin

6. Discussions and Future Directions
In light of the evolving landscape of IoT security, the

implications of using AI and ML become increasingly sig-
nificant. Our research has demonstrated the instrumental
role of ML algorithms in enhancing the detection and mitiga-
tion of DDoS attacks in SDN-enabled smart home networks.
However, the rapid advancement of IoT technologies and the
diversification of IoT devices introduce both challenges and
opportunities for AI and ML applications.

When developing AI or ML systems or algorithms, it
is imperative to address potential security risks and imple-
ment appropriate safeguards against threats or vulnerabilities.
While in line with much of the literature, we utilized ML
algorithms for DDoS attack detection in this work, we did not
delve into the potential security risks associated with employ-
ing ML techniques. Further research is required to evaluate
any risks inherent in utilizing ML methods to perform DDoS
attack detection and mitigation.

Our next phase involves broadening the scope of IoT de-
vices included in the experiments to expand the research’s
scale and assess the dataset with deep learning algorithms.
While we employed supervised learning models in this study,
necessitating a labeled dataset—an exhaustive and complex

endeavor—we recognize the importance of exploring alterna-
tive clustering and unsupervised algorithms that do not rely
on labeled data.

Moving forward, our focus will extend to feature selec-
tion and analysis, delving into the dataset’s key features that
significantly influence the clustering of benign network traffic
and attack traffic within a smart home network. Future work
in this area should prioritize the adaptability and scalability of
ML models to accommodate a broader range of IoT devices
and scenarios. This includes exploring real-time learning
and adaptive algorithms capable of responding to new, un-
foreseen attack patterns and behaviors, thereby fortifying the
resilience of smart home networks against an ever-evolving
threat landscape.

NIST’s recent lightweight cryptographic standards (Zu-
rawski and Schopf, 2023) signify a major step forward in cy-
bersecurity, especially for resource-constrained IoT devices.
These standards, tailored for devices with limited resources,
are vital for ensuring strong security in IoT setups. The en-
dorsed lightweight cryptographic algorithms by NIST aim to
provide robust security without burdening devices, making
them ideal for smart home IoT gadgets with limited process-
ing power or battery life.

Besides adopting lightweight cryptographic standards as
in (El-Hajj et al., 2023), addressing fault attacks is crucial for
IoT systems. Fault attacks exploit errors to breach security,
posing a significant risk to IoT devices. As IoT devices be-
come more widespread, the threat of such attacks increases.
Future research should focus on integrating fault detection
and mitigation into IoT security to prevent unauthorized ac-
cess and manipulation of sensitive data.

Another important aspect is considering post-quantum
cryptography (PQC) for securing IoT frameworks. PQC of-
fers resilience against quantum computing threats, ensuring
long-term security. Future iterations of security systems
should assess the application of PQC algorithms, including
compatibility with existing ML models and enhancing data
transmission security in smart home networks.
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Given these considerations, our proposed framework can
incorporate both NIST’s lightweight cryptographic standards
and fault attack mitigation strategies. This integration will
significantly enhance the overall security posture of smart
home IoT environments. Our future work focuses on evaluat-
ing the effectiveness of lightweight cryptographic algorithms
in our proposed SDN-based IoT environment and developing
fault detection mechanisms as an integral part of the secu-
rity framework. By doing so, we can ensure that our system
not only addresses current security challenges of DDoS at-
tacks but is also prepared for emerging threats in the rapidly
evolving landscape of IoT security.

7. Related Work
7.1. DDoS Detection in IoT Networks

Several studies address DDoS detection and mitigation
in IoT networks, each with distinct approaches. Wang et al.
(2017) targets Application Layer DDoS attacks with a time se-
ries prediction model, achieving high detection rates and low
false positives compared to (Xie and Yu, 2009) and (Ranjan
et al., 2009). Unlike their focus on the Application layer, our
approach spans the network layer, covering all network end-
points. Braga et al. (2010) worked on a lightweight method
to detect DDoS attacks based on traffic flow features using
the Self Organizing Maps (SOM) algorithm. The evaluation
of the proposed detection system is done using the KDD-99
dataset. However, the KDD-99 dataset has been proven to
have several underlining issues such as redundant and dupli-
cate records in the training set, which results in a biased classi-
fier towards the more frequent records (Tavallaee et al., 2009).
Kasinathan et al. (2013) proposed a DoS detection system
based on signature-based intrusion detection called Suricata.
This method can only detect known attacks in the signature
database and requires a continuous update of the database.
Özçelik et al. (2017) presents a network of infected IoT de-
vices connected to an SDN-controlled fog network. Rate
Limiting and Threshold Random walks with credit-based
rate-limiting algorithms are used for DDoS detection and
mitigation. In these papers, the proposed algorithms used
signature-based or statistical comparison, which performs
well in only specific situations.

Similar to our work, Bakker et al. (2018) also used the
SDN controller and used Support Vector Machine, K-nearest
neighbors, and Random Forest algorithms to detect DDoS
attacks. This work is closely related to this paper; however,
we specifically focuses on smart home scenarios and integrate
a Signature-based detection technique alongside ML models
to protect both the SDN controller and the IoT devices. In
the experiment, simulated IoT devices are used as hosts in an
SDN Mininet environment, and traffic behavior can be very
different from actual IoT devices.

The IoT-IDM framework (Nobakht et al., 2016) employs
a host-based IDS technique, necessitating setup for each IoT
device in a smart home, requiring profiling and registration
in a device manager. In contrast, our approach deploys the
detection algorithm at the network layer, monitoring IoT de-

vice traffic within the smart home network. Another method
proposed by (Sonar and Upadhyay, 2016) positions software-
based managers between the IoT network and the gateway
router to detect andmitigate DDoS attacks, effective for small-
scale IoT deployments like smart homes or buildings.

Similarly, Bhunia et al. (2017) utilizes SDN architecture
for dynamic attack detection and mitigation in IoT networks,
aiming to prevent attacks at the network level rather than the
device level. They propose SoftThings framework, employ-
ing a supervised ML algorithm requiring constant retraining
and labeled datasets for normal and malicious traffic. Addi-
tionally, Doshi et al. (2018) introduced IoT-specific network
DDoS detection using ML algorithms, showing effective
detection with accuracy ranging from 0.91 to 0.99, albeit
lacking evaluation against standard datasets. Furthermore,
Gordon et al. (2021) presented a method for securing smart
homes utilizing SDN and low-cost traffic classification, em-
ploying a random forest classifier trained on network traffic
data to detect attacks such as DNS-based attacks, port scans,
and malware infections. While effective, the approach has
limitations including potential false positives and the need
for ongoing algorithm retraining.

Binu et al. (2021) proposed an SDN-based system for dy-
namic DoS detection in IoT networks using statistical analysis
and ML. They employ OpenFlow protocol and Mininet emu-
lator for evaluation. Mohammad and Abdullah (2023), pro-
posed entropy analysis for DDoS detection in SDN-IoT, but
faces challenges like false positives and added computation.
Sambandam et al. (2018) also proposed an algorithm that
measures entropy implemented in POX (POX, 2018) SDN
controller; the authors claimed their algorithm is lightweight
and uses fewer resources, also the algorithm detects and miti-
gates DDoS attacks promptly, the POX controller terminates
processing of the malicious traffic once an attack is detected.

Ravi and Shalinie (2020) propose ML for DDoS detec-
tion in IoT networks via SDN-cloud setup. It relies on cloud
resources for monitoring and may lack real-time suitability
due to ML processing delays. Cherian and Varma (2022)
proposed an approach to combat DDoS and MitM attacks in
SDN-based IoT networks using belief theory and correlation
analysis. Though effective, it overlooks other potential threats.
Khedr et al. (2023) propose a framework for real-time detec-
tion and mitigation of DDoS attacks in stateful SDN-based
IoT networks using ML. Despite its promise, the approach
faces limitations in evaluation, scalability, resource require-
ments, and SDN dependency. Further research is needed to
validate its effectiveness under diverse network conditions.
In (Patel et al., 2023), a Snort-based secure edge router is pro-
posed for smart homes, providing protection against network
attacks through attack detection and VPN encryption. The
paper offers a detailed evaluation, showcasing the solution’s
efficacy. However, the proposed solution may not be effective
against novel or advanced attacks, and it may not be suitable
for large or complex smart home environments that require
more comprehensive security solutions.

In (Bouke et al., 2023), an intelligent DDoS attack detec-
tion model using a tree-based approach and the Gini index
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Table 6
Summary of Existing Literature

Proposed Work Detection Technique # 1 # 2 # 3 # 4
Yin et al. (2018) Cosine Similarity × × × ✓

Galeano-Brajones et al. (2020) Flow Filtering × × ✓ ×
Binu et al. (2021) SDN-based ✓ × ✓ ✓

Ravi and Shalinie (2020) Machine Learning ✓ × ✓ ×
Ozcelik et al. (2017) Flow Filtering ✓ ✓ × ×
Khedr et al. (2023) Multi-layer Approach including Machine Learning ✓ × ✓ ×
Chauhan and Atulkar (2023) Machine Learning (Hybrid classifier ) ✓ × ✓ ✓

Bhunia et al. (2017) SDN-Fog ✓ × × ×
Doshi et al. (2018) Machine Learning × ✓ × ×
Gordon et al. (2021) Traffic Classification based on Support Vector Machine ✓ ✓ × ✓

Hasan et al. (2019) Machine Learning ✓ ✓ × ×
Sambandam et al. (2018) Entropy measurement ✓ ✓ × ×
Bouke et al. (2023) Decision tree with Gini index feature selection ✓ × ✓ ✓

Manso et al. (2019) Flow-base SNORT IDS × × × ✓

Patel et al. (2023) SNORT ✓ ✓ × ✓

Anthi et al. (2018) Machine Learning ✓ ✓ ✓ ×
Cherian and Varma (2022) Belief-Based Secure Correlation ✓ × ✓ ✓

Kamaldeep et al. (2017) Count-based Rate Limiting × × ✓ ✓

Proposed work SDN-Machine Learning-SNORT ✓ ✓ ✓ ✓

1. Detect internal and external source attacks. 2. Detect multiple types of attacks. 3. Protect the IDS from attacks itself. 4.
Real-time DDoS detection.

feature selection method is presented. Trained on network
traffic features, the model achieves high accuracy in detecting
DDoS attacks, outperforming other ML techniques. How-
ever, limitations include assumptions about dataset balance
and lack of real-world testing. Additionally, comprehensive
evaluation under various attack scenarios and traffic condi-
tions is lacking. Chauhan and Atulkar (2023) proposes a
framework for DDoS attack detection in an SDN-based IoT
environment using a hybrid classifier of decision trees and
K-nearest neighbors (KNN). Evaluated on a simulated SDN-
based IoT setup, the hybrid classifier demonstrates superior
accuracy and false positive rates compared to other ML and
deep learning techniques.

While previous works focused on enhancing accuracy
or response times, they face limitations in smart home envi-
ronments due to unique configurations and traffic patterns.
Our research addresses these limitations by introducing novel
strategies and refining existing methodologies. We utilize
SVM, Logistic Regression, Decision Trees, and KNN algo-
rithms, selected for their effectiveness in structured datasets
like network traffic, particularly suited for diverse smart home
interactions. Our approach ensures real-time processing ca-
pabilities critical for effective DDoS attack mitigation and
demonstrates improved adaptability across various attack
types. Through experimental analysis, we provide compar-
ative data showcasing the enhanced performance of our ap-
proach, validating its effectiveness in improving smart home
network security. While our research represents a significant
step forward, we acknowledge limitations and anticipate fur-
ther refinement and expansion of our findings, aligning with
the evolving network security landscape. Table 6 summarizes
the proposed solutions and methodologies in the literature.

7.2. Post-quantum and Cryptographic Methods
The work by (Samandari and Gritti, 2023) delved into

the integration of post-quantum authentication mechanisms
within the MQTT protocol, a critical component in IoT com-
munications. The authors scrutinize the current vulnerabil-
ities of MQTT in the face of quantum computing advance-
ments and propose solutions to reinforce its security. Anas-
tasova et al. (2023) presented an innovative approach to im-
plementing Curve448 and Ed448 algorithms in the wolfSSL
cryptographic library, with a special emphasis on Cortex-M4
processors. Elkhatib et al. (2023) proposed the Supersingu-
lar Isogeny Key Encapsulation (SIKE) algorithm for FPGA
platforms, its relevance in the post-quantum cryptography
landscape, and the importance of FPGA in cryptographic
applications, particularly for IoT devices. Li et al. (2023)
provided a broad overview of the transition to post-quantum
security, identifying both opportunities and challenges that
arise from this shift.

Kaur et al. (2023) explored FPGA-based error detection
strategies for the WG-29 stream cipher, emphasizing the im-
portance of hardware-level security enhancements. Simi-
larly, Smith and Johnson (2023) investigated error detec-
tion mechanisms in the QARMA block cipher, aligning with
the imperative for robust cryptographic systems in IoT net-
works. Additionally, Noordin et al. (2023) showcased FPGA-
based optimization algorithms, vital for resource-efficient
computational tasks crucial in IoT security frameworks, in-
cluding DDoS mitigation. Furthermore, Muthavhine and
Sumbwanyambe (2023) contributed by integrating the Khum-
belo function with the Camellia algorithm to reinforce IoT
device security against cyber-attacks. Lastly, An et al. (2023)
focused on detecting and mitigating vulnerabilities in the
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Midori cipher, providing insights into safeguarding crypto-
graphic systems from active side-channel attacks.

Our work is different and can be complementary to these
studies as we focus on network traffic analysis instead of
cryptographic approaches.

8. Conclusions
In this paper, we presented a framework for real-time

detection and mitigation of DDoS attacks in SDN-enabled
smart home networks, utilizing traditional ML models such
as SVM, Logistic Regression, Decision Trees, and K-Nearest
Neighbors. Our proposed detection framework is designed
to protect the SDN controller using SNORT IDS and IoT de-
vices from DDoS attacks using machine learning models for
detecting DDoS attacks. We evaluated our proposed frame-
work using a real smart home testbed utilizing several IoT
sensors and software-defined network controlled by a Ryu
controller. We evaluated our proposed methods using real
data captured from the IoT testbed and standard IoT DDoS at-
tack datasets published. Results showed that ML algorithms
can efficiently classify traffic into benign and attack traffic,
with the Decision Tree algorithm being able to detect attacks
with an accuracy of 99.57%.

While our framework performs well in smart home en-
vironments, we recognize the rapidly evolving nature of net-
work security, particularly in IoT settings. To address ad-
vanced threats, we plan to explore the integration of modern
deep learning methods capable of discerning subtle patterns
indicative of sophisticated DDoS attacks. Additionally, we
aim to investigate other advanced models for handling fault
attacks and apply lightweight cryptographic algorithms to
bolster overall security measures. This exploration will con-
tribute to the broader discourse on securing IoT environments
against evolving cyber threats.
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