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SUMMARY

Energy consumption and its associated costs represent a huge part of cloud providers’ operational costs.

In this paper, we explore how much energy cost savings can be made knowing the future level of renewable

energy (solar/wind) available in data centers. Since renewable energy sources have intermittent nature, we

take advantage of migrating Virtual Machines (VMs) to the nearby data centers with excess renewable

energy. In particular, we first devise an optimal offline algorithm with full future knowledge of renewable

level in the system. Since in practice, accessing long-term and exact future knowledge of renewable energy

level is not feasible, we propose two online deterministic algorithms, one with no future knowledge called

deterministic and one with limited knowledge of the future renewable availability called future-aware. We

show that the deterministic and future-aware algorithms are 1 + 1/s and 1 + 1/s− ω/s.Tm competitive in

comparison to the optimal offline algorithm, respectively, where s is the network to the brown energy cost, ω

is the look-ahead window-size, and Tm is the migration time. The effectiveness of the proposed algorithms

is analyzed through extensive simulation studies using real-world traces of meteorological data and Google

cluster workload. Copyright c© 2010 John Wiley & Sons, Ltd.
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2 A. KHOSRAVI AND OTHERS

1. INTRODUCTION

Cloud computing is a paradigm focused on the realization and long held dream of delivering

computing as a utility [1]. Nowadays, the number of individuals and organizations shifting

their workload to cloud data centers is growing more than ever. Cloud services are delivered

via data center sites each containing tens of thousands of servers, which are distributed across

geographical locations. The geographical diversity of computing resources brings several benefits,

such as high availability, effective disaster recovery, uniform access to users in different regions,

and access to different energy sources.

Data centers as the heart of a cloud computing system are energy intensive. This is due to the high

power required to run the IT equipment, power, and cooling infrastructure [2]. Based on the report

by Koomey [3], data centers were responsible for 1% of the world’s total energy consumption in the

year 2005, equivalent to 152 billion kilowatt-hours (kWh) that has been almost doubled from the

year 2000. Besides the high energy consumption of data centers, the cost associated with the energy

is a big concern as well. According to Hamilton [4], the energy costs are estimated to be around

42% of the data center’s operational costs. Furthermore, the issue of high energy consumption by

data centers makes them responsible for 2% of the world’s total CO2 emission [5].

To overcome the problem of high energy consumption that leads to high energy costs for the cloud

provider and environmental concerns due to the high CO2 emission of energy sources, there are two

possible solutions: 1) improving the data center’s efficiency or 2) replacing the brown energy sources

with clean energy sources. By making data centers energy efficient and aware of energy sources,

cloud providers are able to reduce their costs significantly [6]. Recently, large IT companies started

to build their own on-site renewable energy sources, such as Facebook’s solar-powered data center

in Oregon [7], its newly build wind-powered data center in Texas [8], Amazon [9], Apple [10],
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ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 3

Google [11], and Microsoft [12] renewable energy farms. To this end, we consider access to on-

site renewable energy sources†, which is becoming popular for modern data center sites. However,

due to the intermittent nature of renewable energy sources, these data centers consider access to

off-site electrical grid (also known as brown energy) to power their infrastructure in the absence

of renewables. The on-site energy sources considered are solar and wind, the two fastest growing

renewables. As discussed earlier, these energy sources are not available all the time. Solar energy is

only available during the day and it has its peak during noon, while wind energy fluctuates during the

day and does not follow any particular pattern. Yet, cloud providers try to minimize their energy cost

through maximizing on-site renewable energy usage. However, maximizing renewable energy usage

in one data center site is challenging, because of intermittent and the limited nature of solar and wind

energy. One solution to achieve this goal is to migrate the load (VMs) from one data center without

currently available renewable energies to a data center with excess renewable energy. Moreover,

migrating the VMs requires the knowledge of the time that migration should take place to avoid

brown energy usage.

In this paper, we are motivated by the following question: “with limited or no priori knowledge of

the future level of renewable energies, when should VM migration take place such that the energy

cost is minimized and accordingly the overall renewable energy consumption is maximized?” For

this, we study cost-minimizing VM migration algorithms targeting a cloud provider with distributed

data center sites within a region‡ with access to disparate renewable energy sources. We model the

cost minimizing VM migration problem, and determine the cost of offline algorithm, as well as the

competitive ratio for the optimal online deterministic algorithm. Moreover, we enhance the online

algorithm by adding limited future knowledge of available renewable energy in the system. We

evaluate the proposed algorithms through extensive simulation using CloudSim toolkit [14], traces

† Renewable and green energy sources are used interchangeably in the paper.
‡ A region is a separate geographic area with multiple and isolated locations known as availability zones connected

through dedicated low latency links. This is the same definition used by Amazon EC2 architecture [13].
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4 A. KHOSRAVI AND OTHERS

of wind and solar energy undertaken by the National Renewable Energy Laboratory (NREL) [15],

and real-world workload traces from Google [16].

The main contributions of this paper are:

• Formulation of the offline cost optimization problem for VM migration, across geographically

distributed cloud data centers, with respect to the availability of renewable energy.

• Proof and competitive ratio analysis of the optimal online deterministic algorithm with no

future knowledge against the optimal offline algorithm.

• Design of an online VM migration solution with limited future knowledge regarding the

solar/wind power availability.

• Evaluation of the proposed algorithms through extensive simulations using real-world

renewable energy (solar and wind) traces and workload traces of a Google cluster.

The remainder of the paper is organized as follows. The next section discusses the related work.

The system model and cost optimization problem are formalized in Section 3. Section 4 presents the

optimal offline solution followed, in Section 5, by introducing the online deterministic and future-

aware online algorithms. Evaluation results are presented in Section 6 and Section 7 concludes the

paper.

2. RELATED WORK

The context of energy-efficient resource management has gained considerable attention over the

last few years. Moreover, along with the objective of energy consumption optimization, the

problem of reducing carbon footprint has been an ongoing research due to environmental concerns,

rise in global warming, social and governmental pressure (impose of carbon tax), and more

importantly increase in the usage of renewable energy sources to power data center sites by

cloud providers [17]. Most of the early works on energy efficiency focus on a single server and

intra-data center optimization techniques, such as CPU DVFS (dynamic voltage and frequency
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ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 5

scaling) [18], virtualization [19], VM migration and consolidation for switching off idle servers

and power management [20, 21]. An extensive taxonomy and survey by Beloglazov et al. [22]

discusses different techniques on energy-efficient data centers. Similar to our work, Beloglazov

and Buyya [23] formulated cost for the single VM migration and dynamic VM consolidation

problems within a single data center environment. They conducted competitive-ratio analysis to

characterize the performance of optimal online algorithms against the optimal offline competitor. On

the contrary, we focus on energy cost minimization by applying VM migration between data center

sites considering access to renewable energy sources and limiting brown energy usage. While they

consider Service Level Agreement (SLA) violation cost due to server over-subscription, we consider

inter-data center network cost and additional brown energy usage.

Following the high energy consumption by data centers, increase in their operational costs, and

the issue of carbon footprint encouraged cloud providers to have their own on-site renewable energy

sources and power their data centers completely or partially through clean energy sources [7, 24].

Kong and Liu [25] investigated research works towards green-energy-aware power management

for single and multi data centers. Recently, there has been a large body of literature considering

reducing energy costs targeting inter-data center sites. They achieve this goal either by considering

spatial (different electricity prices in different geographical locations) or temporal changes (different

electricity prices during different times of the day) of the electricity derived from off-site grid or by

maximizing renewable energy usage, which leads to minimizing brown energy consumption as well.

One of the earliest studies that targets reducing the costs associated with brown energy

consumption is done by Le et al. [26]. They consider the amount of load each data center can

accommodate based on its electricity price and energy source, whether it is brown or green

energy and within a specific time period and budget. A similar work by Liu et al. [27] considers

geographical load balancing to minimize brown energy consumption through an optimal mix of

renewable energy sources (solar and wind) as well as storage of these renewables in data centers.

An extension to that work has been done by Lin et al. [28] to explore the optimal combination of

brown and green (solar/wind) energy sources aiming a net-zero brown energy system. To tackle the
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6 A. KHOSRAVI AND OTHERS

same problem, Toosi and Buyya [29] proposed a fuzzy logic-based load balancing algorithm that

needs no knowledge of future. All these works consider routing of incoming load to the data centers

based on their initial renewable/brown state by the time of users’ requests submission. Whilst, we

consider VM migration between data center sites, due to the limited and intermittent nature of

renewable energy sources.

Rao et al. [30] aimed at minimizing total cost by considering electricity pricing data to route

delay-constraint applications. Ren et al. [31] proposed online algorithms to route jobs to the

data centers with low electricity prices or suspend jobs and resume them later, if necessary.

Buchbinder et al. [32] has the same objective of reducing energy cost for a cloud provider. They

take advantage of dynamic electricity pricing to migrate running batch jobs to the data center with

lower electricity price. Comparatively, we focus on VM migration and taking advantage of available

renewable energy sources in data centers.

Towards reducing energy cost and limiting brown energy consumption, Chen et al. [33] proposed

scheduling algorithms to forward incoming jobs to the data centers considering energy source at the

data center and requests’ deadline to process the incoming requests for further execution. Celesti et

al. [34] proposed a framework to allocate VM requests to the data centers with the highest level of

solar energy and lowest cost. Le et al. [35] used the same idea of assigning incoming requests to the

data center considering green energy sources and electricity price in order to minimize brown energy

consumption. Luo et al. [36] leverage both the spatial and temporal variation of electricity price to

route the incoming requests between geographically distributed data centers targeting energy cost

minimization.

The comparison of the existing literature with our proposed work is summarized in Table I. Our

work is different from the discussed studies, since we consider VM migration between data centers

to maximize renewable energy (solar/wind) consumption. The targeted system here has several

data centers located within a region (geographically near locations). We analyze the VM migration

problem by calculating the optimal offline cost and computing the competitive ratio for an online

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)

Prepared using cpeauth.cls DOI: 10.1002/cpe



ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 7

Table I. Comparison of proposed work with existing literature.

Energy cost

minimization

Brown energy

minimization

Renewable

energy

maximization

Migration

Competitive-

ratio

analysis

Le et al. [26] X X X

Liu et al. [27] X X

Lin et al. [28] X X X X

Rao et al. [30] X

Le et al. [37] X X X

Ren et al. [31] X X

Buchbinder et al. [32] X X X

Chen et al. [33] X X

Celesti et al. [34] X X X

Le et al. [35] X X X

Luo et al. [36] X

Toosi and Buyya [29] X X X

Our work X X X X X

deterministic algorithm, without any future knowledge of renewable energy level, and a future-

aware online algorithm with a look-ahead window and limited knowledge, up to a window-size, of

future level of solar and wind energy.

3. SYSTEM SPECIFICATION AND PROBLEM DEFINITION

3.1. System Model

The targeted system in this paper is an IaaS cloud provider offering virtual machine (VM) resources

to its clients similar to Elastic Compute Cloud (EC2) service by Amazon Web Services [13]. The

cloud provider, as shown in Figure 1, consists of several geographically distributed regions. Each

region is isolated from other regions and consists of several availability zones. The availability
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8 A. KHOSRAVI AND OTHERS

Figure 1. System model.

zones in the regions are data centers connected through low latency links. Hereafter, whenever we

talk about data centers, we refer to the availability zones within one region. We only consider VM

migration between data center sites belonging to the same region, as the network cost and delay

associated with that is acceptable [13]. To the best of knowledge, we are the first considering VM

migration between cloud data centers to maximize renewable energy utilization.

A cloud user (hereafter called user) at the time of submitting a VM provisioning request can

choose the availability zone he/she wants to run the VM in or leaves the availability zone selection

up to the cloud provider. Users submit VM provisioning requests through a cloud interface called

a cloud broker (hereafter called broker). This connects them to the cloud provider and enables

the users to monitor and follow the status of their requests. Broker, as discussed in our previous

work [38], is a major component of the provider. It is responsible for receiving VM requests,

performing the VM placement and migrating the currently running VM to another data center,

in case of failure, maximizing renewable energy usage, or any other purpose. The information

needed by the broker to function is provided by the directory called Energy and Carbon Efficient

Cloud Information Service (ECE-CIS). Data centers register themselves at the ECE-CIS and keep

it updated regarding any changes in their current state. The information sent by data centers to
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ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 9

the ECE-CIS include: available physical resources, data center’s PUE, energy source(s), amount of

available renewable energy, carbon footprint rate, and physical servers’ current utilization. Note that

PUE stands for power usage effectiveness and is a metric coined by the Green Grid consortium [39]

to represent a data center’s energy efficiency. PUE is the ratio of total power consumed by the data

center to its power consumed by IT devices.

As shown in Figure 1, data centers might use their own on-site renewable energy sources to power

their infrastructure and servers in addition to the electricity delivered from off-site grid. The off-site

grid energy is usually derived from polluting sources, known as brown energy, so cloud providers are

deploying their own on-site renewable energy sources with the aim of cost saving and social impact.

Two renewable energy sources considered in this work are solar photovoltaic (PV) and wind, since

they are the most common and the fastest growing ones. Solar energy, as can be seen in Figure 4a,

has a raised cosine distribution during the day, therefore its peak energy level varies by change in

time zone for different locations. In contrast, wind energy does not have a clear predictable pattern,

as shown in Figure 4b. Having these two renewable sources in a data center provides access to clean

energy to run requests during different times of the day.

3.2. Preliminaries

We consider a cloud provider with a set of n data center sites, shown as D = {d1, d2, ..., dn},

distributed in a geographical region. Each data center is referred to as an availability zone which

consists of a set of h servers/hosts shown as S = {s1, s2, .., sh}. The list of all the symbols used in

this paper are given in Table II.

Total Cost. The total cost of energy, Equation (1), is the cost of energy used to run/execute VMs in

the data center and the extra cost.

Ctotal = Cexecution + Cextra . (1)

Extra Cost. Extra cost, Equation (2), is associated with the energy used to migrate VMs between

data center sites and the additional brown energy usage in the source data center while VM migration

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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10 A. KHOSRAVI AND OTHERS

Table II. Description of symbols.

Symbol Description Symbol Description

D Set of data center sites n Number of data center sites

S
Set of physical servers (hosts) in a

data center
h Number of physical servers (hosts)

Cexecution Energy cost to execute the VMs Cextra Extra cost due to VM migration

Cmigration Energy cost to migrate the VMs CaddBrown

Additional brown energy consumption

at the source data center during VM

migration

Cs Cost of server energy consumption Co Cost of overhead energy consumption

cn

Cost of network to migrate the VM per

unit time
cb Cost of brown energy per unit time

pr Price of renewable energy per unit usage pb Price of brown energy per unit usage

Er

Servers total renewable energy

consumption
Eb Servers total brown energy consumption

tm

Start time of VM migration at the source

data center
Tm Duration to migrate the VM

tb

Start time of brown energy consumption

at the source data center
Tb

Duration of brown energy usage during

VM migration at the source data center

takes place.

Cextra = Cmigration + CaddBrown . (2)

The aforementioned costs (execution, migration, and additional brown) can be detailed as follows:

Execution Cost. Execution cost is the energy cost to run VMs in the data center and is shown in

Equation (3). The energy cost to run VMs consists of server (Cs) and overhead (Co) costs imposed

due to running VMs within a data center.

Cexecution = Cs + Co . (3)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)

Prepared using cpeauth.cls DOI: 10.1002/cpe



ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 11

In order to calculate overhead energy, we use PUE that is equal to the total energy goes to a

data center divided by the total energy consumed by IT devices and is computed as:

PUE =
Cs + Co

Cs
. (4)

As a result,

Cexecution = Cs × PUE . (5)

Server Cost. Servers host the incoming workload and based on their configuration are capable to

accommodate different number of VMs. The cost of servers Cs is computed as follows:

Cs = pr × Er + pb × Eb , (6)

where Er and Eb are the energy consumption of servers using renewable and brown energy sources

and pr and pb are the related prices, respectively.

The energy consumption of servers is the product of the power consumption of servers and the

time period they have been working under that power. The power consumption depends on several

hardware resources including CPU, memory, and disks [40]. According to Blackburn and Grid [41],

the total power consumed by a server is determined by the incoming load to that server, which

is shown as CPU utilization. The relationship between the server power consumption and CPU

utilization can be a constant, cubic, or quadratic [42].

Migration Cost. Migration cost is part of the extra cost and is the energy consumed by the network

to migrate the VMs between data center sites. Live migration of VMs requires relocating the VMs

and placing them in their new destination [43]. The cost due to transferring the VMs is proportional

to the VM size and the number of bytes that need to be transferred between data center sites, similar

to AWS EC2 pricing [13]. For the sake of simplicity, we limit the migration cost to a specific type of

VM with a constant network cost cn per unit time for the live migration and Tm is the time required

to perform and complete the migration. Equation (7) represents the migration cost.

Cmigration = cn × Tm . (7)
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12 A. KHOSRAVI AND OTHERS

Additional Brown Energy Cost. This part represents the penalty of brown energy consumption

while VM migration takes place at the source data center. As mentioned earlier, we consider two

different types of energy sources: brown and renewable. The renewable energy is drawn from on-site

solar and wind power generators. Therefore, there is a one-time installation and fixed maintenance

cost for them; which leads to very low price per unit usage in their lifespan. On the other hand,

brown energy is derived from off-site electricity that, besides its high per unit usage cost, also leaves

carbon dioxide in the environment. We show the brown energy cost for the specific type of VM as

cb per unit time and the time duration brown energy has been used while migration takes place as

Tb. Therefore, the cost of additional brown energy usage can be shown as:

CaddBrown = cb × Tb . (8)

3.3. System Objective

Considering prices of different energy sources and their environmental impact, running VMs using

renewable energy sources eventually leads to a lower total cost. We consider powering data centers

using renewable energy unless it is not available. Since renewable energy sources have intermittent

nature, there is the possibility of their shortage in the lifetime of a VM running in the data center. In

this case, cloud provider could migrate the VM to another availability zone with excess renewable

energy available. Performing VM migration could lead to lowering and even eliminating brown

energy usage, but it imposes extra costs to the system. In this work, our objective is to minimize

the total cost of running VMs in the system through VM migration. As shown in Equation (9), the

objective function consists of energy used in data centers to run VMs, and extra energy used to

migrate VMs to the data center with access to renewable energy and the additional brown energy

used in the source data center while migration takes place.

minimize Cexecution + Cextra . (9)

The first part (execution cost) in the objective function is inevitable even if no migration takes

place. Therefore, to achieve our goal we restate the objective function as to minimize the extra cost

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)

Prepared using cpeauth.cls DOI: 10.1002/cpe



ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 13

due to VM migration. However, optimal cost minimization within a data center with very large

number of VMs is a complex problem. We narrow down our formulation to a single VM migration

problem, which eventually leads to overall cost minimization when the cost for the individual VM

is minimized.

3.4. VM Migration Problem

To maximize renewable energy usage and be aligned with the system objective, we perform VM

migration in the absence of renewable energy. The extra energy, Equation (2), consists of the energy

used by the network, Equation (7), and additional brown energy used at the source data center,

Equation (8), while the VM migration takes place.

We break down the extra cost into three different cases, as shown in Equation (10) and Figure 2.

Cextra =



C1 if tm < tb and tb − tm ≥ Tm,

C2 if tm < tb and tb − tm < Tm,

C3 if tm ≥ tb.

(10)

where,

C1 = cn.Tm ,

C2 = C3 = cn.Tm + cb.(tm − tb + Tm) .

(11)

The first case (C1) indicates when the VM migration starts at tm and finishes before the start of

brown energy consumption tb. This is shown in case (a) in Figure 2 as well and can be formulated as:

tm < tb and tb − tm ≥ Tm. Therefore, the time duration required for VM migration to be completed

Tm comes to at end before the data center starts to use brown energy sources and the only extra

cost in this case is the migration cost as shown in Equation (11). C2, case (b) of Figure 2, occurs

when migration starts before finishing of renewable energy tm < tb but it completes after start of

brown energy usage tb − tm < Tm. As shown in Equation 11, besides the migration cost, the cost

of brown energy usage in the source data center is added to the extra cost as well. Finally, C3 which

is the case (c) in Figure 2, occurs after the time no renewable energy is available in the data center,

i.e.,tm ≥ tb.
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14 A. KHOSRAVI AND OTHERS

tm tb

Tm

t
Tb=0

tm tb

Tm

t
Tb=tm-tb+Tm

tmtb

Tm

t

Case (a)

Case (b)

Case (c) Tb=tm-tb+Tm

Figure 2. Example of migration time (tm) versus start time of brown energy consumption (tb).

4. OPTIMAL OFFLINE VM MIGRATION

In this section, we study the offline solution of a single VM migration problem among data center

sites to increase the usage of renewable energy sources. Without loss of generality, we assume that

the brown energy cost per unit time to be 1 and normalize the network cost cn to the brown energy

cost, as shown in Equation (12).

cb = 1 and cn = s; where s ∈ R+ . (12)

Moreover, we consider the following relation for tb, tm, and Tm.

tb − tm = aTm; where a ∈ R . (13)

Considering Equations (12) and (13), we rewrite Equations (10) and (11) as follows:

Cextra =


C1 = s.Tm if a ≥ 1,

C2 = C3 = s.Tm + (1− a)Tm if a < 1.

(14)

Theorem 1

The optimal offline (OPT) cost is s.Tm.

Proof

However, finding the optimal offline cost associated with Equation (14) is straight forward, we

provide the detailed proof for better understanding of VM migration problem under different system
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ONLINE VIRTUAL MACHINE MIGRATION FOR RENEWABLE ENERGY USAGE MAXIMIZATION 15

conditions. In order to find the optimal offline solution, we need to find the condition where the cost

function has the minimum cost. Based on Equation (14), we have:

1. C1 equals s.Tm, where a ≥ 1.

2. If a < 1 then 1− a is always a positive value and C2 or C3 are always greater than s.Tm,

which means C2 > C1 or C3 > C1.

As a result, the optimal offline happens at a ≥ 1 or tb − tm ≥ Tm. This means that the optimal

offline happens when migration starts and finishes before the start of brown energy usage in the

data center. This leads to the optimal offline cost s.Tm.

5. ONLINE VM MIGRATION

In this section, we construct two online algorithms to minimize cost of VM migration. The reason

for proposing online algorithms is that optimal offline algorithm is only attainable when we have full

future knowledge about the system and renewable energy level. Here we propose two deterministic

online VM migration algorithms: optimal online deterministic (OOD) VM migration with no future

knowledge and future-aware dynamic provisioning (FDP) VM migration with limited knowledge

(up to a window-size) regarding renewable energy level. Our online algorithms are inspired by ski-

rental problem [44]. We decide when to migrate a VM to another data center with excess renewable

energy to minimize brown energy consumption. It should be noted that the decision to whether or

not to migrate a VM to another data center is considered to be happening in serial. Making decision

to migrate the VMs in this way, we assume that we only make decision regarding migration of one

VM at a time and our knowledge about the renewable energy level at the destined data center is

precise to large extent. Moreover, in our model we keep two copies of VM while migration and

switching is happening. Keeping a copy of the VM in the source data center till VM migration fully

completes assures that user experience in terms of latency and response time would not be affected

by the migration time and network delay.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
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16 A. KHOSRAVI AND OTHERS

In order to be able to evaluate the performance of our online algorithms, we use the competitive

ratio analysis [45].

Definition

An online algorithm is called c-competitive if, for all possible inputs, the outcome of the online

algorithm (CA) in comparison to the optimal offline outcome (COPT ) has the following relation:

CA/COPT ≤ c.

5.1. Optimal Online Deterministic VM Migration

Our goal is to propose an algorithm that could achieve optimal result using only the current

information available. Theorem 2 shows the optimal online deterministic algorithm for a single VM

migration problem is attained when migration takes place by the beginning time of brown energy

usage, that is, tm = tb.

Theorem 2

The optimal online deterministic (OOD) algorithm is achieved when tm = tb and it is (1 + 1/s)-

competitive.

Proof

Based on the cost function in Equation (14) and Theorem 1, we can write the competitive ratio for

any arbitrary online algorithm with no future knowledge as follows:

COOD

COPT
≤


s.Tm

s.Tm
= 1 if a ≥ 1,

s.Tm + (1− a)Tm

s.Tm
= 1 +

1− a

s
if a < 1.

(15)

where a =
tb − tm
Tm

as defined in Equation (13).

Any online algorithm with no future knowledge can only have the knowledge of the current time

ti, and tb if tb ≥ ti, that is, the time from which VM started using brown energy. Accordingly, two

different groups of online algorithms with no future knowledge can be defined that they set tm as a

function of:

1. the current time ti, i.e., tm = f1(ti), and
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2. the start time of brown energy usage, i.e., tm = f2(tb).

For algorithms from the former group, a =
tb − f1(ti)

Tm
, since a is not a function of tb, a can

grow arbitrarily large when the adversary will select tb such that it is infinitely greater than f(ti),

i.e., a→∞, and as a result
COOD

COPT
→∞. Therefore, all algorithms from the first group are not

competitive.

For algorithms from the latter group, a =
tb − f2(tb)

Tm
, the time of migration tm is dependent to

the start time of brown energy usage tb which is known for the algorithm, therefore:

tm ≥ tb ,

as a =
tb − tm
Tm

⇒ a ≤ 0 .

(16)

Considering a ≤ 0, the minimum competitive ratio is achieved when a = 0 for the second inequality

in Equation (15). This means migration starts by the beginning of brown energy usage, i.e., tm = tb.

As a result, the best competitive ratio is 1 +
1

s
.

5.2. Future-Aware Dynamic Provisioning VM Migration

As mentioned earlier, we consider access to renewable energy sources along with the electricity

derived from off-site grid. Two renewable sources consider in this paper, solar and wind, have

different pattern during the day. As shown in the Figure 4a, solar energy has a predictable pattern

during the day and its peak is foreseeable. In contrast, wind energy does not have a predictable

diurnal pattern. But one can use the average temporal pattern of wind energy, which can be captured

in the region [46]. It is often assumed that the renewable energy availability in the near look-ahead

window can be predicted with a good accuracy in reality, such as auto-regressive techniques used in

the works by Kansal et al. [47] and Cox [48]. If there are prediction errors in the model, decisions

would be affected by the same error margin as prediction errors. For example, 10% prediction

error causes 10% error in decision making. If the time window is small enough, such as minutely

windows, then renewable energy prediction can be predicted with considerably high precision

almost similar to real time measuring; therefore, it will not affect the decisions significantly. The
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question is how much knowledge can help and get the online algorithm performance close to the

optimal offline algorithm.

We assume that at any given time, ti, the future renewable energy is predictable for a window-size

ω, which means the amount of renewable energy in the system is known for the period [ti, ti + ω].

Now we elaborate on how the window-size affects the decision making process and improves the

online algorithm performance. The following two cases are plausible:

• If window-size is greater or equal to the time required to perform the migration, ω ≥ Tm, it

would be the same as the scenario for optimal offline algorithm. Therefore, there is enough

time to migrate the VM to a data center with access to renewable energy and avoid brown

energy usage.

• If window-size is smaller than the time of migration, ω < Tm, then tm + ω ≥ tb.

Theorem 3

The competitive ratio for the future-aware dynamic provisioning (FDP) algorithm is:
CFDP

COPT
≤

1 +
1

s
− ω

s.Tm
, where w ≤ Tm.

Proof

The optimal offline algorithm migrates the VM, Tm unit of time earlier than tb and the optimal

online deterministic algorithm with no future knowledge migrates the VM by the time of tb. The

FDP algorithm with limited future knowledge minimizes the cost when migrates the VM as soon

as tb is known. That is, FDP can migrate the VM at most up to ω unit of time earlier, when tb

can be seen within the look-ahead window. Therefore, there would be ω unit less brown energy

consumption which improves the online algorithm cost. Equation (17) shows the competitive ratio

for future-aware online algorithm.

CFDP

COPT
≤ s.Tm + Tm − ω

s.Tm
= 1 +

1

s
− ω

s.Tm
, (17)

where w ≤ Tm, as competitive ratio is always greater or equal to 1.
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Algorithm 1: Most Available Renewable Energy (MARE) VM Placement Algorithm
Input: datacenterList, hostList

Output: destination

1 while vmRequest do

2 Get data centers’ Information from ECE-CIS;

3 foreach datacenter in datacenerList do

4 availSolar ← Get Current availableSolar;

5 availWind← Get Current availableWind;

6 availRenewable← availSolar + availWind;

7 Sort datacenerList in a descending order of availRenewable;

8 foreach datacenter in datacenterList do

9 foreach host in hostList do

10 if host is suitable for vm then

11 destination← (data center, host);

12 return destination;

13 destination← null; //rejection of request;

14 return destination;

5.3. VM Placement

By the arrival of each VM request, the broker should allocate resources to the VM and for this

purpose it needs to decide where to place the VM. We treat VM placement as a bin-packing problem

with different bin sizes, which are physical servers in this context. Since bin-packing is an NP-hard

problem, we use derivation of best-fit heuristic to solve it. To be aligned with our purpose and taking

the most from available renewable energy in distributed data centers, we consider a modification of

the best-fit heuristic that we proposed in our previous work [38]. The modification to the Energy and

Carbon-Efficient (ECE) algorithm [38] is denoted as Most Available Renewable Energy (MARE).
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MARE sorts data center sites according to the amount of available renewable energy and submits

the VM to the data center with the highest available amount. The pseudo-code of the VM placement

algorithm is presented in Algorithm 1.

The time complexity of Algorithm 1 with v VM requests, n data center sites, and h physical

servers within each data center, in detail is as follows: Lines 3-6 take O(n) and the sort function

in Line 7 can be done in O(n log(n)). Lines 8-12 take O(nh), in the worst case. Thus, the total

running time for the algorithm is O(v(n+ n log(n) + nh)). Since the number of VM requests and

hosts dominate the total number of data center sites (n), the total time complexity of the algorithm

is O(vnh).

In addition, we consider another VM placement algorithm without any knowledge regarding

renewable energy availability, denoted as Random algorithm. By the arrival of a new VM request,

Random algorithm chooses a random data center uniformly.

6. PERFORMANCE EVALUATION

We perform simulation-based experiments to evaluate our proposed algorithms. Our aim is to

measure the energy cost savings incurred due to migration of VMs to data centers with access to

renewable energy sources. Moreover, we measure the improvement made by applying the proposed

approaches in cutting the amount of carbon emission.

Workload Data. We use Google cluster-usage traces [16] for workload as there is no other publicly

available real-world workload traces for IaaS cloud providers to the best of our knowledge. The

Google dataset has records of one cluster’s usage (which is a set of 12,000 physical machines)

and includes submitted requests to that cluster over a period of one month. Each request has

requirements shown as amount of requested CPU, memory, and storage. Since these traces are

user requests not representing VM instances demand, we need to make a mapping between request

submissions from users to IaaS computing demand. We use the same technique used by Toosi et al.

in [49] as part of their workload generation to generate VM request traces.
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Figure 3. One month Google workload trace.

Google traces include record of users, each submitting several tasks, with specific resource

requirements. Considering the fact that 93% of the Google cluster machines have the same

computing capability, we assume all physical machines in the cluster have the same resources (in

terms of CPU, memory, etc.) and map our VM size to that of the physical machine. In order to

derive VM request traces from Google traces, whenever a user submits a task we check if there is

already a VM instantiated by that user in the system with enough computing resources to run the

new task. Otherwise, if there is no VM owned by the user with enough capacity to accommodate the

new task, we instantiate a new VM to serve the user’s task [49]. We also terminate a VM when there

is no task running on it. By this, we can create a trace of VM requests submitted from users. The

trace contains 250,171 VM requests, each has the start time and holding time in the data center. We

consider the VM specifications in our model similar to the standard small instances introduced by

Amazon EC2 [13]. Figure 3 shows the number of VM requests per hour received by the provider,

generated based on the scheduling algorithm we used to generate VM requests according Google

cluster traces. This figure shows the shape of the workload and its fluctuation in our simulations.

Data Centers’ Configuration. We consider 3 data center sites located in the US-West region. The

locations are chosen from the Data centers Map [50], and are as follows: Phoenix in Arizona,
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Los Angeles in California, and Cedar City in Utah. The number of servers in each data center is set

in a way that data centers’ capacity would not be a limitation for not being able to take advantage

of available renewable energy. Based on the previous discussion, the servers in the data centers

are homogeneous with equal processing capacity. We model servers in data centers based on the

latest HP ProLiant DL360 Gen9 server [51], with following specifications: Intel Xeon E5-2670v3,

10 cores × 2.3 GHz, 256 GB memory. The power consumed by each request running on a server

within a data center is assumed to be on average a constant rate per time slot (e.g., 550W/hour).

We consider PUE value of 1.4 for all data center sites to calculate the overhead energy

usage. The reason is that we aim to evaluate algorithms in a setting where PUE values are

not determinative. We select the carbon footprint = 0.350Tones/MWh for the off-site grid

electricity, derived from the US Department of Energy Electricity Emission Factors [52]. The

electricity price of pb = 6.22 cents/kWh is chosen for the off-site electricity from the US Energy

Information Administration [53]. This price represents the electricity price for the on-peak period,

between 8AM and 10PM. We opt the off-peak price to be half of the on-peak. Moreover, as discussed

earlier, we consider a fixed price for renewable energy usage per unit as pr = 1.0 cents.kWh.

Renewable Energy Traces. We use the measurements reported by NREL [15] for irradiance and

meteorological data from different stations to capture wind and solar energy with 1-hour granularity

from May, 1st to May, 29th 2013. To calculate the output for PV power, we use the hourly solar

irradiance reported for flat plates on tilted surface at a 45-degree angle and PV efficiency of 30%.

We calculate the solar output based on [54] and the total area for the flat plates is considered to be

100m2, derived from the configuration by Solarbayer [55]. To generate hourly wind energy, we use

the proposed method by Fripp et al. [46]. The hourly wind speed, air temperature, and air pressure,

derived from NREL measurements, are fed to the model and the generated power is computed

accordingly, assuming each data center uses a GE 1.5MW wind turbine. Figures 4a and 4b show the

solar and wind energy availability for three different cities in our system model, respectively.
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Figure 4. Renewable energy traces.

6.1. Experiment Setup

Benchmark Algorithm. We compare the proposed offline, optimal online, and future-aware

algorithms with a baseline benchmark algorithm with no VM migration. The benchmark does not

take any further action and does not perform any migration after initial placement and instantiation

of the VMs in the data ceners. The benchmark is referred to as No-Migration (NM) policy.
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Figure 5. Total energy cost.
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Figure 6. Brown energy consumption.

6.2. Experiment Results and Analysis

In the experiments, we use the real-world traces derived from Google to study the performance of

the proposed offline, optimal online, and future-aware algorithms all in combination with two VM

placement policies against the benchmark algorithm. The results are shown in Figures 5 to 7.

Figure 5 shows the total energy cost incurred by all algorithms, when the window-size for

future-aware algorithm is set to 4.5 minutes. The results indicate that having initial knowledge
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Figure 7. Carbon footprint.

about the current renewable energy level in the data centers has a substantial effect in the amount

of cost reduction. It can be seen that there is a significant cost reduction for policies under the

MARE placement in comparison to the Random. Since offline policy has the full knowledge of

renewable energy in the system, it achieves the lowest cost, 14% and 18.5% energy cost reduction in

comparison to future-aware and online policies, respectively. Future-aware policy performs slightly

better than optimal online algorithm and reduces the total cost by 4% in comparison to the optimal

online policy that makes decision instantly without any future knowledge. The benchmark policy

has the highest cost, since after placement of VMs and when there is no renewable energy available

in the data center it does not take any further action. The benchmark policy on average consumes

26% more energy cost in comparison to the optimal offline policy under different VM placement

algorithms.

We also measured the amount of brown energy consumption as well as carbon footprint in the

system as shown in Figures 6 and 7, respectively. Policies under MARE VM placement achieved

considerable reduction in brown energy consumption in comparison to the case when VM placement

randomly chooses destined data center. Within each category, offline with full knowledge of

renewable energy consumes less brown energy, 5.6% and 12.9% less brown energy in comparison
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Figure 8. Effect of window-size on the results of future-aware dynamic provisioning algorithm under

MARE VM placement policy.
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to future-aware and online policies, respectively. Future-aware and online policies reduce brown

energy consumption by 30.5% and 22%, respectively, in comparison to the benchmark with no

migration. The same behavior can be seen for carbon footprint in Figure 7, since reduction in brown

energy consumption eventually leads to lower carbon footprint.

As shown, future-aware policy achieves results that fall between the outcome of the offline

algorithm with full knowledge, and optimal online with no knowledge about future renewable

energy level. We change the window-size to see its impact on the performance of the future-aware

dynamic processioning algorithm. As Figure 8 illustrates, increase in the window-size reduces

total cost, brown energy consumption, and carbon footprint. Increase in the window-size makes

future-aware algorithm closer to its offline competitor. The performance of the future-aware policy

improves and gets close to the optimal offline until window-size reaches 9 minutes. After this point

no improvement is achieved, since this is the point that window-size reaches the VM migration time

in our experiments. This supports the theoretically proven supposition in Section 1 that if enough

knowledge of future is available, the optimal decision suggests a VM migration that finishes before

the start of brown energy usage in the data center.

As per Figure 5, the cost ratio of deterministic and future-aware online policies versus the optimal

offline algorithm are 1.18 and 1.13, respectively. Moreover, based on the simulation setup s = 3.5,

which leads to deterministic and future-aware online algorithms be 1.28 and 1.14 competitive in

comparison to the optimal offline algorithm, respectively. The simulation results are compatible

with the calculated competitive ratio as per the provided definition of c-competitive in Section 5.

Figure 9 depicts the total number of migrations happening in the system for each policy during

the one-month simulation period and total of 250,171 VM requests. We observe that migration

policies under MARE placement achieve lower number of migrations in comparison to the same

migration policies under Random placement. The reason is that under MARE placement, a wise

data center selection is made for initial VM request placement which reduces the need for possible

future migrations. Amongst three different migration policies, offline has the highest number of

VM migrations. Since it has full knowledge of the amount of renewable energy in the system and
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Figure 9. Number of VM migrations.

begins to migrate the VMs before the start time of brown energy usage, unless there is no renewable

available in other data centers. Similarly, future-aware policy makes more VM migrations than

online policy, due to further knowledge regarding renewable energy level.

7. CONCLUSIONS AND FUTURE DIRECTIONS

Using on-site renewable energy sources instead of electricity derived from off-site grid helps cloud

providers reduce their energy cost and their reliance on polluting energy sources. Since the nature

of renewable energy sources (solar/wind) is intermittent, we take advantage of having access to

several geographically distributed data center sites of a cloud provider to perform intra-region

VM migration and take the most of the available renewable energy. In this paper, we introduced

algorithms with full and partial knowledge of future availability of renewable energy levels to

migrate the VMs to another data center within a region in the absence of renewable at the host

data center. We first introduced the optimal offline algorithm to minimize the energy cost. Due to

the necessity of having full knowledge of future level of renewable energy for optimal offline, we

propose two online algorithms. The first online algorithm is a deterministic algorithm that does not
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have any knowledge regarding the future level of renewable energy and the second one is denoted

as future-aware online algorithm with limited knowledge, up to a window-size (ω), of future level of

renewable energy. We have compared the results of the proposed optimal offline, optimal online, and

future-aware algorithms with a basic benchmark algorithm, that does not perform any migration, all

in combination with two VM placement algorithms. One VM placement is aware of the current

renewable level, known as MARE, and the other one randomly chooses the destined data center.

We have evaluated the proposed algorithms through extensive simulations using real-world traces

for renewable energy (solar and wind) and one-month workload trace of a Google cluster usage. The

offline algorithm with full knowledge of renewable energy level performs the best in comparison to

the future-aware and optimal online algorithms. The optimal online algorithm incurs 18.5% more

cost compared to the offline algorithm when no future knowledge is available. Moreover, simulation

results show that future-aware algorithm’s performance gets competitive with offline algorithm by

the increase in its window-size until the window-size reaches the network delay or the time needed

that a migration takes place and gets completed.

As a future direction, one can study the effect of inter-region migrating of VMs to evaluate

the improvements in energy cost versus network delay. Moreover, studying selection of VMs to

perform VM migration is another issue that could be investigated; since there are situations that VM

migration could lead to violating service level agreement of some users’ with special requirements

or VM migration needs large amount of data transfer over the network due to data unavailability in

the destination. Another important topic of future research is considering a more complex problem,

which involves the migration of multiple VMs, the effect of sharing the network on the transfer time,

and evaluating the competitiveness of the possible online algorithms in comparison to the optimal

offline algorithm.
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