
Brokering Algorithms for Optimizing the
Availability and Cost of Cloud Storage Services

Yaser Mansouri, Adel Nadjaran Toosi and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia

Email: {yase, adeln}@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract—In recent years, cloud storage providers have gained
popularity for personal and organizational data, and provided
highly reliable, scalable and flexible resources to cloud users.
Although cloud providers bring advantages to their users, most
cloud providers suffer outages from time-to-time. Therefore,
relying on a single cloud storage services threatens service
availability of cloud users. We believe that using multi-cloud
broker is a plausible solution to remove single point of failure
and to achieve very high availability. Since highly reliable cloud
storage services impose enormous cost to the user, and also as
the size of data objects in the cloud storage reaches magnitude of
exabyte, optimal selection among a set of cloud storage providers
is a crucial decision for users. To solve this problem, we propose
an algorithm that determines the minimum replication cost of
objects such that the expected availability for users is guaranteed.
We also propose an algorithm to optimally select data centers for
striped objects such that the expected availability under a given
budget is maximized. Simulation experiments are conducted to
evaluate our algorithms, using failure probability and storage
cost taken from real cloud storage providers.

keywords- Cloud Computing, Cloud Storage, Broker,
Availability, Data replication, Data striping, Dynamic Pro-
gramming, Cost minimization

I. INTRODUCTION

Cloud storage is a novel paradigm for storing user objects1

on a remote location in large scale. During recent years, some
of the cloud storage companies, such as Amazon, Rackspace,
Google, etc. have provided on-line mass storage to cloud users.
Since every storage service belongs to a different company,
they offer services in different terms and costs.

A typical cloud storage Service Level Agreement (SLA)
articulates precise levels of the services such as availability
of the services which are in operation. In the context of in-
tense economic competition, different cloud storage providers
supply a variety of services with different SLAs, which are
proportional to the cost. That is, users interested in more
reliable SLA must pay more. Moreover, as the total size of
user objects in the cloud storage reach up to several exabyte
(260 bytes), it can impose enormous cost on users. Therefore,
optimal selection of cloud storage providers in terms of higher
availability and lower cost is a crucial decision to users.

Availability of service as an imperative criterion in the SLA
is listed as one of the top ten obstacles to the growth of

1Data and object are used interchangeably in this paper.

cloud computing [1]. Although the most well known cloud
storage providers such as Amazon, Rackspace and Google,
etc. warranty availability of services in high level, software
bugs, user errors, administrator errors, malicious insiders, and
natural catastrophes endangering availability are inevitable
and unpredictable [2]. This is why some well-known cloud
providers have experienced outages in their data centers [1],
and the number of vulnerability incidents has doubled from
2009 to 2011 [3]. Availability of services is defined as the ratio
of the total time that the storage services of a cloud provider is
accessible during a given interval (e.g., one year) to the length
of the interval. The metric which we use for availability is
number of nines [4]. For example, if the availability of the
system is 99.9% then we refer it as three nines. The system
with three nines availability is expected to have 8.75 hours
downtime per year.

One simple way to get the desired availability is to replicate
objects in multiple data centers. This approach is costly
because as the number of replicas increases, the storage cost of
the object raises. Therefore, minimizing cost with the aim of
achieving desired availability as a required Quality of Service
(QoS) is a key decision to user, which has not been studied
very well.

Data Lock-in is another main problem among the top ten
obstacles in regard to cloud computing. This is undesirable
for users because they are vulnerable to rise in price, to
decrease in availability and even to the cloud provider’s
bankruptcy [1]. Users also lose a chance to migrate from a
cloud storage provider to another when new cloud providers
emerge with better services or with lower price in the market.
This is because some cloud storage providers charge the users
for download service, which imposes heavy cost on users
especially when one requires a large storage volume of a
particular cloud storage provider. Moreover, transferring large
objects from one cloud storage provider to another through
the network is time consuming and most often is impossible.

One solution to mitigate the data lock-in and to allow
users to migrate quickly from a cloud provider to another in
reaction to any provider changes is placing an object at a fine
granularity rather than a coarse one [5]. That is, the object,
for example a database table or an archival object, is split to
chunks, and stored in different cloud storages. Therefore, we
need an algorithm to find the optimal placement of chunks

Oj
1

Needs and

Budget

Cost &
Availability

Oj
2

Oj
1’

Oj
2’

Oj
3

Oj
3’

Features of

Cloud Storages

Cloud Storage Broker

Cloud Storage 1

Cloud Storage n
Cloud Storage 2

...

99.9% 99 %

99.99%

Fig. 1. Cloud Storage Broker

according to the user’s needs and budget. This algorithm can
be used in a cloud storage broker, which provides transparent
object access among several cloud storage providers [5]. The
broker, as illustrated in Fig. 1, gathers all features of cloud
storage providers and assists users in finding the right cloud
storage based on their required QoS.

In this paper, we propose algorithms that can be embedded
in a cloud storage broker. These algorithms help the user to
find a suitable placement of objects according to the required
QoS. The first problem we focus on is to minimize the storage
cost of objects while a given expected availability is met. The
second problem is how to select the optimal placement of
each strip of object such that the expected availability under
a given budget is maximized. Due to the growing number of
cloud storage providers with different characteristics and price,
both problems are challenging and important.

The main contributions of this paper are:

• a mathematical model for the data center selection prob-
lem in which the objective function, cost function and
constraints are clearly defined,

• an algorithm to select a subset of a given data centers to
minimize the storage cost for objects when the expected
availability is given, and

• a dynamic algorithm to select cloud providers optimally
for storing objects that are split into chunks and each
chunk is replicated a fixed number of times, such that the
expected availability under a given budget is maximized.

The rest of this paper is organized as follows: Section II is
devoted to an overview of related works. Section III describes
an algorithm employed to calculate the minimum storage cost
for storing objects subject to a given expected availability. Sec-
tion IV presents the dynamic algorithm proposed to determine
optimal data centers for storing striped objects to maximize
expected availability with a given budget. Section V reports
the experimental results of our simulation. Finally, conclusions
and future works are stated in section VI.

II. RELATED WORK

Cloud computing has captured significant attention from
both industry and academic in the recent decade. Fox et
al. [1] provided a comprehensive overview on classification,
obstacles, and opportunities for cloud providers. Our work
focuses on alleviating two main obstacles of cloud computing:
availability of services and data lock-in.

Le et al. [6] propose a CloudCmp tool that compares four
well-known cloud providers in order to measure the elastic
computing, persistent storage, and network services which
directly affect performance of user application. This tool helps
users to select a cloud based on their requirements and budget.
Another tool, RACS (Redundant Array of Cloud Storage),
is a cloud storage proxy that transparently splits an object
among multiple cloud providers [5]. The goal of this study is
to increase availability and mitigate object lock-in. The idea
behind the study is the same as one of well-known techniques
at the level of disks and file systems, RAID5. They evaluated
the performance of RACS, and concluded the cost of migration
from a cloud provider to another can be decreased seven-
fold by using RACS. Their work differs from ours since our
objective functions and constraints are completely different.

Ford et al. [7] investigated object availability in Google’s
main storage infrastructure, and analyzed availability of com-
ponents, e.g., machines, racks and multi racks in tens of
Google storage clusters. In their analytical measurements, they
predict object availability based on Markov chain modelling
in a data center. On the contrary, we focus on maximizing
object availability for a given budget in a set of data centers.
Our work has a similar objective function with the problem
studied by Chang et al. [4], but the main difference is an object
is split to chunks and replicated across cloud providers in our
work, while it is fully replicated in their model. The main
motivation for our strategy is agile reacting to any changes in
cloud providers [5]. Similar to [7], Bonvin et al. [8] propose
a dynamic allocation of resources in a data cloud to host
objects so that the availability to different user application
is guaranteed in a cost-effective way. Their model is based
on a virtual economy, in which each object partition operates
as an individual optimizer and decides whether to replicate,
migrate or remove itself based on net profit maximization
related to the utility provided by the partition and its storage
and maintenance. Placek et al. [9] designed a market broker
for storage services that allows the owner to exchange the
storage.

Sripanidkulchai et al. [10] considered three main require-
ments of cloud computing: large scale deployment, high
availability, and problem resolution. They proposed three ways
of achieving cloud services with high availability. One of the
three solutions is to extend the architecture across different
cloud providers, which is the focus of this paper as well. The
second solution is to develop new virtualization technologies,
and third one is to look at the technical differences between
individual and enterprise sites that results in the observed
difference in service availability.

To the best our knowledge, there is no work dealing with
selecting a subset of data centers such that the storage cost
is minimized with a given expected availability. In addition,
achieving maximum availability with a given budget as a
constraint such that objects are split into chunks replicated
across several cloud storage has never been studied.

III. MINIMIZING COST WITH GIVEN EXPECTED
AVAILABILITY

We present an algorithm to find subsets of data centers to
store replicas of all objects such that the replication cost of
them is minimized, and expected availability of objects as the
user’s QoS is satisfied. Note that the subset of data centers
for each object can be different. From the user perspective,
one type of object may be popular, whilst another type may
be seldom used (e.g., archival objects) and they can tolerate
lower expected availability as QoS. So, it is reasonable to allow
popular objects to be stored in more available data centers
at higher cost, and guarantee lower QoS for non-popular
objects at lower cost. Our algorithms guarantee this criterion
for objects. That is, the expected availability of objects is met
according to the priority attached to their type. In other words,
as the priority of a type of objects increases, the objects of that
type are replicated in data centers with more availability. In
order to introduce our algorithm, we first present the following
notations and definitions.

Consider a set of independent data centers represented by
DC = {d1, d2, ..., dn}, where di ∈ DC (1 ≤ i ≤ n) is an
individual data center. Assume that a pair of characteristics
for each data center: a weight s(di) representing the storage
cost of an object in the data center di, and f(di) the failure
probability of di. Also, suppose that the replica set denoted
by δ is a subset of data centers in DC such that each di
hosts a replica of the object. Let M be the number of objects
with equal size, and TN is the total number of nines for M
objects. Assume that t is the average number of nines per
object requested by a user as QoS. The value of TN either
can be computed by M × t or can be a arbitrary value (that
is the value of TN) which is determined by user. We define
three types of QoS for objects, in descending order of priority:
Gold (G), Silver (S), and Bronze (B). A priority parameter PQ
is assigned to each QoS type Q such that the sum of priority
parameters for three types of QoS is 1. That is,

∑
Q PQ = 1,

where Q = {G,S,B} (PG ≥ PS ≥ PB) . Note that the
value of PQ is used in a general sense in our algorithms. It
can be interpreted as different priority measures such as the
access probability of objects on average for a type of QoS,
or the importance of objects to the user. Also, let all objects
of QoS type Q be denoted by set JQ, and EAQ and EFQ be
the expected availability and expected failure of objects in JQ,
respectively.

Definition 1. (Objects Placement): Let Φ =
⋃M
j=1{Φj} be

a placement of objects, where Φj indicates a subset of data
centers (i.e, Φj ⊆ DC) that contains the jth object with r
replicas. Therefore, for all Φj , |Φj | = r and |Φ| = M .

Definition 2. (Replication Cost of Objects): Assume that the
cost of object j is the sum of the replication cost of the object
in a set of data centers Φj . Thus, the replication cost of Φ,
referred to the cost of replicas for M objects, is defined as:

C(Φ) =

M∑
j=1

C(Φj), (1)

where C(Φj) =
∑
dl∈Φj

s(dl) is the cost of storing object j
with duplication factor r.

Definition 3. (Expected Availability of Objects): Let Xj be
a discrete random variable with numerical values of {0, 1}
which shows whether the object j is available under the set
Φj (Xj = 1) or not (Xj = 0). Thus, we have E(Xj) =∑
xj∈{0,1} xjP (Xj = xj) = P (Xj = 1). Since Xj is referred

to the availability of the jth object under Φj , the value of
Xj is 0 only when all data centers in Φj fail. Otherwise, the
value of Xj is 1 when at least one of data centers in set
Φj containing object j is available. As a result, E(Φj) =
E(Xj) = 1−

∏
di∈Φj

f(di).

The expected availability for M objects is equal to the
sum of the expected availability of each object j because
the expected availability of the sum of independent random
variables is the sum of the expected availability of these
random variables. Thus, we have:

E(Φ) =

M∑
j=1

E(Φj) =

M∑
j=1

(1−
∏
di∈Φj

f(di)). (2)

In this sense, E(Φ) can be viewed as the expected availability
of M objects under Φ =

∑M
j=1{Φj}, and expressed as a

number of nines.
In the rest of this section, we formally define the object

placement problem, and then a dynamic algorithm to tackle
this problem is proposed. Based on the above definitions, the
problem can be defined as follows. Assume that a set of data
centers DC, M objects with duplication factor r, the QoS
requirement for user E(Φ), measured in the number of nines,
and each QoS type associated with PQ where Q = {G,S,B}
are given. The objective is to find a subset of data centers
Φj ⊆ DC for each object j so that E(Φ) is satisfied,
the replication cost of objects C(Φ) is minimized, and the
expected availability for each type of objects is proportional
to the priority parameter of that type. This is translated to:

min C(Φ) =

M∑
j=1

C(Φj), (3)

s.t. E(Φ) =

M∑
j=1

(1−
∏
di∈Φj

f(di)) ≥ TN, (4)

∀JQ, E(JQ) ∝ PQ, Q = {G,S,B}, (5)

where E(JQ) is the expected availability of objects which
belong to QoS type Q.

In order to get a maximization problem, we mathematically
redefine (3) as follows:

max 1/

M∑
j=1

C(Φj), (6)

while the constraints are (4) and (5).
Before we propose our algorithm, let us express the fea-

sibility of the problem. The sum of nines of all data centers
di ∈ Φ must not be less than TN , if there exists a feasible
solution for the above problem. That is, E(Φ) ≥ TN .

We propose a dynamic algorithm called Minimum Cost
Fixed Expected Availability to solve the aforementioned ob-
jects placement problem. With no loss of generality, and
assuming all objects have equal priority (that is, QoS type
for objects is ignored), recursive equations of the dynamic
algorithm can be obtained as explained below.

The first step of the dynamic algorithm is to define a
recursive solution for two cases. Case 1: j > 1. This solution
is calculated to MC[j][tn], which means the minimum cost for
the jth object2 (1 < j ≤ M) with a given number of nines
tn (1 ≤ tn ≤ TN). To obtain the best placement for the jth
object, we first find all combinations of r distinct data centers
that can be chosen from DC. Assume that each combination
is denoted by δ (|δ| = r). Since the availability of jth object
is E(δ), we have the expected availability tn − E(δ) for the
j − 1 objects. It means we should consider all possible cases
with tn−E(δ) for the first j − 1 objects, assuming δ is a set
of data centers, which contains the jth object. Therefore, if
we place the jth object in the set δ of data centers, then the
minimum cost of replication j objects in data centers equals
to the minimum cost of replication j − 1 objects with the
expected availability tn − E(δ) plus the cost of data centers
in the set δ. This mathematically translated into:

MC[j][tn] = 1/(max
δ

(1/MC[j − 1][tn− E(δ)]) + C(δ)).

(7)
Case 2: j = 1. All the possible subsets δ ⊆ DC so that
tn = E(δ) are considered, and then the subset δ with the
minimum cost is selected. In other words, Φ1 = δ, where δ is
a subset of data centers with the minimum cost of replication
for the first object. Thus, the recursive function for j = 1 with
fixed tn can be obtained as:

MC[1][tn] = max
δ

(
1

C(δ)
,MC[1][tn]). (8)

The second step of the algorithm is the termination condi-
tions. First, if tn − E(δ) < 0, then MC[j][tn] = 0, which
means the subset δ ⊆ DC should not be considered. Second,
if j = 1 and there is not a subset of data centers such that
tn = E(δ), MC[1][tn] also is assigned to zero. Third, the
value of MC should be infinity when j and tn are both zero.
According to the above discussion, the proposed algorithm is
outlined in Algorithm 1.

2In this section, we henceforth consider each object has r replicas, unless
otherwise mentioned.

Algorithm 1 Minimum Cost Fixed Expected Availability
Input: DC,M, TN, r, f(di), s(di)
Output: 1

MC[M][TN]
1: for tn← 1 to TN do
2: MC[0][tn]← +∞
3: end for
4: for j ← 1 to M do
5: MC[j][0]← 0
6: for tn← 1 to TN do
7: MC[j][tn]← 0
8: for each combination δ ∈ (DC, r) do
9: if ((tn− E(δ)) ≥ 0) then

10: if (j = 1) and (tn = E(δ)) then
11: MC[1][tn]← (

1

C(δ)
,MC[1][tn])

12: end if
13: if (j > 1) then
14: if (MC[j − 1][tn− E(δ)] = 0) then
15: MC[j][tn]← 0
16: else
17: C ← 1/MC[j-1][tn-E(δ)] + C(δ)
18: MC[j][tn] ← max(1

C ,
MC[j][tn])

19: end if
20: end if
21: end if
22: end for
23: end for
24: end for
25: Return 1

MC[M][TN]

In order to consider constraint (5), we slightly revise Al-
gorithm 1. First, E(JQ) is computed by btn × PQc where
1 ≤ tn ≤ TN . To guarantee constraint (5) accurately,
E(JQ) is sorted decreasingly by difQ where 0 ≤ difQ =
tn× PQ −E(JQ) < 1, and then the first tn−

∑
QE(JQ) of

E(JQ) is increased by one. Second, having calculated E(JQ)
for all objects j ∈ JQ, it is sufficient to replace TN with
E(JQ) in Algorithm 1.

IV. MAXIMUM EXPECTED AVAILABILITY WITH GIVEN
BUDGET

One way to prevent object lock-in in the cloud storage is
to store the object at a fine granularity rather than in coarse
one [5]. Due to this advantage, in this section, our aim is to
introduce a dynamic algorithm to provide the best placement
for chunks of an object across the cloud providers so that
the expected availability is maximized under a given budget.
In the rest of the section, we define some preliminaries and
definitions, and then we present the optimization problem in
details.

In addition to notations in the previous section, we assume
that each object is split to m chunks with the same size and
replicated with duplication factor r. Since it is assumed that
each replica of chunks of each object is placed in a separate

Algorithm 2 Maximum Expected Availability with a Given
Budget
Input: DC,M,m,B, r, f(di), s(di)
Output: E[M][B]

1: for b← 0 to B do
2: E[0][b]← 0
3: end for
4: for j ← 1 to M do
5: E[j][0]← −∞
6: end for
7: for j ← 1 to M do
8: for b← 1 to B do
9: E[j][b]← E[j][b− 1]

10: for each combination δ ∈ (DC,m× r) do
11: if (b− C(δ)) ≥ 0) then
12: E(δ)← Call OCP (δ, r,m)
13: e← E[j − 1][b− C(δ)] + E(δ)
14: E[j][b]← max(E[j][b], e)
15: end if
16: end for
17: end for
18: end for
19: Return E[M][B]

data center, the number of data centers, n, must be at least
m×r (n ≥ m×r). In fact, storing each object requires at least
m×r independent data centers to gain maximum performance
of striping [5].

Definition 4. (Chunks Placement): Assume that Φj =⋃m
k=1 {ϕj,k} is a placement set for chunks of object j, where

ϕj,k represents a subset of data centers (i.e, ϕj,k ⊂ DC) that
containing r replicas of kth chunk. Therefore, for all ϕj,k and
Φj , we have |ϕj,k| = r and |Φj | = m× r, respectively.

Definition 5. (Replication Cost of Chunks): Let C(ϕj,k)
denote the cost of the kth chunk with r replicas of object
j. Since cost per object in data center di is s(di) and each
object consists of m chunks, C(ϕj,k) =

∑
dl∈ϕj,k

ds(dl)e/m.

Therefore, the total replication cost of m chunks with dupli-
cation factor r of object j is given by:

C(Φj) =

m∑
k=1

C(ϕj,k). (9)

The total cost of M objects can be written as:

C(Φ) =

M∑
j=1

m∑
k=1

C(ϕj,k). (10)

Definition 6. (Availability of Chunks): Suppose that Xj is
a random variable as defined in Definition 3. Since object j
is split to m chunks, we recalculate E(Xj) as follows. The
kth chunk with r replicas of object j is not available if all
data centers dl ∈ ϕj,k fail. Thus, the failure probability of the

kth chunk with r replicas is
∏

dl∈ϕj,k

f(dl). As a result, the kth

chunk of object j is available if at least one replica of that
is available, which results in 1 −

∏
dl∈ϕj,k

f(dl) as availability

of the kth chunk with r replicas. Obviously, the jth object
can be retrieved, if all m chunks are available. Therefore, the
expected availability of object j consisting of m chunks with
duplication factor r under set Φj can be calculated as:

E(Xj) = E(Φj) =

m∏
k=1

(1−
∏

dl∈ϕj,k

f(dl)). (11)

Similar to the previous section, the expected availability of
M objects termed by E(Φ) is the sum of E(Φj). Thus, we
have:

E(Φ) =

M∑
j=1

E(Φj) =

M∑
j=1

(

m∏
k=1

(1−
∏

dl∈ϕj,k

f(dl)). (12)

Now, we express the optimization problem, which lies in the
above definitions and notations. Assume that a data center set
DC, M objects consisting m chunks with duplication factor
r and a budget B are given, and also suppose that each QoS
type Q is associated with PQ. The objective is to find a subset
Φj ⊆ DC for each object j such that E(Φ) is maximized
whilst C(Φ) ≤ B and the expected availability of each type
of objects is proportional to the priority parameter of that type.
This is translated into:

max E(Φ) s.t. C(Φ) ≤ B and E(JQ) ∝ PQ. (13)

In order to solve (13), we propose a dynamic algorithm
called Maximum Expected Availability with a Given Budget,
in which the Optimal Chunks Placement (OCP) algorithm is
called to provide optimal placement of chunks of an object.
Algorithm 2 is presented without considering the constraint
E(JQ) ∝ PQ. That is, all objects have the same priority from
the user perspective, and then this constraint is applied to the
proposed algorithm.

In the proposed dynamic algorithm, let E[M][B] be the
expected availability for M objects with a given budget B. In
the first step, we obtain a recursive formulation for E[j][b],
where 1 ≤ j ≤ M and 0 ≤ b ≤ B. In order to store the
jth object in the set DC of data centers, all possible δs of
DC (|δ| = m × r) are checked, and then C(δ) by using (9)
and E(δ) based on the OCP algorithm are calculated. Since
the replication cost of the jth object is C(δ), we have the
budget b−C(δ) to consider for storing the j−1 objects. Thus,
considering all possible δs (δ ⊆ DC) and all possible cases
with budget b − C(δ) for j − 1 objects, E[j][b] is calculated
as follows.

E[j][b] = max
δ

((E[j − 1][b− C(δ)]) + E(δ)). (14)

In the second step, terminal conditions are considered.
clearly, if b−C(δ) < 0 then the subset δ is ignored and E(δ)
is set to negative infinity. Also, if b = 0 and j = 0, E[j][b]
is initialized to zero. The proposed algorithm is outlined in
Algorithm 2.

A. Optimal Chunks Placement (OCP) Algorithm

In this section, we discuss the OCP algorithm and its
objective. Based on the Definition 4, an object has m chunks
and each of them is replicated in r separate data centers.
Without any special policy to select data centers for storing
the chunks of an object, it might be some replicas of a chunk
placed in more reliable data centers (that is data centers with
less failure probability) whilst other replicas of another chunks
are stored in less reliable ones. As a results, Equation (11)
is not maximized. In order to maximize that, we should
maximize availability of each chunk, that is (1−

∏
dl∈ϕj,k

f(dl)),

which is between 0 and 1. Therefore, the availability of all
chunks should be close to each other as much as possible.
Ideally, the availability of all chunks should be equal to each
other. If it is feasible, ∀k 6= k′, fck = fck′ , where fck is the
failure of kth chunk with r replicas.

Since n is a small constant [1] and the number of replicas,
r, is 2 or 3 at most [11], it is possible to search all the problem
space in order to find the optimal placement of chunks. Thus,
we present the OCP algorithm to find the optimal placement
for the replication of chunks as follows.

Algorithm 3 Optimal Chunks Placement
Input: δ, r,m
Output: CA[k][S]

1: S = C(δ, r)
2: Procedure OCP(S, r,m)
3: foreach (ϕ ∈ S) do
4: PCA[0][ϕ]← 1
5: end for
6: for k ← 1 to m do
7: CA[k][S]← 0
8: foreach (ϕ ∈ S) do
9: P ← ∀ϕ′ ∈ S|∀di, di ∈ ϕ′ ∧ di /∈ ϕ

10: CA[k][ϕ]← A(ϕ)× PCA[k − 1][P]
11: if (k == 1) then
12: PCA[k][P]← max

ϕ′∈P
(CA(ϕ′))

13: end if
14: if (k > 1 and kr < mr) then
15: PCA[k][P]← OCP(P, r, k − 1)
16: end if
17: CA[k][S]← max(CA[k][ϕ], CA[k][S])
18: end for
19: end for
20: Return E[δ]← CA[k][S]

The way the OCP algorithm works is by computing two
functions, namely CA and PCA, each with two entries. One
entry for the kth chunk and another one for all possible
combinations of size r from δ, denoted by S (|S| =

(|δ|
r

)
),

where δ is a qualified set of data centers which is determined
by Algorithm 2. ϕ ∈ S refers to any element of S, which is
an r-combination of δ (|ϕ| = r). In more details, CA[k][ϕ] is
the maximum availability of kth chunk with r replicas if its

TABLE I
OBJECTIVE AND CONSTRAINT OF THE PROPOSED ALGORITHMS

Algorithm Replication Availability Replication Cost
(Expected Availability, EA) (Budget, B)

Algorithm 1 Limited by EA Minimize
Algorithm 2 Maximize Limited by B

replicas are stored in all di ∈ ϕ. Associated to each ϕ ∈ S, P
is a subset of S including all elements ϕ′ ∈ S, such that ϕ′

does not include any data center di ∈ ϕ. PCA[k][P] denotes
the maximum availability of k chunks with r replicas that are
replicated in P .

We derive a general recursive equation for CA[k][ϕ]. First,
we enumerate all possible ϕ ∈ S that could store the kth
chunk with r replicas, as if we were placing the kth chunk.
Second, we consider all possible placement of the first (k−1)
chunks with r replicas, which are placed into P . Thus, if set
ϕ is considered for kth chunks, the availability of k chunks
will be the multiplication of the maximum availability from
the first (k− 1) chunks with r replicas, which are placed into
P (i.e., PCA[k− 1][P]), and the availability of the kth chunk,
A(ϕ), when we use ϕ. Thus, we have:

CA[k][ϕ] = A(ϕ)× PCA[k − 1][P]. (15)

The computation for PCA[k][P] is a recursive approach as
follows. If (k > 1 and kr < mr), it is assumed that the first
chunk with r replicas placed in ϕ ∈ S, and the remaining
(k− 1) chunks, with duplication factor r should be optimally
placed into P . Thus, OCP algorithm called recursively with
appropriate parameters. This means OCP(P, r, k − 1). Other-
wise, if(k = 1), assumed as the terminal condition of the OCP
algorithm, PCA[1][P] is maximum availability of all ϕ′ ∈ P as
if the chunk with r replicas is replicated in ϕ′ ∈ P . Therefore,
the recursive equation for PCA can be obtained as follows.

PCA[k][P] =

{
max
ϕ′∈P

(A(ϕ′)), if k = 1

OCP(P, r, k − 1) if k > 1 and (k × r < m× r)

Thus, from the derived recursive equations for CA and PCA,
Algorithm 3 gives the pseudo-code for the OCP problem.

Similar to the previous section, we apply constraint
E(JQ) ∝ PQ to Algorithm 2. First, budget B is allocated
to each QoS type Q proportional to PQ. That is, b(JQ) =
bb × PQc, where b(JQ) is the budget allocated to QoS type
Q. To guarantee constraint E(JQ) ∝ PQ, b(JQ) is sorted
decreasingly by difb(JQ), where 0 ≤ difb(JQ) = b× PQ −
b(JQ) < 1, and then the first B −

∑
Q b(JQ) of b(JQ) is

increased by one. Second, we substitute B with b(JQ) in
Algorithm 2 to hold the constraint.

V. PERFORMANCE EVALUATION

A. Simulation Setting

We performed several experiments to assess the perfor-
mance of our algorithms. Table I summarizes the objective
and constraint of the proposed algorithms. We first present the
parameters setting of cloud providers used in the performance

TABLE II
DATA CENTERS PARAMETERS

DC# FP CPO DC# FP CPO
d1 0.0001 48 d6 0.004 12
d2 0.0002 36 d7 0.01 6
d3 0.0004 30 d8 0.04 4
d4 0.001 24 d9 0.1 2
d5 0.002 18

evaluation. Although the failure probability of most cloud
providers are not disclosed, some of them have revealed
this parameter. For example, Amazon S3 provides two level
of storage services: Standard Storage has eleven nines as
durability and four nines as availability whilst the other
service, Reduced Redundancy Storage (RRS), provides four
nines (99.99%) for availability and durability. Storage cost for
both services depends on the region of the cloud provider and
the level of service. In all regions the storage cost of standard
storage is more than that of RRS. Google, another well-known
cloud provider, has not disclosed failure probability; however,
researchers [7] have done extensive studies on Google’s main
storage infrastructure and they have measured failure prob-
ability, which is about 0.045(that is, 3 nines) on average.
Rackspace guarantees 3 nines (99.9%) availability within its
SLA. The other providers such as Nirvanix, EMC Atoms, etc.
do not disclose failure probability, but they consider credits to
compensate availability violation as noted in the SLA.

According to the above description, we determine a set of
data centers with two parameters, Failure Probability (FP)
and Cost Per Object (CPO) for our simulation as shown in
Table II. Since we have the failure probability of Amazon S3,
Rackspace and Google’s storage infrastructure, we use them
as baseline, and add 6 data centers with the assumption that as
availability of service is increased, the storage cost of object
is raised [4]. It is also assumed that the cost and the failure
probability reported in Table II remains constant during the
simulation.

In our simulation, we set the number of objects to 100,
while duplication factor r is fixed to 2 since the number of
replicas is a small constant in practice (e.g., 2 or 3) [11].

B. Algorithm 1: Minimum Cost Fixed Expected Availability

We have performed experiments to evaluate this algorithm
in order to measure the minimum cost of replication whilst
the expected availability in the form of number of nines is
satisfied. In the first experiment, we relax the constraint (4)
and assume that all objects have the same priority from the
user’s perspective.

The result of this experiment are depicted in Fig. 2. We
can say that if the user wants to have the expected availability
with 4 nines, the minimum cost of replication is imposed to
the user is about 600. Thus, if the user randomly chooses an
object among the objects, he is able to access that object with
the probability of 99.99%. Fig. 2 also demonstrates that the
minimum cost of replication experiences almost two stages of
significant increment. We observed that the algorithm explores
most data centers in the range from d9 to d6 to provide 4

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	

99
.99
	

99
.99
5	

99
.99
9	

99
.99
95
	

99
.99
99
	

99
.99
99
5	

99
.99
99
9	

99
.99
99
95
	

99
.99
99
99
	

99
.99
99
99
5	

99
.99
99
99
9	 M

in
im

um
	 C
os
t	 o

f	 R
ep

lic
a2

on
	

Expected	 	 Availability	 (EA)	

MinCost(r=2,M=100)	

Fig. 2. Minimum cost of replication versus expected availability of objects

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	

99
.99
	

99
.99
3	

99
.99
6	

99
.99
9	

99
.99
93
	

99
.99
96
	

99
.99
99
	

99
.99
99
3	

99
.99
99
6	

99
.99
99
9	 M

in
im

um
	 	 C
os
t	 o

f	 R
ep

lic
a2

on
	 	

Expected	 Availability	 (EA)	

Gobject	 Sobject	 Bobject	 (M=300,r=2)	

Fig. 3. Minimum cost of replication versus expected availability for three
types of QoS

nines and 5 nines as expected availability. As the value of
EA is increased from 5 to 7 nines, the algorithm dynamically
switches to the more expensive data centers, where the first
stage of increment in the minimum cost of replication happens.
The second stage of increment incurs when the value of EA
is augmented from 7 nines to 9 nines, which results in three
times increment in the minimum cost of replication.

To evaluate Algorithm 1 with constraints (4) (i.e., the
revised Algorithm 1), it is assumed that the user asks to store
Gold, Silver and Bronze objects in data centers subject to, for
example, PG = 50%, PS = 30% and PB = 20%. Furthermore,
the number of objects in each type of QoS is set to 100. With
the above assumptions, the revised Algorithm 1 is run and its
results are illustrated in Fig. 3. This figure demonstrates as
the EA value is increased, the minimum cost of replication
of Gold objects significantly grows compared to that of two
other types. For example, with EA=7, the minimum cost of
replication for Gold objects is approximately three and seven
times more than that of the required for Silver and Bronze
objects, respectively. This is because the revised Algorithm 1
explores more reliable data centers, which in turn are more
expensive ones, to host Gold objects in comparison with two
other QoS types.

In Fig. 4, as expected, the hierarchy between the QoS
types is respected, i.e. the value of EAG is higher than
EAS which in turn is higher than EAB . For example, when
TN=600, we have EAG=5 nines and EAS=4 nines whilst
about 60% of Bronze objects are stored in data centers
such that EAB=4 nines (which is not plotted in Fig. 4(b)).
This is because that Gold and Silver objects have stricter
requirements. Figs. 4(a) and 4(b) also show that as the TN

5	

6	

7	

8	

9	

10	

600	 700	 800	 900	 1000	 1100	 1200	 1300	 1400	 1500	

Ex
pe

ct
ed

	 	 A
va
ila
bi
lit
y	
(#
9)
	

	 TN	 (#9)	

Gobject(M=300,r=2)	

(a) Expected availability versus TN for Gold objects

99.9900	
99.9910	
99.9920	
99.9930	
99.9940	
99.9950	
99.9960	
99.9970	
99.9980	
99.9990	
100.0000	

600	 700	 800	 900	 1000	 1100	 1200	 1300	 1400	 1500	

Ex
pe

ct
ed

	 	 A
va
ila
bi
lit
y	

	 TN	 (#9)	

Sobject	 Bobject(M=300,r=2)	

(b) Expected availability versus TN for Silver and Bronze objects

Fig. 4. Expected availability versus TN for three types of QoS

0.00000000	
0.00000001	
0.00000010	
0.00000100	
0.00001000	
0.00010000	
0.00100000	
0.01000000	

99
.99
	

99
.99
3	

99
.99
6	

99
.99
9	

99
.99
93
	

99
.99
96
	

99
.99
99
	

99
.99
99
3	

99
.99
99
6	

99
.99
99
9	

Ex
pe

ct
ed

	 F
ai
lu
re
	 (E

F Q
)	

Expected	 Availability	 (EA)	

Gobject	 Sobject	 Bobject	 	 	 	 	 	 (M=300,r=2)	

Fig. 5. Expected failure (EFQ) versus Expected Availability for three types
of QoS

value rises, the value of EAQ increases according to PQ. Fig. 5
plots EA against EFQ. As it can be see, the higher EA value,
the lower EFQ value for three types of QoS. In addition, the
value of EFG is lower than EFS and EFB because the value of
PQ prioritizes Gold, Silver and Bronze objects. For example,
when EA=7 nines , EFG ≈1.6 EFS and EFG ≈3 EFB .

C. Algorithm 2: Maximum Expected Availability with a Given
Budget

In this algorithm, since n and r are small constants, the
value of m is small and varies between 2 and bn/rc. The
value of m can be defined according to a trade-off between the
switching cost and the availability of objects. This is because
as m is increased the switching cost and the availability of
objects are decreased. Finding the optimal value of m based
on this trade-off is beyond the scope of this paper, and we
leave it as a future work. What it is important for us is to
investigate how Algorithms 2 and 3 are able to find optimal
placement of chunks for each arbitrary value of m. Therefore,
in order to evaluate them, we fix the values of M , r, and m
and vary the value of budget. Fig. 6 shows that the value
of EA for objects when the budget is varied from 1000
to 3000. The following observations can be made from the
results. First, with increasing the budget, the value of EA is
increased. This should be attributed to the fact that Algorithm 2
explores the more expensive data centers with lower failure
probability to store objects as the budget grows. Second, as

99.99940	

99.99950	

99.99960	

99.99970	

99.99980	

99.99990	

100.00000	

1000	 1500	 2000	 2500	 3000	

Ex
pe

ct
ed

	 	 A
va
ila
bi
lit
y	
(E
A)
	

Budget	

Expected	 Availability	 (M=100,r=2,m=2)	

Fig. 6. Expected availability versus Budget

the budget is increased, the rate of increment in the value of
EA becomes smaller. Because Algorithm 2 chooses a subset
of data centers from DC as a main set of data centers such
that the cost of replication for all objects gained the maximum
expected availability is minimized. As the budget escalates, the
algorithm dynamically changes some data centers in main set,
which is termed as auxiliary subset, until the budget allows
the algorithm to find a new main set of data centers. This
new main set increases the value of EA with a smaller rate.
This happens because marginal increment in EA value of
using more expensive of data centers in auxiliary subset is
decreasing. As a result, the expected availability is increased
less with the same amount of additional budget. For example,
when the budget increases from 1000 to 1500, the value of
EA increases one nine that is the same as that of from 1500
to 2500. Fig. 7 illustrates the EF value for objects versus the
budget. As it can be seen, the EF value is decreased with the
increase of budget. Furthermore, the decrement in the value of
EF becomes less when we have an increment in the budget,
which confirms the second observation in Fig. 6.

Fig. 8 plots the value of EAQ against the budget that is
varied between 2000 and 6000. The higher budget results in
the higher value of EAQ for all types of QoS. As expected,
the Gold objects achieve the highest expected availability and
Bronze objects achieve the lowest one, because the revised
Algorithm 3 divides the budget among each type of QoS
according to PQ. Fig. 8 also depicts that EAB value is constant
when the budget is varied from 2000 and 5000. The reason
is since the revised algorithm allocates the lowest budget to

0.00000	
0.00001	
0.00001	
0.00002	
0.00002	
0.00003	
0.00003	
0.00004	
0.00004	
0.00005	

2000	 2500	 3000	 3500	

Ex
pe

ct
ed

	 	 F
ai
lu
re
	 (E

F)
	

Budget	

Expected	 Failure(M=100,r=2,m=2)	

Fig. 7. Expected failure versus Budget

99.9994	

99.9995	

99.9996	

99.9997	

99.9998	

99.9999	

100	

2000	 3000	 4000	 5000	 6000	

Ex
pe

ct
ed

	 	 A
va
ila
bi
lit
y	
(E
A Q

)	

Budget	

Gobject	 Sobject	 Bobject	 	 	 (M=300,r=2,m=2)	

Fig. 8. Expected availability for three types of QoS Versus Budget

Bronze objects, it is not possible to store all Bronze objects
in the data centers. In this experiment, 60%, 40% and 20%
Bronze objects are not placed in data centers when the budget
is 2000, 3000, and 4000, respectively. This figure for Silver
objects is about 40% and 20% when the budget is 2000
and 3000, respectively. Placing all Silver and Bronze objects
happens when the amount of budget reaches 3000 and 5000,
respectively.

VI. CONCLUSIONS AND FUTURE WORKS

We addressed two issues related to placing replicas of the
objects in multi-cloud environment. In order to tackle these
issues, we propose efficient algorithms. The first algorithm
has been designed to minimize the replication cost and the
expected availability of objects as the user’s QoS is met. The
second one is proposed to maximize the expected availability
of objects under a given budget with the assumption that
the objects are split to chunks. We also have conducted
extensive simulation experiments to evaluate the effectiveness
of our algorithms. The experiments show that the proposed
algorithms are efficient to determine the optimal location of
the replicas for objects with a given constraint.

As our future work, we will first propose an algorithm
to find the minimum replication cost with a given expected
availability for striped objects. Second, since in this work
we have conducted trade-off between the storage cost and
the availability, we aim to consider the data transfer in/out
cost, the queries and the processing cost when we select the
cloud provider. Third, the cost of migration from one cloud
provider to another due to urgent needs should also be taken
into consideration in selection of cloud storages.

ACKNOWLEDGMENT

The authors would like to thank Rodrigo N. Calheiros,
Deepak Poola, Nikolay Grozev and Atefeh Khosravi for their
helpful discussions and suggestions.

REFERENCES

[1] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.

[2] R. Kotla, L. Alvisi, and M. Dahlin, “Safestore: a durable and practical
storage system,” in 2007 USENIX Annual Technical Conference on
Proceedings of the USENIX Annual Technical Conference, ser. ATC’07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 10:1–10:14.

[3] S. S. G. L. Ryan Ko, “Cloud computing vulnerability incidents: A
statistical overview,” 2013.

[4] C.-W. Chang, P. Liu, and J.-J. Wu, “Probability-based cloud storage
providers selection algorithms with maximum availability,” 2012 41st
International Conference on Parallel Processing, vol. 0, pp. 199–208,
2012.

[5] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “Racs: a case for
cloud storage diversity,” in Proceedings of the 1st ACM symposium on
Cloud computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010,
pp. 229–240.

[6] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, ser. IMC ’10. New York, NY,
USA: ACM, 2010, pp. 1–14.

[7] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, 2010, pp.
1–7.

[8] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM symposium on Cloud computing, ser. SoCC
’10. New York, NY, USA: ACM, 2010, pp. 205–216.

[9] M. Placek and R. Buyya, “Storage exchange: a global trading platform
for storage services,” in Proceedings of the 12th international conference
on Parallel Processing, ser. Euro-Par’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 425–436.

[10] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and C. Dorai, “Are
clouds ready for large distributed applications?” SIGOPS Oper. Syst.
Rev., vol. 44, no. 2, pp. 18–23, Apr. 2010.

[11] M. J. Fischer, X. Su, and Y. Yin, “Assigning tasks for efficiency in
hadoop: extended abstract,” in Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures, ser. SPAA ’10. New
York, NY, USA: ACM, 2010, pp. 30–39.

